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Motivation

Many structured products and financial innovation for private,
institutional investors but also in the interbanking market.

Markets exhibit smiles, skews, fat tails and other features which
suggest that we need non-normal modeling.

Different markets (Equity, FX, Interest Rate, Credit or Hybrid)
need different modeling.

High quality risk management and advanced financial models
are necessary!
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Motivation

Market consistent valuation and risk management is very
demanding and a setup must include:

Market Data
Model Choice
Calibration
Pricing
Hedging / Risk Management

Aim of the talk

We consider each stage for CPPI based selection and pricing complex
equity linked structures in non-normal markets
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Outline of the Talk

CPPI and (Exotic) Equity Options
Market Data -

Available Market Data
The Volatility Surface
Appropriate Usage of Market Data

Models
Diffusion Models
Jump-Diffusion Models
Stochastic Volatility Models
Lévy Models
Stochastic Volatility Lévy Models

Pricing

Calibration

Hedging
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CPPI Mechanism

CPPI is the abbrevation for Constant Proportion Portfolio
Insurance The CPPI mechanism is a rules-based trading strategy.
It seeks to maximise returns by way of leveraged exposure to a
(portfolio) of risky asset(s) and providing a principal protection.
This takes place in certain risk thresholds. The risks are known as
gap risk.
The are many modifications of the basic CPPI rules around!
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Problem Description
Market Data

Models
CPPI Evaluation and Pricing

Calibration
Hedging

Conclusion

CPPI
Cliquet Options
Digital Options
Barrier Options

CPPI Vocabulary

Bond Floor
The value of a Zerobond with the same time to maturity as the
CPPI strategy. Could also be a coupon bearing bond.
Cushion
The cushion is the difference of the Bond Floor and the current
value of the CPPI insured portfolio
Leverage Factor (Multiplier)
The LF is the factor multiplied with the cushion to give the
possible amount to be invested in the risky assets. It represents the
overnight risk inherent in the risky assets. Protection Level. This is
the amount of principal which should be protected. In classical
CPPI the PL = 100
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CPPI Vocabulary

Maximum Exposure
The ME of the CPPI is the maximum level to which the capital is
invested into the risky assets
Minimum Exposure The ME of the CPPI is the minimum level to
which the capital is invested into the risky asset. For classical
CPPI the ME = 0.
Lock In The Lock-In mechanism allows to lock in an upside
already achieved during the lifetime of the CPPI
Deleverage
Deleverage is the event occuring if Cushion = 0. Then the
portfolio is only worth the BF
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Coupons in CPPI

To achieve periodic payments the basic CPPI strategy could
be modified to pay (half-) yearly coupons linked to LIBOR,
e.g. LIBOR + 50 bp.

Increases the risk of deleveraging, since one takes money out
which decreases the cushion periodically!

The coupon is not guaranteed, e.g. would only be paid if the
strategy would not deleverage.

A new risk arises, namely coupon shortfall

In our CPPI setting we examine Deleverage Probability, Coupon
Shortfall Probability and Return
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The Plan

For real applications we consider a basket of risky assets. This
allows to co-movement to increase the overall return and to reduce
deleverage and coupon shortfall probability.

Determine the universe of risky assets (mainly qualitative)

Analysis of the universe using methods from time series
analysis (mean, volatility, skew, kurtosis, correlation, etc.)

Asset Allocation Approach to determine the efficient frontier

Simulate the CPPI Mechanism for
”
optimal“ portfolios

Dr. Jörg Kienitz, Head of Quantitative Analysis Examples for applying Lévy processes to financial problems
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The Simplest Setting

Assume a Gaussian world and determine the mean vector and
the covariance matrix

Compute the Markowitz efficient frontier

Run a one-factor simulation along the efficient frontier using
Mean basket = sum basket const Variance basket = sum
cov(basket const, basket const)

In this setting we do not allow skewed or fat tailed
distributions!
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Options I - Cliquet Options

For a given asset S(t), t ∈ [0,T ] we consider the performance on

the time interval [t, t + ∆]: P(t) := S(t+∆)
S(t) − 1

Fix observation points tk ∈ [0,T ), k = 1, . . . ,N and consider
P(tk). A locally capped/floored (lc/lf) Cliquet option has payoff:

R :=
N−1∑
k=1

max(min(P(tk), lc), lf )

A globally capped/floored (gc/gf) Cliquet option has payoff:

max(min(R, gc), gf )

There are several structures derived from the simple Cliquet option
such as Swing Cliquet, Reverse Cliquet.

Dr. Jörg Kienitz, Head of Quantitative Analysis Examples for applying Lévy processes to financial problems
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Options II - Digital Options

Let K > 0, the strike, be a non-negative number. The payoff of a
Digital option is:

h(S(T )) = 1{S(T )<K}

Digitals are exposed to the volatility skew / smile since

h(S(T )) ≈ 1

ε
(Call(K − ε)− Call(K ))
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Options III -Barrier Options

Let M(t) := supu∈[0,t] S(u), m(t) := infu∈[0,t] S(u) and K > 0.
The payoff of a Knock-Out call is:

h(S(T )) = (S(T )− K )+1{M(t)<U(t) for all t∈[0,T ]}

h(S(T )) = (S(T )− K )+1{L(t)<m(t) for all t∈[0,T ]}

Knock-Out puts, Knock-In options and more complex Barrier
options such as Corridor options or options with several knock-out
/ knock-in features can be considered.
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Using Market Data

Which market data to choose?

Historical Data (time series)

Quoted Option Prices

Liquid Options / Illiquid Options

Broker Prices for Exotics
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Basic Modeling Setup

We consider equity models with deterministic interest rates. Let r
be the riskless rate and d the dividend yield. We consider the
stochastic process S(t)t or the log process X (t)t given by:

S(t) = S(0) exp((r − d)t + L(t))

X (t) = X (0) + (r − d)t + L(t)

We give examples for choosing L(t)t by considering diffusion,
jump-diffusion or pure jump processes.

Including stochastic interest rates (equity - interest rate hybrids)
can also be considered, for example the Heston-Hull-White model
(see e.g. Kammeyer and Kienitz (2009)).
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Lévy Models
Stochastic Volatility Lévy Models

Models

How to choose a model?

1 Theoretical features (Skews, Tails,...)

2 Numerical / Analytical Tractability

3 Fitting Option Prices

4 Hedge Strategies
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Problem Description
Market Data

Models
CPPI Evaluation and Pricing

Calibration
Hedging

Conclusion

Basic Models
Local Volatility Models
Stochastic Volatility Models
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Problem Description
Market Data

Models
CPPI Evaluation and Pricing

Calibration
Hedging

Conclusion

Basic Models
Local Volatility Models
Stochastic Volatility Models
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Models

How to choose a model?

1 Theoretical features (Skews, Tails,...)

2 Numerical / Analytical Tractability

3 Fitting Option Prices

4 Hedge Strategies

Dr. Jörg Kienitz, Head of Quantitative Analysis Examples for applying Lévy processes to financial problems
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Lévy Models
Stochastic Volatility Lévy Models

Models I - Basic Models

Black-Scholes-Merton Model

dS(t) = (r − d)S(t)dt + σS(t)dW (t)

S(0) = S0

Merton Jump Diffusion Model

dS(t) = (r − d)S(t)dt + σS(t)dW (t) + dJ(t)

S(0) = S0
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Models II - Local Volatility Models

CEV Models

dS(t) = (r − d)S(t)dt + σS(t)βdW (t)

S(0) = S0

Displaced Diffusion Models

dS(t) = (r − d)(S(t) + a)dt + σ(S(t) + a)dW (t)

S(0) = S0
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Models III - Stochastic Volatility Models

Heston Model

dS(t) = (r − d)S(t)dt +
√

V (t)S(t)dW1(t)

dV (t) = κ(Θ− V (t))dt + ν
√

V (t)dW2(t)

S(0) = S0

V (0) = V0

Bates Model

dS(t) = (r − d)S(t)dt +
√

V (t)S(t)dW1(t) + dJ(t)

dV (t) = κ(Θ− V (t))dt + ν
√

V (t)dW2(t)

S(0) = S0

V (0) = V0
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Models IV - Lévy Models

Lévy models are not specified by a Stochastic Differential
Equation. They are represented by the characteristic function
instead. Well known models include:

Variance Gamma Model (VG);
(

GM
GM+(M−G)iu+u2

)C

Normal Inverse Gaussian Model (NIG);

exp
(
−δ
√
α2 − (β + iu)2 −

√
α2 − β

)
Meixner Model (MX); 2 cos(β/2)

cosh((αu−iβ)/2)

CGMY Model (CGMY);
exp

(
C Γ(−Y )

(
(M − iu)Y −MY + (G + iu)Y − GY

))
Dr. Jörg Kienitz, Head of Quantitative Analysis Examples for applying Lévy processes to financial problems
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Models V - Stochastic Volatility Lévy Models

To incorporate stochastic volatility into a model based on a Lévy
process we let the time be a (independent) stochastic process
which can be seen as modeling business time. It may also reflect
the stochastic movement of the index’s volatility index.

The model we consider is given by:

S(t) = S(0) exp((r − d)t + L(Y (t)))

X (t) = X (0) + (r − d)t + L(Y (t))

Examples for stochastic clocks:

Integrated Gamma Ornstein-Uhlenbeck process (GOU)

Integrated Cox-Ingersoll-Ross process (CIR)
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Stochastic Clock

Gamma Ornstein-Uhlenbeck clock (GOU)

dz(t) = −λz(t)dt + dZ (λt), λ > 0,Z being compound Poisson

ϕGOU = exp
( iuy0

λ

(
1− exp(−λt)

)
+

λa

iu − λb

(
b log

( b

b − iu
λ

(
1− exp(−λt)

) )− iut
))

Cox-Ingersoll-Ross clock (CIR)

ϕCIR = exp
( iuy0

λ

(
1− exp(λt)

)
+

2aiu

bλ
A(u, t)

)
A(u, t) =

1−
√

1 + κ
(

1− exp(−λt)
)

κ
+

1
√

1 + κ

(
arctanh


√

1 + κ
(

1− exp(−λt)
)

√
1 + κ

−arctanh

(
1

√
1 + κ

))

κ = −
2iu

λb2
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Example - VG-GOU and VG-CIR

Gamma Ornstein-Uhlenbeck CIR

Dr. Jörg Kienitz, Head of Quantitative Analysis Examples for applying Lévy processes to financial problems
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Models for CPPI Strategies

Extend the Models to cover a bright range of asset classes
Since there are many asset classes involved the Gaussian
hypothesis is too restrictive

Use complex processes (e.g. NIG (Normal Inverse Gaussian)
or VG ( Variance Gamma)) Compute the efficient frontier

Optimization is complex

Therefore

We need a method to compute relevant figures from time
series data

We need a method to compute the efficient frontier

We need a method to simulate fairly complex
multidimensional processes for creating optimization data
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Usage of CPPI with Advanced Models I

For simulating the CPPI strategy

Time Series Analysis

Methods to determine figures from given historic data

Optimization

What is the best suited characterisation of risk?

Simulation

Flexible, robust Monte Carlo Engine
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Usage of CPPI with Advanced Models II

To use more complex stochastic processes we must be able to
extract the relevant data to determine the processes parameters
from market data.
For Geometric Brownian motion this can be done by computing
the mean and the covariance structure using time series data.
Therefore, we have to investigate for methods to compute the
necessary parameters. We used a version of the Expected
Maximum Likelihood Method to obtain the parameters. The basic
method is described in McNeil and Embrechts (2005)
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Generalized Hyperbolic

The one dimensional density for a generalized hyperbolic
distribution is given by:

f (x , λ, ξ, ψ, µ, σ, γ) =

√
ψξ
−λ
ψλ
(
ψ + γ2

σ2

)0.5−λ

√
2πσKλ(

√
ψξ)

(1)

Kλ−0.5

(√(
ξ + (x−µ)2

σ2

)(
ψ + γ2

σ2

))
eγ

(x−µ)2

σ2√(
ξ + (x−µ)2

σ2

)(
ψ + γ2

σ2

)0.5−λ

ξ > 0, ψ ≥ 0 if λ < 0
ξ > 0, ψ > 0 if λ = 0
ξ ≥ 0, ψ > 0 if λ > 0
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The Parameters

The parameters ξ, ψ and λ determine the distribution and the tail
behaviour.

For example λ = 0.5 corresponds to the NIG model or λ = −ν/2,
ξ = ν and ψ = 0.

The parameters γ, µ and σ are scale parameters.
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How to obtain the Efficient Frontier?

The classical Markowitz/CAPM approach assumes normality. The
volatility (in fact VaR) is the measure of risk in this case.

Mostly, computing of VaR relies on linear approximations of
portfolios and/or assume a multi-variate normal distribution.

Urysaev and Rockafellar describe a method based on simulated
scenarios to compute the VaR, resp. CVaR.

To this end complex multidimensional distributions (skewed, fat
tailed, etc.), copula approaches or stochastic volatility with jumps
models can be used for asset allocation.
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Defining Suitable Representation of CVaR

We assume that the vector x denotes the weight vector describing
the weight of the assets in the portfolio, y .
The loss distribution density is given by l(x , y).
The loss of the portfolio not exceeding α is given by:

PLα(x) =

∫
l(x ,y)≤α

p(y)dy (2)
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Definition of VaR and CVaR

The β-VaR is given by:

αβ(x) min{α ∈ R : PLα(x) ≥ β} (3)

The β-CVaR is given by:

(1− β)−1

∫
l(x ,y)≤αβ(x)

l(x , y)p(y)dy (4)
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Representation of CVaR used for Optimization

Falpha,β(x) = α + (1− β)−1

∫
y∈Rd

[f (x , y)− α]+p(y)dy (5)

This function is convex and continuously differentiable and

β − CVaR = min
α∈R

Fα,β(x) (6)

and denoting the interval of values of α where the minimum is
contained by Aβ(x) := argminα∈RFα,β(x) The VaR is the left
endpoint of this interval, ie. β-VaR=inf Aβ(x).
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Description of the Numerical Method

We assume now we have simulated y1, y2, . . . , yN and consider

F̂α,β(x) = α +
1

N(1− β)

N∑
k=1

[f (x , y
k

)− α]+p(y
k

)

This function is convex and piecewise linear in α but not
differentiable. It can be minimized by linear programming methods
and therefore we have approached CVaR calculation by using
simulation together with linear optimization to compute the
portfolio weigts x and minimize the CVaR.
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Choosing l(·, ·)

In the simples case (no real constraints) we can apply this
approach to

l(x , y) = −xT y

and the function F̂ becomes:

F − β(x , α) = α + (1− β)−1

∫
y∈Rd

max(−xT y − α, 0)p(y)dy
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Problem Description
Market Data

Models
CPPI Evaluation and Pricing

Calibration
Hedging

Conclusion

CPPI Evaluation
Option Pricing
Numerical Methods

χ Calibrated to Market Data

Dr. Jörg Kienitz, Head of Quantitative Analysis Examples for applying Lévy processes to financial problems



Problem Description
Market Data

Models
CPPI Evaluation and Pricing

Calibration
Hedging

Conclusion

CPPI Evaluation
Option Pricing
Numerical Methods

γ Calibrated to Market Data

Dr. Jörg Kienitz, Head of Quantitative Analysis Examples for applying Lévy processes to financial problems
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µ Calibrated to Market Data
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Pricing

We observe that models which are calibrated to the same set of
options produce different prices for exotic options (see Albrecher,
Mayer, and Tistaert (2006)). This is due to the fact that

we only fix the marginal distributions for the option maturities
of a given calibration set

we use a certain distance measure for calibration

the models imply different forward volatility surfaces

the models show a significant different sample path behaviour

we have to choose a martingale measure
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Martingale Measures

The considered process (S or X ) is not a martingale in general. To
apply arbitrage free pricing we have to make the processes into a
martingale!

Working in complete markets such as it is assumed for the
Black-Scholes-Merton model there is exactly one possibility to
make the process into a martingale.

For general models there are many possibilities:

Stochastic / Ordinary Exponentials

Mean Correction MM

Esscher Transform MM

Minimal Entropy MM
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Pricing Simple Options

For a given index, plain vanilla options such as European calls and
puts are liquid instruments.

A given model should price such instruments consistent with the
market.

The pricing of such options must be fast. We prefer:

Analytic Solutions

Semi-Analytic Solutions
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Numerical Methods

In general we have to apply numerical methods to perform pricing,
hedging and risk management in our models.

The main techniques we apply are:

1 Fourier Transform Methods / Integration Methods

2 Monte Carlo Methods
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In general we have to apply numerical methods to perform pricing,
hedging and risk management in our models.

The main techniques we apply are:

1 Fourier Transform Methods / Integration Methods

2 Monte Carlo Methods
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Fourier Transform Methods

In our setup S(t) = S(0) exp(L(t)), the price of a European option
with payoff h is given by:

Vh(T ,K ) =
e−Rs

2π

∫
R

e iusϕ(−u − iR)ĥ(u + iR)du

with ϕ and ĥ being the characteristic functions of the process L
and payoff h, respectively. The simplest case of call and put
options: ĥ(u) = K1+iu

iu(1+iu) .
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Improvements

The method has been introduced in Carr and Madan (1999) and
has been improved in several ways:

1 In terms of speed and accuracy
Cosine Method, Fang and Osterlee (2008)
Black-Scholes adjustment, Cont and Tankov (2004)
Generalized Fourier transform, Lewis (2001)

2 In terms of option payoffs (forward starts, digitals, gap
options, options on minimum or maximum)

Generalized Fourier transform, Lewis (2001)
Forward Start Options, Beyer and Kienitz (2009)
Wiener-Hopf Methods, Eberlein, Glau, and Papapantoleon
(2008)

3 In terms of early exercise opportunities
CONV method, Lord (2008)
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Fourier Transform Methods - Plain Vanilla

Speed

Since we want to use the methods for calibration to liquid market
instruments speed is very important!
Plain Vanilla options can be priced very efficiently. For example an
option surface consisting of 121 (11 strikes, 11 maturities) can be
priced within a fraction of a second.

First, the algorithm produces prices along the whole range of
strikes for a given maturity.
Second, parallelize the computation by computing the range of
maturities on different cores.
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Fourier Transform Methods - Exotics

Prices for some exotic options can be computed using Fourier
Transform methods.

Forward Start Options

Beyer and Kienitz (2009) consider Forward Start options. They
give an explicit expression of the Forward Characteristic Function
for a variety of models which can be put into the pricing algorithm.

Min/Max

Eberlein, Glau, and Papapantoleon (2008) consider options
including the Min and/or the Max of an asset.
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Forward Starting Options

For models based on Lévy processes Beyer and Kienitz (2009)
show that the forward characteristic function is given by:

f1(u) = f2(−iψL(u))E [exp(if3(−iψL(u))yt∗)]

= f2(−iψL(u))φyt∗ (f3(−iψL(u)))

with ∆∗ = T − t∗ and

f2(u) =
exp(κ2η∆∗/λ2)

(cosh(γ(u)∆∗/2) + κ sinh(γ(u)∆∗/2)/γ(u))2κη/λ2

f3(u) =
2u

κ+ γ(u) coth(γ(u)∆∗/2)
.

Dr. Jörg Kienitz, Head of Quantitative Analysis Examples for applying Lévy processes to financial problems
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Monte Carlo Methods

We consider an asset S(t), t ∈ [0,T ]. To apply the Monte Carlo
method to price an option with payoff h : RN → R which depends
on the value of the asset at time steps t1, . . . , tN = T we have to
generate a set of NSim discrete sample paths Ŝk(t1), . . . , Ŝk(tN)
and evaluate h on these paths.
We denote the value for path k by V̂ k . The Monte Carlo estimator
is then given by:

V̂ =
1

NSim

NSim∑
k=1

V̂ k .

For details and improvements on the basic Monte Carlo method
see Duffy and Kienitz (2009) or Glasserman (2004).
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Monte Carlo Methods - Diffusion / Jump Diffusion and
Stochastic Volatility Models

Simulating diffusion and jump-diffusion models has long be studied
and is now a well-known task. See also Duffy and Kienitz (2009)
or Glasserman (2004).

However, different models need a special purpose simulation
scheme, for example the Heston model.
General numerical recipes like simply using an Euler discretisation
is not recommended!
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Monte Carlo Methods - Lévy Models

Several methods for simulating paths for models based on Lévy
processes have been suggested.

Time changing a Brownian Motion

Direct simulation

Using background driving Lévy processes

Approximation using Jump-Diffusion processes
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Monte Carlo Methods - VG Model

We consider the Variance Gamma model since we base our
numerical examples on it.

Difference of two Gamma random variables (C ,G ,M)
representation
U ∼ Γ(∆ · C ,M), D ∼ Γ(∆ · C ,G )
X (t + ∆) = X (t) + (r − d) ·∆ + U − D

Time changing a Brownian motion (µ, ν, σ) representation
h ∼ Γ(∆/ν) · ν, N ∼ N (0, 1)
X (t + ∆) = (r − d)∆ + µh + σ

√
hN
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Example - VG

Let us consider the effect of changing the model parameters.
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Monte Carlo Methods - Stochastic Volatility Lévy Models

We consider Lévy model with a stochastic clock. To simulate we
first simulate the business time and use the integrated business
time to simulate the stock price

1 Simulate y(t), t ∈ 0,T

2 Compute Y (t) =
∫ t

0 y(s)ds using numerical integration

3 Simulate X (Y (t)), t ∈ [0,T ] with respect to the chosen
measure
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Monte Carlo Methods - Stochastic Volatility Lévy Models

We consider Lévy model with a stochastic clock. To simulate we
first simulate the business time and use the integrated business
time to simulate the stock price

1 Simulate y(t), t ∈ 0,T

2 Compute Y (t) =
∫ t

0 y(s)ds using numerical integration

3 Simulate X (Y (t)), t ∈ [0,T ] with respect to the chosen
measure
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Monte Carlo Methods - VG GOU/CIR Model

Simulating a Gamma Ornstein-Uhlenbeck process can be
accomplished by the following scheme:

Generate jump times N ∼ P(aλ ·∆)

For i = 1, . . . ,N, generate ui ∼ U(0, 1), vi = ln(ui )/b

For i = 1, . . . ,N, generate ui ∼ U(0, 1)

y(t + ∆) = (1− λ ·∆)y(t) +
∑N

i=1 vi · exp(−uiλ ∗∆)

Simulating a CIR process is a well known task! (see for example
Andersen (2006))
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Monte Carlo Methods - Numerical Example

Gamma Ornstein-Uhlenbeck CIR
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Calibration and Constraints

We have to infer the model parameters using the available market
data under given model constraints.

Calibration

Specify Penalty

Solve a (constrained) optimization problem

Statistical methods such as time-series analysis

Constraints

Simple Constraints (lower / upper bounds on model
parameters)

Linear Constraints

Non-Linear Contraints
Dr. Jörg Kienitz, Head of Quantitative Analysis Examples for applying Lévy processes to financial problems
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Calibration

Assume N option prices are given and the model depends on the
parameter set Θ. We consider weights ωk , k = 1, . . . ,N and a
measure Q measuring the distance of the market and the model
prices.
The objective function is given by:

Objective Function

OF (Θ) =
N∑

k=1

ωkQ(PΘ
Model,PMarket)
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Some typical objective functions

The following objective functions are commonly applied:

root mean square: 1√
N

√∑N
k=1(PΘ

Model − PMarket)2

average absolute error: 1
N

∑N
k=1 |PΘ

Model − PMarket|
absolute absolute error as percentage of the mean price:

N∑N
k=1 PMarket

∑N
k=1

|PΘ
Model−PMarket|

N

average relative percentage error: 1
N

∑N
k=1

|PΘ
Model−PMarket|

PMarket

In practice we apply weighting of each summand!
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Problem Description
Market Data

Models
CPPI Evaluation and Pricing

Calibration
Hedging

Conclusion

Optimization

Optimization

(I) Local Optimisation

LBFGSB
SQP
Levenberg-Marquart

(II) Global Optimisation

Differential Evolution
Simulated Annealing
Random Local Search
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Stability

Small changes in the risk factors should only apply small changes
in the calibrated model parameters!

Parsimonious structures

Degrees of freedom

Model choice
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Hedging

A hedge is a trading strategy to minimize risk of a derivative or a
portfolio. Several well known methods have been suggested:

Static Replication

Dynamic Replication

Delta Hedging
Delta-Gamma Hedging
...

Superhedging

Quadratic Hedging Methods

local quadratic hedging
global quadratic hedging - variance optimal hedge
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Hedging - Good Hedges / Bad Hedges

Hedging is as important as pricing since both concepts are linked!
We can classify a hedge in terms of characteristics of its
P&L-distribution.
A good hedge needs:

1 Mean = 0

2 Small Variance

3 Small skew and kurtosis

Further questions arise about the tails of the distribution, discrete
hedging issues, feasible hedges and numerical considerations for
simulating a hedge analysis.
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Hedging - Sensitivities

All approaches to hedging the changes in option price (V ) of an
(exotic) option due to model parameters such as S0, implied
volatility or volatility skew have to be computed.

Most important are:

Delta: ∆ = ∂V
∂S0

Gamma: Γ = ∂2V
∂S2

0

Vega: V = ∂V
∂σ

For exotic options such sensitivities have to be computed using
Monte Carlo methods. To this end we apply the methods in
Kienitz (2008a) and Kienitz (2008b).
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Problem Description
Market Data

Models
CPPI Evaluation and Pricing

Calibration
Hedging

Conclusion

Sensitivities
Greeks - Merton Model
Greeks - VG Model
Greeks - VG-GOU Model
Implementation

Greeks using Monte Carlo Methods

The simplest method, so in general not the one suited for Monte
Carlo, is the Finite Difference Method :

∂

∂Φ
E
[
h(SΦ)

]
FD

≈
1

2ε

(
E[h(SΦ+ε)]− E[h(SΦ−ε)]

)
MC

≈
1

N

N∑
i=1

1

2ε

(
h(ŜΦ+ε

i )− h(ŜΦ−ε
i )

)
Other methods like the Pathwise Method (PW) or the Likelihood
Ratio Method (LRM) have been invented. In principle, the LRM
can be applied to our problem but the mathematical derivations
become very complicated! We will rely on a method based on
Importance Sampling introduced for computing Greeks in Libor
Market Models, see Fries (2007) or Fries and Kampen (2005).
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The Full Proxy Method

We denote the number of simulations by NSim and the number of
time steps per simulation by NTime. We apply the following
algorithm:

For each run i = 1, . . . ,NSim simulate Ŝ i
j at

tj ∈ {t1, . . . , tNTime = T}

Compute the weights ωpath
i,j

Compute the weights ωi =
∏NTime

j=1 ωpath
i,j

Compute the payoff V̂ = 1
NSim

∑NSim

i=1 h(Ŝi )ωi (Ŝi )

We used the fact that we can compute the weights ωi by:

ωi (y) =
NTime∏
j=1

f Φ+ε(y)− f Φ−ε(y)

f Φ(y)
=

NTime∏
j=1

ωΦ+ε − ωΦ−ε

The standard Proxy method can be improved, see appendix for
details
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Numerical Example - Digital Option

We consider the Merton model and a digital option. We use the
parameters

S(0) = 100, K = 100, T = 1.0,

r = 0.07, d = 0.0, σ = 0.2,

λ = 0.5, µJ = 0.05, σJ = 0.15

and a disturbance of the inital parameters by 1% and the
discretization τ = {0,T}.

Method PV (SE) ∆ (SE) Γ (SE) v (SE)
Analytic 0.531270 0.016610 -2.800324e-004 -0.560070

Monte Carlo Proxy
0.531576

(0.001460)
0.016641

(7.195974e − 005)
−2.844054e − 004
(4.769032e − 006)

−0.569254
(0.009541)

Monte Carlo FD
0.531576

(0.001460)
0.016485

(2.722766e − 004)
−0.0428901
(0.018318)

−0.0022114
(0..12765)
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Applying the Proxy Method

We need the transition density for the Merton model. It is given by:

fM(x , t+∆; xt , t) =
∞∑
i=0

e−λ∆(λ∆)i

√
2π
√

iσJ + ∆σ2i !
exp

(
− (z(x)− iµJ)2

2(iσJ + ∆σ2)

)

z(x) = x − xt − (r − d + σ2

2 )∆ + λ
(

exp
(
µJ +

σ2
J

2

)
− 1
)
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Problem Description
Market Data

Models
CPPI Evaluation and Pricing

Calibration
Hedging

Conclusion

Sensitivities
Greeks - Merton Model
Greeks - VG Model
Greeks - VG-GOU Model
Implementation

Greeks - Merton Model and Digital Option
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Numerical Example - Knock Out Option

We consider the Merton model and a digital option. We use the
parameters

S(0) = 100, K = 100, T = 1.0,

r = 0.07, d = 0.0, σ = 0.2

λ = 0.5, µJ = 0.05, σJ = 0.15

We consider a knock-out option with time-dependent barriers.
Such options typically have to be priced using Monte Carlo
simulation. For the numerical studies we use:

L(t) =

 90 if t ∈ (0, 0.5]
85 if t ∈ (0.5, 0.75]
80 if t ∈ (0.75, 1]

U(t) =

 110 if t ∈ (0, 0.5]
115 if t ∈ (0.5, 0.75]
120 if t ∈ (0.75, 1]
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The Knock-Out Option

The numerical results are:

Method PV (SE) ∆ (SE) Γ (SE) v (SE)

Monte Carlo
0.564746

(0.0075695)
−0.0066871

(0.9910932e − 004)
−0.0072713

(1.8442553e − 004)
−8.6071757
(0.1745823)

Monte Carlo FD
0.564746

(0.0075695)
−0.054896
(0.001825)

−2.167931
(6.893258)

−0.0174076
(4.8101873)
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Greeks - Merton Model and Knock Out Option
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Numerical Example

We consider the Variance Gamma model and a digital option. The
parameters are:

S(0) = 100, K = 100, T = 1.0, r = 0.1,

σ = 0.12136, µ = −0.1436 and ν = 0.1686

The parameters have been chosen according to Madan (1998) or
Ribeiro and Webber (2007).

Method PV (SE) ∆ (SE) Γ (SE) v (SE)
Analytic 0.697421 0.01844 -0.00136 -1.137605

Monte Carlo
0.69721

(8.5077e − 002)
0.01841

(1.2547e − 004)
−0.00134
(3.707097)

−1.371968
(0.01568)

Monte Carlo FD
0.69721

(8.5077e − 002)
0.0189337

(2.6670e − 004)
−4.5241871e − 004

(0.083867)
−1.658869
(0.35365)
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Greeks - Variance Gamma Model

We need the transition density for the model. It is given by:

f VG
t (x) =

2 exp
(µx
σ2

)
νt/ν
√

2πσΓ(t/ν)

(
x2

2σ2

ν + µ2

)t/2ν−1/4

K t
ν
− 1

2

(
1

σ2

√
x2

(
2σ2

ν
+ µ2

))

z(x) = x − xt − (r + ω)∆t and
Kν(z) = 1

2

∫∞
0 yν−1 exp

(
− z

2 (y + y−1
)

dy denotes the modified
Bessel function of the second kind
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Greeks - VG - GOU Model

For this model we do not have an analytical expression for the
density. Therefore, we have to rely on numerical approximations.
The characteristic function and the probability density of random
variable Z are related by:

f̂ (u) =

∫
S

exp(iux)f (x)dx ; f (x) =
1

2π

∫
S

exp(−iux)f̂ (u)fu

we consider f on the discrete set

uk = π/A (k − N/2) , k = 0, . . . ,N − 1

which leads to:

f̂ (uk) =

∫
S

exp(iukx)f (x)dx ≈ ∆x
N−1∑
j=0

exp(iukxj)f (xj) k = 0, . . . ,N−1
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Using conjugate symmetry we find:

exp(−iukxj)φt(uk) + exp(−iuN−kxj)φt(uN−k)

= exp(−iukxj)φt(uk) + exp(iukxj)φ(uk)

= exp(−iukxj)φt(uk) + exp(−iukxj)φt(uk)

= 2R (exp(−iukxj)φt(uk))
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Numeric Method for Probability Density

Consider the interval S = [−A,A]. We assume that the interval is
chosen such that d(−A) = d(A). Let M be a positive integer. To
determine the value of the probability density at x we proceed by:

Set N = 2M

uj = jπ(1/A− N/(2A)), j = 0, . . . ,N − 1

Set δu = π/A

return
∑N−1

j=0 2(R(exp(−iujx)f (uj)))∆u/(4π);

We denote by R(·) the real part of a complex number.
We remark that the interval S need not be symmetric. We have
assumed symmetry just for convenience.
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Testing the Approach

We consider a Digital Option and use the analytic density as well as
the density computed using Fourier inversion on two parameter sets.
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Test Sets

We consider the Variance Gamma model with Gamma
Ornstein-Uhlenbeck clock. We tested our methods using the
following parameter sets:

Set C G M λ a b
Set 1 6.161 9.6443 16.026 1.679 0.3484 0.7664
Set 2 8.88 24.95 48.19 3.3 0.715 1.031
Set 3 6.47 11.10 33.41 0.94 0.63 1.47

As a benchmark model we consider the VG model where analytical
result exist.
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Figure: VG and VGOU densities for test sets 1 - 3
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Numerical Example - Digital Option

We consider the Variance Gamma model with Gamma
Ornstein-Uhlenbeck clock.
As the payoff we choose a digital option and take Set 2 as the
model parameters.
The results are:

Parameter Proxy Proxy Char
(Digital Option)

∆A 0.0275
∆ 0.0283 (2.4050e-004) 0.0250 (0.0490)
ΓA -0.0017
Γ -0.0018(4.8989e-005) -0.001280(0.06930)
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Problem Description
Market Data

Models
CPPI Evaluation and Pricing

Calibration
Hedging

Conclusion

Sensitivities
Greeks - Merton Model
Greeks - VG Model
Greeks - VG-GOU Model
Implementation

Greeks - VG-GOU Model and Digital Option
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Numerical Example - Knock-Out Option

We consider the Variance Gamma model with Gamma
Ornstein-Uhlenbeck clock.
As the payoff we choose now a knock-out option and take again
Set 2 as the model parameters.
The results are:

(Knock-Out Option)
Parameter 5 Steps per month 10 Steps per month

∆FD 0.1084 0.1417
∆ -0.0734(0.0041) -0.0688 (0.0041)

ΓFD -3.6413 2.6507
Γ 0.2100(0.0092) 0.2055(0.0098)
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Implementation of the Approach

We have implemented the algorithms to calculate the sensitivities
and the pricing of forward start options using Matlab, VBA and
C++.

The implementation using VBA is the most time consuming since
we had to create and test proprietary implementation of FFT,
Bessel functions, etc.

Matlab and C++ (using boost) offer a wide range of fast and
tested libraries for performing all the necessary calculations.
Furthermore, in terms of speed Matlab as well as C++ are superior
to VBA.
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Conclusion

Risk management of exotic options ...

needs sophisticated numerical methods

needs appropriate modeling

pricing and hedging are model dependent

dependent on calibration measures and calibration data

needs proper implementation

Finally, many thanks to the Deutsche Postbank’s Quantitative Analysis

team. Especially, Daniel Wetterau for fruitful discussions.
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AI - Hedging - Measuring Hedge Performance

Galtschuk-Kunita-Watanabe-Decomposition

H = V0 +

∫ T

0
ϕdS(t) + RT

For Lévy:

σ2 ∂Vt
∂S(t) + 1

S(t)

∫
R νL(dz) (ez − 1) (Vt(S(t)ex)− Vt(S(t))

σ2 +
∫

R (ex − 1) νL(dz)

For Stochastic Volatility:

σ2 ∂Vt
∂S(t) + ∂V (t)

∂y(t)
ρξ

σS(t) + 1
S(t)

∫
R νL(dz) (ez − 1) (Vt(S(t)ex)− Vt(S(t))

σ2 +
∫

R (ex − 1) νL(dz)
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options under lévy processes. SIAM J. Sci Comput. 2008, 2008.

Carr P.P. Chang E.C. Madan, D.B. The variance gamma process and option pricing. European Finance Review, 2:
79–105, 1998.

Frey T. McNeil, A. and P. Embrechts. Quantitative Risk Management. Princeton Series in Finance, 2005.

C. Ribeiro and N. Webber. A Monte Carlo Method for the Normal Inverse Gaussian Option Valuation Model Using
an Inverse Gaussian Bridge.
www2.warwick.ac.uk/fac/soc/wbs/research/wfri/rsrchcentres/forc/preprintseries/pp 04.133.ps, 2007.

Dr. Jörg Kienitz, Head of Quantitative Analysis Examples for applying Lévy processes to financial problems
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