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Overview of the talk

1. Motivate and introduce a class of stochastic volatility models

2. Empirical example from UK gas prices

3. Comparison with the Heston model

4. Forward pricing

5. Discussion of generalizations to cross-commodity modelling
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Stochastic volatility model
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Motivation

• Annualized volatility of NYMEX sweet crude oil spot
• Running five-day moving volatility
• Plot from Hikspoors and Jaimungal 2008

• Stochastic volatility with fast mean-reversion
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• Signs of stochastic volatility in financial time series

• Heavy-tailed returns
• Dependent returns
• Non-negative autocorrelation function for squared returns

• Energy markets

• Mean-reversion of (log-)spot prices
• seasonality
• Spikes
• ... so, how to create reasonable stochvol models?
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The stochastic volatility model

• Simple one-factor Schwartz model
• but with stochastic volatility

S(t) = Λ(t) exp(X (t)) , dX (t) = −αX (t) dt + σ(t) dB(t)

• σ(t) is a stochastic volatility (SV) process

• Positive
• Fast mean-reversion

• Λ(t) deterministic seasonality function (positive)
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• Motivated by Barndorff-Nielsen and Shephard (2001):
n-factor volatility model

σ2(t) =
n∑

j=1

ωjYj(t)

where
dYj(t) = −λjYj(t) dt + dLj(t)

• λj is the speed of mean-reversion for factor j

• Lj are Lévy processes with only positive jumps
• subordinators being driftless
• Yj are all positive!

• The positive weights ωj sum to one
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• Simulation of a 2-factor volatility model

• Path of σ2(t)
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Stationarity of the log-spot prices

• After de-seasonalizing, the log-prices become stationary

X (t) = ln S(t)− ln Λ(t) ∼ stationary , t →∞

• The limiting distribution is a variance-mixture
• Conditional normal distributed with zero mean

lnS(t)− ln Λ(t)|Z=z ∼ N (0, z)

• Z is characterized by σ2(t) and the spot-reversion α
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• Explicit expression the cumulant (log-characteristic function)
of the stationary distribution of X (t):

ψX (θ) =
n∑

j=1

∫ ∞

0
ψj

(
1

2
iθ2ωjγ(u; 2α, λj)

)
du

• ψj cumulant of Lj

• The function γ(u; a, b) defined as

γ(u; a, b) =
1

a− b

(
e−bu − e−au

)
• γ is positive, γ(0) = limu→∞ γ(u) = 0, and has one

maximum.
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• Each term in the limiting cumulant of X (t) can be written as
the cumulant of centered normal distribution with variance

ψ̃X (θ) =

∫ ∞

0
ψj (θωjγ(u; 2α, λj)) du

• One can show that ψ̃X (θ) is the cumulant of the stationary
distribution of ∫ t

0
γ(t − u; 2α, λj) dLj(u)
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• Recall the constant volatility model σ2(t) = σ2

• The Schwartz model

• Explicit stationary distribution

lnS(t)− ln Λ(t) ∼ N
(

0,
σ2

2α

)

• SV model gives heavy-tailed stationary distribution
• Special cases: Gamma distribution, inverse Gaussian

distribution....



The model Empricial Example The Heston model Forward Pricing Extension Conclusions

Probabilistic properties

• ACF of X (t) is given as

corr(X (t),X (t + τ)) = exp (−ατ)

• No influence of the volatility on the ACF of log-prices
• Energy prices have multiscale reversion
• Above model is too simple, multi-factor models required
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• Consider reversion-adjusted returns over [t, t + ∆)

Rα(t,∆) := X (t)−e−α∆X (t−1) =

∫ t+∆

t
σ(s)e−α(t+∆−s) dB(s)

• Approximately,

Rα(t,∆) ≈
√

1− e−2α∆

2α
σ(t)∆B(t)
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• Rα(t,∆) is a variance-mixture model

R(t)|σ2(t) ∼ N (0,
1− e−2α∆

2α
σ2(t))

• Thus, knowing the stationary distribution of σ2(t), we can
create distributions for Rα(t,∆)

• Based on empirical observations of R(t), we can create
desirable distributions from the variance mixture

• The reversion-adjusted returns are uncorrelated
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• ...but squared reversion-adjusted returns are correlated

corr(R2
α(t + τ,∆),R2

α(t,∆)) =
n∑

j=1

ω̂je
−λjτ

• ω̂j positive constants summing to one, given by the second
moments of Lj

• ACF for squared reversion-adjusted returns given as a sum of
exponentials

• Decaying with the speeds λj of mean-reversions

• This can be used in estimation
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Empirical example: UK gas prices
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• NBP UK gas spot data from 06/02/2001 till 27/04/2004
• Weekends and holidays excluded
• 806 records

• Seasonality modelled by a sine-function for log-spot prices
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• Estimate α by regressing ln S̃(t + 1) against ln S̃(t)

α̃ = 0.127

• R2 = 78%, half-life corresponding to 5.5 days

• Plot of residuals: histogram, ACF and ACF of squared
residuals

• Fitted speed of mean-reversion of volatility: λ̂ = 1.1.
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The normal inverse Gaussian distribution

• The residuals are not reasonably modelled by the normal
distribution

• Peaky in the center, heavy tailed

• Motivated from finance, use the normal inverse Gaussian
distribution (NIG)

• Barndorff-Nielsen 1998

• Four-parameter family of distributions

• a: tail heaviness
• δ: scale (or volatility)
• β: skewness
• µ: location
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• Density of the NIG

f (x ; a, β, δ, µ) = c exp(β(x − µ))
K1

(
a
√
δ2 + (x − µ)2

)
√
δ2 + (x − µ)2

where K1 is the modified Bessel function of the third kind
with index one

K1(x) =
1

2

∫ ∞

0
exp

(
−1

2
x(z + z−1)

)
dz

• Explicit (log-)moment generating function

φ(u) := ln E[euL] = uµ+ δ

(√
a2 − β2 −

√
a2 − (β + u)2

)
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• Fitted symmetric centered NIG using maximum likelihood

â = 4.83 , δ̂ = 0.071
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• Question: Does there exist SV driver L such that residuals
become NIG distributed?

• Answer is YES!

• There exists L such that stationary distribution of σ2(t) is
Inverse Gaussian distributed

• Let Z be normally distributed
• The positive part of 1/Z is then Inverse Gaussian

• Conclusion:
• Choose L such that σ2(t) is Inverse Gaussian with specified

parameters from the NIG estimation
• Choose α, λ as estimated
• Choose the seasonal function as estimated
• Full specification of the SV volatility spot price dynamics
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The Heston Model: Comparison
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• Heston’s stochastic volatility: σ2(t) = Y (t),

dY (t) = η(ζ − Y (t)) dt + δ
√

Y (t) dB̃(t)

• B̃ independent Brownian motion of B(t)

• In general Heston, B̃ correlated with B
• Allows for leverage

• Y recognized as the Cox-Ingersoll-Ross dynamics
• Ensures positive Y
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• The cumulant of stationary Y is known (Cox, Ingersoll and
Ross, 1981)

ψY (θ) = ζc ln

(
c

c − iθ

)
, c = 2η/δ2

• Cumulant of a Γ(c , ζc)-distribution

• Can obtain the same stationary distribution from our
SV-model
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• Choose a one-factor model σ2(t) = Y (t)

dY (t) = −λY (t) dt + dL(t)

• L(t) a compound Poisson process with exponentially
distributed jumps with expected size 1/c

• Choose λ and the jump frequency ρ such that ρ/λ = ζc

• Stationary distribution of Y is Γ(c , ζc).
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• Question: what is the stationary distribution of X (t) under
the Heston model?

• Expression for the cumulant at time t

ψX (t, θ) = iθX (0)e−αt+ln E
[
exp

(
−1

2
θ2

∫ t

0
Y (s)e−2α(t−s) ds

)]

• An expression for the last expectation is unknown to us
• The cumulant can be expressed as an affine solution
• Coefficients solutions of Riccatti equations, which are not

analytically solvable
• ...at least not to me....

• In our SV model the same expression can be easily computed
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Application to forward pricing
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• Forward price at time t an delivery at time T

F (t,T ) = EQ [S(T ) | Ft ]

• Q an equivalent probability, Ft the information filtration

• Incomplete market
• No buy-and-hold strategy possible in the spot
• Thus, no restriction to have S as Q-martingale after

discounting
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• Choose Q by a Girsanov transform

dW (t) = dB(t)− θ(t)

σ(t)
dt

• θ(t) bounded measurable function
• Usually simply a constant
• Known as the market price of risk

• Novikov’s condition holds since

σ2(t) ≥
n∑

j=1

ωjYj(0)e−λj t
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• The Q dynamics of X (t), the deseasonalized log-spot price

dX (t) = (θ(t)− αX (t)) dy + σ(t) dW (t)

• For simplicity it is supposed that there is no market price of
volatility risk

• No measure change of the Lj ’s

• Esscher transform could be applied
• Exponential tilting of the Lévy measure, preserving the Lévy

property
• Will make big jumps more or less pronounced
• Scale the jump frequency
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• Analytical forward price available (suppose one-factor SV for
simplicity)

F (t,T ) = Λ(T )Hθ(t,T ) exp

(
1

2
γ(T − t; 2α, λ)σ2(t)

)
×
(

S(t)

Λ(t)

)exp(−α(T−t)

• Recall the scaling function

γ(u; 2α, λ) =
1

2α− λ

(
e−λu − e−2αu

)
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• Hθ is a risk-adjustment function

lnHθ(t,T ) =

∫ T

t
θ(u)e−α(T−s) ds+

∫ T−t

0
ψ(−i

1

2
γ(u; 2α, λ)) du

• Here, ψ being cumulant of L

• Note: Forward price may jump, although spot price is
continuous

• The volatility is explicitly present in the forward dynamics
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• Recall γ(0; 2α, λ) = limu→∞ γ(u; 2α, λ) = 0
• In the short and long end of the forward curve, the SV-term

will not contribute

• Scale function has a maximum in
u∗ = (ln 2α− lnλ)/(2α− λ)

• Increasing for u < u∗, and decreasing thereafter
• Gives a hump along the forward curve
• Hump size is scaled by volatility level Y (t)

• Many factors in the SV model gives possibly several humps

• Observe that the term (S(t)/Λ(t))exp(−α(T−t) gives
• backwardation when S(t) > Λ(t)
• Contango otherwise
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• Shapes from the “deseasonalized spot”-term in F (t,T ) (top)
and SV term (bottom)

• The hump is produced by the scale function γ

• Parameters chosen as estimated for the UK spot prices
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Forward price dynamics

dF (t,T )

F (t−,T )
= σ(t)e−α(T−t) dW (t)

+
n∑

j=1

∫ ∞

0

{
eωjγ(T−t;2α,λj )z/2 − 1

}
Ñj(dz , dt)

• Ñ compensated Poisson random measure of Lj

• Samuelson effect in dW -term. The jump term goes to zero as
t → T
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Comparison with the Heston model

• Forward price dynamics

F (t,T ) = Λ(T )Gθ(t,T ) exp (ξ(T − t)Y (t))

(
S(t)

Λ(t)

)exp(−α(T−t)

where

lnGθ(t,T ) =

∫ T

t
θ(u)e−α(T−u) du + ηζ

∫ T−t

0
ξ(u) du
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• ξ(u) solves a Riccatti equation

ξ′(u) = δ
(
ξ(u)− η

2δ

)2
− η2

4δ
+

1

2
e−2αu

• Initial condition ξ(0) = 0

• It holds limu→∞ ξ(u) = 0 and ξ has one maximum for
u = u∗ > 0

• Shape much like γ(u; 2α, λ)
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Extensions of the SV model
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Spikes and inverse leverage

• Spikes: sudden large price increase, which is rapidly killed off
• sometimes also negative spikes occur

• Inverse leverage: volatility increases with increasing prices
• Effect argued for by Geman, among others
• Is it an effect of the spikes?
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• Spot price model

S(t) = Λ(t) exp

(
X (t) +

m∑
i=1

Zi (t)

)
where

dZi (t) = (ai − biZi (t)) dt + dL̃i (t)

• Spikes imply that bi are fast mean-reversions

• Typically, L̃i are time-inhomogeneous jump processes, with
only positive jumps

• Negative spikes: must choose L̃i having negative jumps
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• Inverse leverage: Let L̃i = Li for one or more of the jump
processes

• A spike in the spot price will drive up the vol as well
• Or opposite, an increase in vol leads to an increase (spike) in

the spot

• Spot model analytically tractable
• Stationary, with analytical cumulant
• Probabilistic properties available
• Forward prices analytical in terms of cumulants of the noises
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Cross-commodity modelling

• Suppose that X (t) and Zi (t) are vector-valued
Ornstein-Uhlenbeck processes

• The volatility structure follows the proposal of R. Stelzer
(TUM)

dX (t) = AX (t) dt + Σ(t)1/2 dW (t)

• A is a matrix with eigenvalues having negative real parts
• ...to ensure stationarity

• Σ(t) is a matrix-valued process, W is a vector-Brownian
motion
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• The volatility process:

Σ(t) =
n∑

j=1

ωjYj(t)

where

dYj(t) =
(
CjYj(t) + Yj(t)C

T
j

)
dt + dLj(t)

• Cj are matrices with eigenvalues having negative real part
• ...again to ensure stationarity

• Lj are matrix-valued subordinators

• The structure ensures that Σ(t) becomes positive definite
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• Modelling approach allows for
• Marginal modelling as above
• Analyticity in forward pricing, say
• Flexibility in linking different commodities

• However,
• ...not easy to estimate on data
• But, progress made by Linda Vos on this
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Conclusions

• Proposed an SV model for power/energy markets

• Discussed probabilistic properties, and compared with the
Heston model

• Forward pricing, and hump-shaped forward curves

• Extensions to cross-commodity and multi-factor models

• Empirical example from UK gas spot prices
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Coordinates

• fredb@math.uio.no

• folk.uio.no/fredb

• www.cma.uio.no
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