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Introduction I

This paper is motivated by two alternative recent attempts to
deal with the non-monotonicity (in the sense of �rst order
stochastic dominance) of quadratic utilities.
The said non-monotonicity is a major drawback of these
classical utility functions
The �rst approach, �Cerný (2003), uses expected truncated
quadratic utility and leads to the so-called arbitrage-adjusted
Sharpe ratio.
The second, formulated in Maccheroni et al. (2009), modi�es
the variational form of mean-variance preferences
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Introduction II

The two approaches are prima facie altogether different
In this paper we show that there is an important and useful
link between the optimal portfolios
This link is all the more interesting because variational
preferences are closely related to convex risk measures (see
Föllmer and Schied 2002, Föllmer et al. 2009, and Frittelli
and Rosazza Gianin 2002)



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Introduction II

The two approaches are prima facie altogether different

In this paper we show that there is an important and useful
link between the optimal portfolios
This link is all the more interesting because variational
preferences are closely related to convex risk measures (see
Föllmer and Schied 2002, Föllmer et al. 2009, and Frittelli
and Rosazza Gianin 2002)



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Introduction II

The two approaches are prima facie altogether different
In this paper we show that there is an important and useful
link between the optimal portfolios

This link is all the more interesting because variational
preferences are closely related to convex risk measures (see
Föllmer and Schied 2002, Föllmer et al. 2009, and Frittelli
and Rosazza Gianin 2002)



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Introduction II

The two approaches are prima facie altogether different
In this paper we show that there is an important and useful
link between the optimal portfolios
This link is all the more interesting because variational
preferences are closely related to convex risk measures (see
Föllmer and Schied 2002, Föllmer et al. 2009, and Frittelli
and Rosazza Gianin 2002)



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Introduction III

(Normalized) quadratic utility fq(x) = x � x2
2

Expected quadratic utility Fq (Y ) = E (fq (Y )) corresponds to

Fq(Y ) = E(Y )�
1
2
E(Y 2);

Mean-variance utility is

�q(Y ) = E(Y )�
1
2
Var(Y ):
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Optimal portfolios for quadratic utilities

The problem max�2R Fq(�X ) leads to

�̂q = E(X )=E(X 2); Fq(�̂qX ) =
1
2

SR2(X )
1+ SR2(X )

;

The problem max�2R �q(�X ) leads to

�̂q = �̂q(1+ SR2(X )) =
�̂q

1� 2Fq(�̂qX )

�q(�̂qX ) =
1
2
SR2(X ) =

Fq(�̂qX )
1� 2Fq(�̂qX )

:

The two are obviously related
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A variational formula

Formally, the link between the two utility functions is provided
by the (not widely known) variational formula

�q(Y ) = inf
Z2L2(P):E(Z )=1

E
�
ZY � f �q (Z )

�
;

Here f �q (z) = �(1� z)2=2 is the Fenchel conjugate of fq

f �(z) = inf
x2R
fxz � f (x)g
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Monotonization

�Cerný (2003) replaces the quadratic utility fq(x) = 1�(1�x)2
2

with its monotone truncated version

f (x) =
1� ((1� x)+)2

2
;

F (Y ) = E (f (Y )) :

Optimal portfolios max�2Rn F (�X ) can be found by convex
optimization

Maccheroni et al. (2009) replace �q with its monotonization

�(Y ) = inf
Z2L2+:E(Z )=1

E(ZY � f �q (Z )):

Optimal portfolios max�2Rn � (�X ) can be found from a system
of n + 1 non-linear equations
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Relationship

It is really not obvious that the two problems max�2Rn F (�X )
and max�2Rn � (�X ) should be related
But amazingly numerical experiments show that

�̂ = �̂(1+ SR2m) =
�̂

1� 2F (�̂X )

�(�̂X ) =
1
2
SR2m =

F (�̂X )
1� 2F (�̂X ) :

The �rst thing to notice is

�(Y ) = inf
Z2L2+(P):E(Z )=1

E(ZY � f �(Z ));

because

f �(z) =

(
� (1�z)2

2 for z � 0
�1 for z < 0

Still not obvious what is going on
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Denote by dom+ f the largest open interval on which f is
strictly increasing
Assumption A1 f : R! [�1;1) is a proper, concave,
increasing, and upper semicontinuous function, with
0 2 dom+f .
For all Y 2 L1 (P), de�ne

F (Y ) = E (f (Y )) ;

and
�(Y ) = inf

Z2L1+(P):E(Z )=1
E(ZY � f �(Z ));
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Preliminaries II

Lemma

The preference functional F : L1 (P)! [�1;1) is proper,
concave, increasing, and upper semicontinuous.

In order to study the preference functional � we will restrict
our attention to the following class of functions.

De�nition

U denotes the set of functions f satisfying (A1) and such that
f (0) = 0, f 0+ (0) � 1 � f 0� (0), and there exist x < 0 < y in dom f
with f 0+(x) > 1 and 1 > f 0+(y) > 0.

For example, f 2 U if it is twice continuously differentiable
around 0, with f 00(0) < f (0) = 0 and f 0(0) = 1.
f 2 U implies 1 2 int dom f � and f � attains its supremum at 1,
with f �(1) = 0
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Preliminaries III

The next Theorem, essentially due to Ben-Tal and Teboulle
(2007), provides the main link between � and F .

Theorem

If f 2 U , then

�(Y ) = max
�2[essinfY ;ess supY ]

f� + F (Y � �)g ; 8Y 2 L1 (P) .

Moreover, � is concave, increasing, translation invariant, �nite,
and Lipschitz.
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Portfolio selection I

Consider X 2 L1(P)n representing the excess return of n
securities,

De�ne the preference functionals FX ;�X : Rn ! [�1;1)
over portfolios by setting

FX (�) = F (�X ) and �X (�) = �(�X ):

Our aim is to determine the relations between the maximizers
and optimal values

�̂X 2 argmax
�2Rn

FX (�) and F̂X = FX (�̂X );

�̂X 2 argmax
�2Rn

�X (�) and �̂X = �X (�̂X ):
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Lemma

The function FX : Rn ! [�1;1) is proper, concave, increasing,
and upper semicontinuous. If f 2 U , then the function �X :
Rn ! [�1;1) is real valued, concave, increasing, and Lipschitz.

De�nition
A random vector X 2 L1(P)n is arbitrage free if � 2 Rn and
�X � 0 implies �X = 0.

Notation:

f 0(1) = lim
x!1

f 0+(x)

f 0 (�1) =

�
limx!�1 f 0�(x) if domf = R;
1 otherwise.

sd+f = sup dom+ f



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Portfolio selection II

Lemma

The function FX : Rn ! [�1;1) is proper, concave, increasing,
and upper semicontinuous. If f 2 U , then the function �X :
Rn ! [�1;1) is real valued, concave, increasing, and Lipschitz.

De�nition
A random vector X 2 L1(P)n is arbitrage free if � 2 Rn and
�X � 0 implies �X = 0.

Notation:

f 0(1) = lim
x!1

f 0+(x)

f 0 (�1) =

�
limx!�1 f 0�(x) if domf = R;
1 otherwise.

sd+f = sup dom+ f



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Portfolio selection II

Lemma

The function FX : Rn ! [�1;1) is proper, concave, increasing,
and upper semicontinuous. If f 2 U , then the function �X :
Rn ! [�1;1) is real valued, concave, increasing, and Lipschitz.

De�nition
A random vector X 2 L1(P)n is arbitrage free if � 2 Rn and
�X � 0 implies �X = 0.

Notation:

f 0(1) = lim
x!1

f 0+(x)

f 0 (�1) =

�
limx!�1 f 0�(x) if domf = R;
1 otherwise.

sd+f = sup dom+ f



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Portfolio selection II

Lemma

The function FX : Rn ! [�1;1) is proper, concave, increasing,
and upper semicontinuous. If f 2 U , then the function �X :
Rn ! [�1;1) is real valued, concave, increasing, and Lipschitz.

De�nition
A random vector X 2 L1(P)n is arbitrage free if � 2 Rn and
�X � 0 implies �X = 0.

Notation:

f 0(1) = lim
x!1

f 0+(x)

f 0 (�1) =

�
limx!�1 f 0�(x) if domf = R;
1 otherwise.

sd+f = sup dom+ f



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Portfolio selection II

Lemma

The function FX : Rn ! [�1;1) is proper, concave, increasing,
and upper semicontinuous. If f 2 U , then the function �X :
Rn ! [�1;1) is real valued, concave, increasing, and Lipschitz.

De�nition
A random vector X 2 L1(P)n is arbitrage free if � 2 Rn and
�X � 0 implies �X = 0.

Notation:

f 0(1) = lim
x!1

f 0+(x)

f 0 (�1) =

�
limx!�1 f 0�(x) if domf = R;
1 otherwise.

sd+f = sup dom+ f



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Portfolio selection II

Lemma

The function FX : Rn ! [�1;1) is proper, concave, increasing,
and upper semicontinuous. If f 2 U , then the function �X :
Rn ! [�1;1) is real valued, concave, increasing, and Lipschitz.

De�nition
A random vector X 2 L1(P)n is arbitrage free if � 2 Rn and
�X � 0 implies �X = 0.

Notation:

f 0(1) = lim
x!1

f 0+(x)

f 0 (�1) =

�
limx!�1 f 0�(x) if domf = R;
1 otherwise.

sd+f = sup dom+ f



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Portfolio selection II

Lemma

The function FX : Rn ! [�1;1) is proper, concave, increasing,
and upper semicontinuous. If f 2 U , then the function �X :
Rn ! [�1;1) is real valued, concave, increasing, and Lipschitz.

De�nition
A random vector X 2 L1(P)n is arbitrage free if � 2 Rn and
�X � 0 implies �X = 0.

Notation:

f 0(1) = lim
x!1

f 0+(x)

f 0 (�1) =

�
limx!�1 f 0�(x) if domf = R;
1 otherwise.

sd+f = sup dom+ f



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Portfolio selection III

Theorem

Suppose that X 2 L1(P)n is arbitrage free and that
f 0(1)=f 0(�1) = 0. Then, argmax�2Rn FX (�) 6= ;. Moreover,
f (0) � F̂X < f (sd+ f ).

Theorem

Suppose that X 2 L1(P)n is arbitrage free. If f belongs to U , with
f 0(1) = 0 and f 0(�1) =1, then argmax�2Rn �X (�) 6= ;.

The above implies the existence of �̂X and �̂X such that

�̂X = �(�̂XX ) = max
�2R;�2Rn

f�+F (�X��)g = �̂X+F (�̂XX��̂X ):

The quantity �̂X may in general depend on �̂X if the latter is
not unique
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Lemma

Suppose that f 2 U and that X 2 L1(P)n is arbitrage free. If �̂X
and �̂X satisfy

�̂X = �̂X + F (�̂XX � �̂X );

then ��̂X 2 dom+f :

At this point we need to impose a speci�c structure on f to
progress further
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Main result

Consider normalized truncated HARA utility

f(x) =

(
(1+x=)1��1

1=�1 for x < �

�1 for x > �

;  < 0; and

f(x) =

(
(1+x=)1��1

1=�1 for x > �
�1 for x < �

; 0 <  6= 1:

Observe that above one may compute pointwise limits as
 ! �1 and  ! 1. We therefore de�ne

f1(x) =
�
ln(1+ x) for x > �1
�1 for x < �1 ; (1)

f�1(x) = 1� e�x : (2)

One easily veri�es f 2 U for all  6= 0.
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Main result II

The preference functionals induced by f are denoted by
F ;� : L1 (P)! R.

Similarly, the optimal portfolios and values are denoted by
F̂;X , �̂;X , �̂;X , and �̂;X .
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Main result III

Theorem

Suppose X 2 L1(P)n is arbitrage free. Then, for each  6= 0 the
maximizers �̂;X and �̂;X exist. Moreover:

(i) the maximizer �̂;X is uniquely determined

�̂;X =

8><>:

�
1� ((1= � 1) F̂;X + 1)1=

�
for  2 Rnf0;1g

0 for  = 1
� ln(1� F̂;X ) for  = �1

(ii) the optimal values F̂;X and �̂;X are one-to-one:

�̂;X =

8><>:
2

1�

�
(F̂;X (1= � 1) + 1)1= � 1

�
for  2 Rnf0;1g

F̂;X for  = 1
� ln(1� F̂;X ) for  = �1
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Main result IV

Theorem (continued)
(iii) the optimal portfolios for the two criteria are related as follows

�̂;X =

8><>:
�̂;X

�
F̂;X (1= � 1) + 1

�1=
for  2 Rnf0;1g

�̂;X for  = 1
�̂;X for  = �1

where the equality is to be interpreted as equality of sets in
Rn.
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Main result V

The main result shows:
portfolio optimization with power divergence preferences can
be solved in two stages, one of which involves solving optimal
portfolio problem for expected HARA utility.
Point (iii) establishes an explicit relationship between the
optimal portfolios �̂;X and �̂;X , so that the knowledge of �̂;X
is enough to determine �̂;X .
Remarkably, �̂;X and �̂;X feature the same mix of risky
assets, though the leverage is different



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Main result V

The main result shows:

portfolio optimization with power divergence preferences can
be solved in two stages, one of which involves solving optimal
portfolio problem for expected HARA utility.
Point (iii) establishes an explicit relationship between the
optimal portfolios �̂;X and �̂;X , so that the knowledge of �̂;X
is enough to determine �̂;X .
Remarkably, �̂;X and �̂;X feature the same mix of risky
assets, though the leverage is different



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Main result V

The main result shows:
portfolio optimization with power divergence preferences can
be solved in two stages, one of which involves solving optimal
portfolio problem for expected HARA utility.

Point (iii) establishes an explicit relationship between the
optimal portfolios �̂;X and �̂;X , so that the knowledge of �̂;X
is enough to determine �̂;X .
Remarkably, �̂;X and �̂;X feature the same mix of risky
assets, though the leverage is different



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Main result V

The main result shows:
portfolio optimization with power divergence preferences can
be solved in two stages, one of which involves solving optimal
portfolio problem for expected HARA utility.
Point (iii) establishes an explicit relationship between the
optimal portfolios �̂;X and �̂;X , so that the knowledge of �̂;X
is enough to determine �̂;X .

Remarkably, �̂;X and �̂;X feature the same mix of risky
assets, though the leverage is different



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Main result V

The main result shows:
portfolio optimization with power divergence preferences can
be solved in two stages, one of which involves solving optimal
portfolio problem for expected HARA utility.
Point (iii) establishes an explicit relationship between the
optimal portfolios �̂;X and �̂;X , so that the knowledge of �̂;X
is enough to determine �̂;X .
Remarkably, �̂;X and �̂;X feature the same mix of risky
assets, though the leverage is different



Monotone
Mean-Variance

A. �Cerný

Goals of the talk

Reading

Problem
statement

Preliminaries

Portfolio selection
problems

Main Result

References

Special case of monotone mean-variance

Monotone mean-variance preferences correspond to  = �1
and for them we readily recover

b��1;X = F̂�1;X
1� 2F̂�1;X

;

�̂�1;X = �̂�1;X (1� 2F̂�1;X )�1;

�Cerný (2003) shows this can be written in terms of the
arbitrage-adjusted Sharpe ratio (denoted by SRm) of the
optimal portfolio �̂�1;XX

b��1;X = 1
2
SR2m(�̂�1;XX );

�̂�1;X = �̂�1;X (1+ SR
2
m(�̂�1;XX ))�1:

The n + 1 equations which characterize the optimal value
�̂�1;X in Maccheroni et al. (2009) are now readily seen to be
the �rst order conditions of the optimization over � and �
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