

Understanding the Price Dynamics of Emission Permits: A Model for Multiple Trading Periods

Steffen Hitzemann & Marliese Uhrig-Homburg

Chair of Financial Engineering and Derivatives

Motivation

- emission trading schemes designed to reduce pollution by introducing appropriated market mechanisms
- most prominent examples:
 - US Sulfur Dioxide Trading System
 - European Union Emission Trading Scheme (EU ETS)
- several other carbon market initiatives are underway or seriously under discussion
 - regulatory rules similar to EU ETS
 - e.g. Australian Carbon Pollution Reduction Scheme, New Zealand ETS, Japan Trial ETS, US, Canada

Motivation

- still no clear picture on how regulatory rules affect price dynamics
- understanding the price dynamics
 - pricing derivatives
 - sound risk management
 - energy-related investment decisions
- propose dynamic model to explain price behavior
 - take into account most important regulatory rules
 - sequence of consecutive trading periods
 - inter-period banking
 - no inter-period borrowing
 - penalty costs and later delivery of lacking permits
 - as well as abatement possibilities

Introduction to EU ETS

- ► EU-wide emissions trading scheme (EU ETS) on company-based level in order to reduce CO₂ emissions
- ▶ EU Allowances (EUAs) allow for emission of one ton of CO₂ each
- EUAs are traded OTC and on exchanges across Europe
- initially two trading periods: 2005 2007 and 2008 2012
 - within trading periods EUAs are storable (bankable)
 - banking and borrowing not allowed between 2007 and 2008
- meanwhile plans for indefinitely ongoing sequence of trading periods
 - ▶ third trading period until 2020
 - no inter-period borrowing but inter-period banking
 - presumable figures for permit allocation in following trading periods
- penalties for non-compliance

Literature

theoretical models

- equilibrium models considering one trading period
 - companies choose optimal trading and abatement strategies
 - Fehr/Hinz (2006), Seifert et al (2008), Carmona et al (2009)
 - companies choose optimal trading strategies only
 - e.g. Chesney/Taschini (2008)
- models considering two trading periods
 - ▶ Kijima et al (2009): either banking and borrowing or neither of them
 - ► Cetin, Verschuere (2009): no banking

empirical studies

- burgeoning literatue
- mostly based on data from trial period
 - ▶ Daskalakis et al (2009), Paolella, Taschini (2008), Benz, Trück (2009), Uhrig-Homburg, Wagner (2009)

Agenda

- 1. starting point: a simple conceptual framework
 - dynamic model for a finite trading period
 - takes into account most important features of EU ETS (first period)
 - penalty costs
 - banking and borrowing
 - trading period break
 - increasing marginal abatement costs
- 2. extension to a model for multiple trading periods
 - first thoughts and preliminary results
 - shed light on following questions
 - how do additional periods influence spot price dynamics?
 - how does price dynamics look like at end of trading period?
 - which part of spot price comes from different trading periods?
 - how does volatility surface evolve?

CO₂—regulated company

stochastic emission rate (Business As Usual)

$$dy_t = \mu(y_t)dt + \sigma(y_t)dw_t$$

- company may
 - \triangleright abate u_t of CO₂ emissions with quadratic abatement costs

$$C(u_t) = -\frac{1}{2}cu_t^2$$

- buy or sell EUAs in market (z_t)
- pay penalty for not complying
- ▶ total expected emissions in [0, T] (abatements/trading taken into account)

$$x_t = -\int_0^t u_s ds - \int_0^t z_s ds + E_t (\int_0^T y_s ds)$$

CO₂-regulated company

- ▶ initial endowment e₀ of EUAs
- one finite trading period [0, T], banking into next trading period prohibited
- penalty costs at end of trading period for lacking EUAs

$$P(x_T) = min(0, p(e_0 - x_T))$$

company's optimization problem:

$$\max_{u_t, z_t, t \in [0, T]} E_0 \left(\int_0^T e^{-rt} C(u_t) dt - \int_0^T e^{-rt} S(t) z_t dt + e^{-rT} P(x_T) \right)$$

Market equilibrium

Consider market consisting of N companies

- equilibrium consists of
 - ▶ abatement rates u_{it}^* , i = 1...N
 - trading strategies $z_{it}^*, i = 1 \dots N$
 - EUA spot price S(t)
- solving
 - individual cost problems and
 - ▶ market clearing condition $\sum_{i=1}^{N} z_{it} = 0$ for all t

Solution

from first order condition:

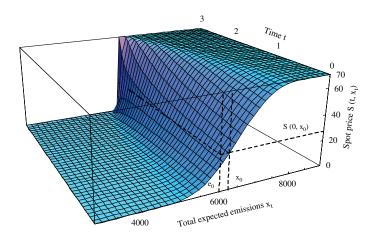
$$S(t) = c_i u_{it}^*, i = 1 \dots N$$

- ▶ i.e. spot price ≡ marginal abatement costs
 - ▶ if EUA price is above marginal abatement cost, companies may profit by abating cheap and selling higher (and vice versa)
 - ▶ all companies have the same marginal abatement costs after trading
- under certain conditions market equilibrium solution equivalent to least cost solution attainable by a central social planner
- from optimality principle from stochastic optimal control theory

$$V(t,x_t) = \max_{u_t} E_0\left(e^{-rt}C(u_t)dt + V(t+dt,x_t+dx_t)\right)$$

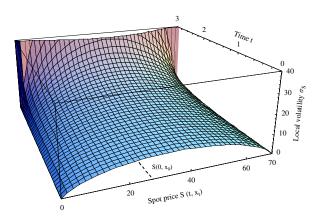
deduce characteristic PDE with boundary conditions

Solution

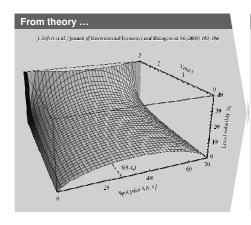

- resulting spot price non-negative
- resulting discounted spot price process is a martingale, regardless of stochastic process for emissions rate
 - ▶ in particular, no mean-reversion
 - due to storability and assumption of risk-neutral agents
- ▶ if emissions rate assumed to follow white noise process then analytic solution of characteristic PDE possible (otherwise solve numerically)

Parameter values

- chosen as to remind some stylized facts in the EU ETS
 - ▶ 3 year period 2005 2007
 - allocation of about 6 billion tons
 - ▶ penalty €40 plus delivering missing EUAs


Parameter	Value ^a
Penalty <i>p</i>	70
Length of trading period T	3
Initial endowment with certificates e_0	6000
Expected total emissions x_0	6240
Marginal abatement costs c	0.24
Volatility of emission rate σ	$500/\sqrt{T}$

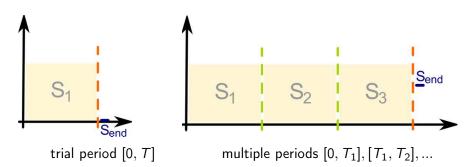
Spot price function $S(t, x_t)$


- fixed upper bound determined by penalty costs
- ► EUA price never reaches zero (option value of EUA) before T


Volatility function $\sigma(t, S_t)$

- \triangleright volatility function goes to infinity at trading period end t=3
- volatility reaches zero at price bounds

Consistent with observed price behavior...


- discounted spot prices are martingales
 - deterministic/seasonal components in emissions rate process do not influence resulting spot price process
 - verified by empirical examination (no mean reversion)
- spot prices with fixed upper bound determined by penalty costs
 - only valid for first trading period (banking allowed after 2nd trading period)
 - empirical tests seem to support this view
- volatility of spot price process
 - increases when time is coming closer to end of trading period and
 - decreases when the price is coming closer to price bounds

Do characteristics carry over to setting with more than one trading period?

Changes of regulatory framework

	Period I (2005-2007)	Period II, Period III (2008-2012, 2013-2020,)		
Banking into next period	not allowed	allowed		
Borrowing from next period	not allowed	not allowed		
Penalty costs	€40	€100		
Later delivery of lacking permits	yes	yes		

Extension to multi-phase model

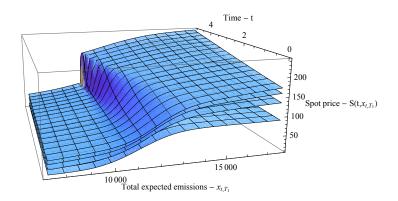
company's new optimization problem:

$$\max_{u_t, z_t, t \in [0, T_n]} E_0 \Big(\int_0^{T_n} e^{-rt} C(u_t) dt - \int_0^{T_n} e^{-rt} S(t) z_t dt + \sum_{j=1}^n e^{-rT_j} P(x_{T_j}) + R(x_{T_n}) S_{end} \Big)$$

Solution: basic idea

- apply same principles as for model with one finite trading period in backwards manner
- ▶ i.e. make use of dynamic programming algorithm
 - Bellman's principle
 - ▶ Ito's lemma for each finite trading period

Characteristics of spot price dynamics


First results for illustrative setting:

- chosen parameter values:
 - up to four consecutive trading periods
 - first period 5 years, next periods 8 years
 - allocation according to current allocation plans

phase II (2008-2012)	10.400 billion tons
phase III (2013-2020)	14.775 billion tons
phase IV (2021-2028)	12.455 billion tons
phase V (2029-2036)	10.135 billion tons

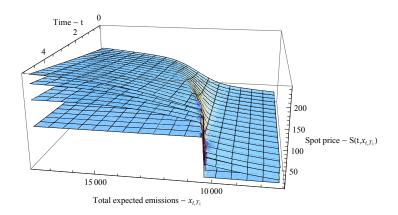
- ▶ penalty costs: $p_i = €100$ in each period j
- $S_{end} = 25$ for four periods, discounted for less than four periods
- consider spot price for first period of each setting
 - price bounds?
 - smoother transition through banking?

Spot price function $S(t, x_{t,T_1})$

- ▶ additional period increases value through possible use for compliance in further period
- upper price bound depends on number of periods

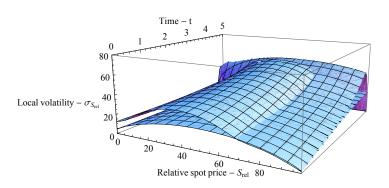
Spot price function $S(t, x_{t,T_1})$

time-dependent price bounds


upper bound

$$S_{upper}(t) = \sum_{j=1}^{n} e^{-r(T_j - t)} p_j + e^{-r(T_n - t)} S_{end}$$

lower bound


$$S_{lower}(t) = e^{-r(T_n - t)} S_{end}$$

Spot price function $S(t, x_{t,T_1})$ (back)

- \triangleright steepness increases as t approaches T_1
- still discontinuity at end of each trading period although banking is allowed

Local Volatility $\sigma(t, S_{rel})$

- highest volatility for medium spot prices
- volatility surface more moderate in multi-period setting

Value components of current spot price $S(t, x_{t,T_1})$

Emissions Scenario		Value Component from				
current	future	period 1	period 2	period 3	period 4	S_{end}
medium	medium	72%	11%	2%	1%	14%
high	high	38%	27%	18%	10%	7%
high	low	65%	14%	5%	5%	11%
low	high	0%	47%	23%	15%	15%
low	low	0%	2%	22%	29%	47%

substantial part of spot price attributable to future trading periods

Conclusion

- each additional trading period leads to
 - additional possible use because of banking possibility
 - additional value component in today's spot price
 - relative share depends on current and future expected emissions
- price bounds
 - naturally depend on number of trading periods considered
 - spot prices do not decline to zero at end of a trading period
- spot price dynamics and corresponding volatility surfaces become more moderate
 - ⇒ behavior clearly different from resulting behavior when no consecutive trading period is considered
- nevertheless overall characteristics quite similar to one period setting