A structural risk-neutral model for pricing and hedging power derivatives Energy Finance 2010 Conference - Duisburg University - Essen

René Aïd, Luciano Campi, Nicolas Langrené Paris-Dauphine University - Paris Diderot University EDF R&D - FiME Research Centre

Agenda

- Electricity prices modeling
- Related works

2 Spot model

- Design
- Estimation
- O Pricing & hedging
 - Futures
 - Options

Electricity prices modeling Related works

・ 何 ト ・ ヨ ト ・ ヨ ト

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

- realistic
- o robust
- tractable
- consistent

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

Electricity prices modeling Related works

- 4 回 ト - 4 三 ト

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

- realistic
- o robust
- tractable
- consistent;

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

- realistic
- robust
- tractable
- consistent

Electricity prices modeling Related works

< 17 ▶

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

- realistic
- robust
- tractable
- consistent

Electricity prices modeling Related works

A (1) > A (2) > A

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

- realistic
- robust
- tractable
- consistent

Electricity prices modeling Related works

< 17 ▶

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

- realistic
- robust
- tractable
- consistent

Electricity prices modeling Related works

< 47 ▶

- N

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

- realistic
- robust
- tractable
- consistent

Electricity prices modeling Related works

< 47 ▶

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

- realistic
- robust
- tractable
- consistent

Electricity prices modeling Related works

- 4 回 ト - 4 三 ト

Modeling strategies

Modeling futures prices

pros modeling the real available instruments cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices

Exogeneous

O Equilibrium

Electricity prices modeling Related works

- 4 回 ト 4 ヨ ト 4 ヨ ト

Modeling strategies

Modeling futures prices

pros modeling the real available instruments

cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices

O Exogeneous

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Modeling strategies

Modeling futures prices

pros modeling the real available instruments cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices Exogeneous Squalitation

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Modeling strategies

Modeling futures prices

pros modeling the real available instruments

cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices	
 Exogeneous 	
	Y
	jes
	des de la companya de
cons complexitie	

Electricity prices modeling Related works

Modeling strategies

Modeling futures prices

pros modeling the real available instruments

cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices Exogeneous pros tractability cons dependancies Equilibrium

Electricity prices modeling Related works

A (10) N (10)

Modeling strategies

Modeling futures prices

pros modeling the real available instruments

cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices

Exogeneous

pros tractability

cons dependancies

2 Equilibrium

Electricity prices modeling Related works

(4) (日本)

Modeling strategies

Modeling futures prices

pros modeling the real available instruments

cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices Exogeneous pros tractability cons dependancies Equilibrium pros dependancies initial complexity

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Modeling strategies

Modeling futures prices

pros modeling the real available instruments

cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices

Exogeneous

pros tractability cons dependancies

equilibrium

pros dependancies

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Modeling strategies

Modeling futures prices

pros modeling the real available instruments

cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices

Exogeneous

pros tractability cons dependancies

equilibrium

pros dependancies

cons complexity

Electricity prices modeling Related works

- 4 回 ト 4 ヨ ト 4 ヨ ト

Modeling strategies

Modeling futures prices

pros modeling the real available instruments

cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices

Exogeneous

pros tractability cons dependancies

equilibrium

pros dependancies

cons complexity

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

Equilibrium model

Pirrong & Jermakyan (00) Barlow (02) Kanamura & Ohashi (07) Cartea & Villaplana (08) Coulon & Howison (09) Lyle & Elliot (09) Spot Futures Options

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

Equilibrium model

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

	Spot	Futures	Options
Pirrong & Jermakyan (00)			

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Equilibrium model			
	Spot	Futures	Options
Pirrong & Jermakyan (00)	×	×	
Barlow (02)			
			×

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Equilibrium model			
	Spot	Futures	Options
Pirrong & Jermakyan (00)	×	×	
Barlow (02)	×		
Kanamura & Ohashi (07)			
			×

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

Equilibrium model			
	Spot	Futures	Options
Pirrong & Jermakyan (00)	×	×	
Barlow (02)	×		
Kanamura & Ohashi (07)	×		
Cartea & Villaplana (08)			
			×

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 🔰 5 / 39

Electricity prices modeling Related works

5 / 39

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

Equilibrium model			
	Spot	Futures	Options
Pirrong & Jermakyan (00)	×	×	
Barlow (02)	×		
Kanamura & Ohashi (07)	×		
Cartea & Villaplana (08)	×	×	
Coulon & Howison (09)			
			×

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

Equilibrium model			
	Spot	Futures	Options
Pirrong & Jermakyan (00)	×	×	
Barlow (02)	×		
Kanamura & Ohashi (07)	×		
Cartea & Villaplana (08)	×	×	
Coulon & Howison (09)	×	×	
Lyle & Elliot (09)			×

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 🔰 5 / 39

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Equilibrium model			
	Spot	Futures	Options
Pirrong & Jermakyan (00)	×	×	
Barlow (02)	×		
Kanamura & Ohashi (07)	×		
Cartea & Villaplana (08)	×	×	
Coulon & Howison (09)	×	×	
Lyle & Elliot (09)	×	×	×

Spot model Pricing & hedging Conclusion Electricity prices modeling Related works

(4) (日本)

This talk

Objectives

pricing and hedging power derivatives... ... using an improved version of A., Campi Nguyen & Touzi (09) Structural Risk-Neutral model Spot Futures Options .. Campi, Nguyen & Touzi (09) × × improved SRN model × × ×

Spot model Pricing & hedging Conclusion Electricity prices modeling Related works

This talk

Objectives

pricing and hedging power derivatives...

... using an improved version of A., Campi Nguyen & Touzi (09) Structural Risk-Neutral model Spot Futures Options Campi, Nguyen & Touzi (09) × ×

improved SRN model imes imes imes imes

< □ > < □ > < □ > < □ > < □ > < □ >

Spot model Pricing & hedging Conclusion Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

This talk

Objectives

pricing and hedging power derivatives...

... using an improved version of A., Campi Nguyen & Touzi (09) Structural Risk-Neutral model

SpotFuturesOptionsA., Campi, Nguyen & Touzi (09)××improved SRN model××

Spot model Pricing & hedging Conclusion Electricity prices modeling Related works

(4) (日本)

This talk

Objectives pricing and hedging power derivatives... ... using an improved version of A., Campi Nguyen & Touzi (09) Structural Risk-Neutral model Spot Futures A., Campi, Nguyen & Touzi (09) A., Campi, Nguyen & Touzi (09) improved SRN model ×

Spot model Pricing & hedging Conclusion Electricity prices modeling Related works

(日)

This talk

Objectives pricing and hedging power derivatives... ... using an improved version of A., Campi Nguyen & Touzi (09) Structural Risk-Neutral model Spot Futures A., Campi, Nguyen & Touzi (09) × × improved SRN model ×

Spot model Pricing & hedging Conclusion Electricity prices modeling Related works

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

This talk

Objectives pricing and hedging power derivatives... ... using an improved version of A., Campi Nguyen & Touzi (09) Structural Risk-Neutral model Spot Futures A., Campi, Nguyen & Touzi (09) A., Campi, Nguyen & Touzi (09) improved SRN model ×
Design Estimatior

Initial SRN Model

Variables

fuels, $1 \le i \le n$

Electricity price (€/MWh)

$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{ig\{\sum_{k=1}^{i-1} C_t^k \leq D_t \leq \sum_{k=1}^{i} C_t^kig\}}$

Design Estimation

Initial SRN Model

Variables

n	fuels, $1 \le i \le n$
	demand (MW)
	heat rates $(h_i S^i_t$ en \in /MWh, \nearrow en $i)$

Electricity price (€/MWh)

$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k ight\}}$

Design Estimation

Initial SRN Model

× /			1.1	
- V/	ar	12	h	DC
v	aı	Ia	D.	63

n	fuels, $1 \leq i \leq n$
D_t	demand (MW)

- capacities (en MW)
 - fuel prices
 - heat rates $(h_i S_t^i$ en \in /MWh, \nearrow en i)

Electricity price (€/MWh]

$\widehat{\mathsf{P}}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{iggl\{\sum_{k=1}^{i-1} C_t^k \leq D_t \leq \sum_{k=1}^i C_t^kiggr\}}$

Design Estimation

Initial SRN Model

Variables	
п	fuels, $1 \le i \le n$
D_t	demand (MW)
C_t^i	capacities (en MW)
	fuel prices
	<i>heat rates</i> $(h_i S_t^i$ en \in /MWh, \nearrow en i)

Electricity price (\in /MWh)

$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k ight\}}$

Design Estimation

Initial SRN Model

Variables	
п	fuels, $1 \leq i \leq n$
D_t	demand (MW)
C_t^i	capacities (en MW)
S_t^i	fuel prices
h _i	<i>heat rates</i> $(h_i S_t^i$ en \in /MWh, \nearrow en i)

Electricity price (\in /MWh)

$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^i C_t^k ight\}}$

Design Estimation

Initial SRN Model

Variables	
п	fuels, $1 \le i \le n$
D_t	demand (MW)
C_t^i	capacities (en MW)
S_t^i	fuel prices
h _i	<i>heat rates</i> $(h_i S_t^i$ en \in /MWh, \nearrow en i)

Electricity price (\in /MWh)

$$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^i C_t^k\right\}}$$

Design Estimation

Initial SRN Model

Variables	
п	fuels, $1 \le i \le n$
D_t	demand (MW)
C_t^i	capacities (en MW)
S_t^i	fuel prices
h _i	<i>heat rates</i> $(h_i S_t^i$ en \in /MWh, \nearrow en i)

Electricity price (\in /MWh)

$$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\right\}}$$

Design Estimation

Initial SRN model

Pros

• Consistency between electricity prices and fuel prices

• Consistency between electricity prices and demand

Design Estimation

Initial SRN model

Pros

• Consistency between electricity prices and fuel prices

• Consistency between electricity prices and demand

Cons

Marginal fuel cost is not the spot price.

Design Estimation

Initial SRN model

Pros

- Consistency between electricity prices and fuel prices
- Consistency between electricity prices and demand

Cons

Marginal fuel cost is not the spot price.

Design Estimation

Initial SRN model

Pros

- Consistency between electricity prices and fuel prices
- Consistency between electricity prices and demand

Marginal fuel cost is not the spot price Non-convex technical constraints (may lead to negative prices) Strategic behaviour (Hortacsu & Puller, RAND 1 of Economics 2008)

< 回 > < 三 > <

Design Estimation

Initial SRN model

Pros

- Consistency between electricity prices and fuel prices
- Consistency between electricity prices and demand

Cons

- Marginal fuel cost is not the spot price
 - In Non-convex technical constraints (may lead to negative prices)
 - Strategic behaviour (Hortaçsu & Puller, RAND J. of Economics 2008)
 - Fixed cost recovery problem for peak-load generation plants

Design Estimation

Initial SRN model

Pros

• Consistency between electricity prices and fuel prices

Consistency between electricity prices and demand

Cons

- Marginal fuel cost is not the spot price
 - Non-convex technical constraints (may lead to negative prices)
 - Strategic behaviour (Hortaçsu & Puller, RAND J. of Economics 2008)
 - Fixed cost recovery problem for peak-load generation plants

Design Estimation

Initial SRN model

Pros

• Consistency between electricity prices and fuel prices

• Consistency between electricity prices and demand

Cons Marginal fuel cost is not the spot price Non-convex technical constraints (may lead to negative prices) Strategic behaviour (Hortaçsu & Puller, RAND J. of Economics 2008) Fixed cost recovery problem for peak-load generation plants

(4) (日本)

Design Estimation

Initial SRN model

Pros

• Consistency between electricity prices and fuel prices

• Consistency between electricity prices and demand

Cons

- Marginal fuel cost is not the spot price
 - On-convex technical constraints (may lead to negative prices)
 - Strategic behaviour (Hortaçsu & Puller, RAND J. of Economics 2008)
 - **③** Fixed cost recovery problem for peak-load generation plants

Design Estimation

Initial SRN Model - illustration

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 🦳 9 / 39

Design Estimation

Initial SRN Model - illustration

Spot price (in €/MWh)

Design Estimation

Initial SRN Model - illustration

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 11 / 39

Design Estimatior

Improved SRN model

• Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\right\}}$

Design Estimatior

Improved SRN model

- Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\}}$
- Available capacity $\overline{C}_t := \sum_{k=1}^n C_t^k$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Design Estimation

Improved SRN model

- Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\}}$
- Available capacity $\overline{C}_t := \sum_{k=1}^n C_t^k$
- Price spikes occur when the electric system is under stress, i.e. $\overline{C}_t D_t$ is small

・ 何 ト ・ ヨ ト ・ ヨ ト

Design Estimation

Improved SRN model

- Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\}}$
- Available capacity $\overline{C}_t := \sum_{k=1}^n C_t^k$
- Price spikes occur when the electric system is under stress, i.e. $\overline{C}_t D_t$ is small
- Corresponds to peak-load fixed cost problem recovery...

・ 何 ト ・ ヨ ト ・ ヨ ト

Design Estimation

Improved SRN model

- Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\}}$
- Available capacity $\overline{C}_t := \sum_{k=1}^n C_t^k$
- Price spikes occur when the electric system is under stress, i.e. $\overline{C}_t D_t$ is small
- Corresponds to peak-load fixed cost problem recovery...

$$y_t := \frac{P_t}{\widehat{P}_t}$$
 as a (nonlinear) function of $x_t := \overline{C}_t - D_t$

Design Estimation

Improved SRN model - Estimation

-

Figure: PowerNext - 19th hours Nov, 13th 06 to April 30th 10

Design Estimation

Improved SRN model - Estimation

< 47 ▶

∃ ► < ∃</p>

Figure: PowerNext - 19th hours Nov, 13th 06 to April 30th 10

Design Estimation

Improved SRN model - Estimation

- Decreasing relation
- Difficult estimation

э

Figure: PowerNext - 19th hours Nov, 13th 06 to April 30th 10

Design Estimation

Improved SRN model - Estimation

- Decreasing relation
- Difficult estimation

Figure: PowerNext - 19th hours Nov, 13th 06 to April 30th 10

Design Estimation

Improved SRN model - Estimation

René Aïd, Luciano Campi, Nicolas Langrené 👘 A structura

Design Estimation

Improved SRN model - Estimation

René Aïd, Luciano Campi, Nicolas Langrené

э

Design Estimation

Improved SRN model - Estimation

Design Estimation

Improved SRN model - Estimation

Design Estimation

Improved SRN model - Estimation

Design Estimation

Improved SRN model - Estimation

Design Estimation

Improved SRN model - Estimation

Estimated relation :
$$y_t = \frac{\gamma}{x_t^{\nu}}$$

Improved SRN model

$$P_t = g\left(\sum_{k=1}^n C_t^k - D_t\right) \times \left(\sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^i C_t^k\right\}}\right)$$

with scarcity function

$$g(x) := \min\left(\frac{\gamma}{x^{\nu}}, M\right) \mathbf{1}_{\{x > 0\}} + M \mathbf{1}_{\{x \le 0\}}$$

< □ > < □ > < □ > < □ > < □ > < □ >

э

Design Estimation

Improved SRN model - Back-testing

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 21 / 39

Design Estimation

Improved SRN model - Back-testing

Spot price (in €/MWh)

Design Estimation

Improved SRN model - Backtesting

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 23 / 39

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

ocal Risk Minimization (Pham (00), Schweizer (01))

200

Futures Options

Pricing & hedging

Pricing

• incomplete market

- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

ocal Risk Minimization (Pham (00), Schweizer (01).

- valuation : expected discounted payoff under \widehat{Q}
- allows to decompose contingent claim between bedgeable part: (fuels) and non-bedgeable part (demand, capacities)

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

₋ocal Risk Minimization (Pham (00), Schweizer (01))

valuation : expected discounted payoff under $\widehat{\mathbb{Q}}$

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

- ullet valuation : expected discounted payoff under ${ar Q}$
- allows to decompose contingent claim between hedgeable part (fuels) and non-hedgeable part (demand, capacities)

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

 \bullet valuation : expected discounted payoff under $\widehat{\mathbb{Q}}$

 allows to decompose contingent claim between hedgeable part (fuels) and non-hedgeable part (demand, capacities)

allows explicit formulas

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

- ullet valuation : expected discounted payoff under $\widehat{\mathbb{Q}}$
- allows to decompose contingent claim between hedgeable part (fuels) and non-hedgeable part (demand, capacities)
- allows explicit formulas

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

- \bullet valuation : expected discounted payoff under $\widehat{\mathbb{Q}}$
- allows to decompose contingent claim between hedgeable part (fuels) and non-hedgeable part (demand, capacities)

• allows explicit formulas

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

- \bullet valuation : expected discounted payoff under $\widehat{\mathbb{Q}}$
- allows to decompose contingent claim between hedgeable part (fuels) and non-hedgeable part (demand, capacities)
- allows explicit formulas

Futures Options

Futures

Futures prices $F_{t}^{e}\left(T ight)=\mathbb{E}_{t}^{\widehat{\mathbb{Q}}}\left[e^{-r\left(T-t ight)}P_{T} ight]$

$$F_{t}^{e}(T) = \sum_{i=1}^{n} h_{i}G_{i}^{T}(t, C_{t}, D_{t}) F_{t}^{i}(T)$$

with :

$$G_i^{T}(t,C_t,D_t) = \mathbb{E}_t \left[g \left(\sum_{k=1}^n C_T^k - D_T \right) \mathbf{1}_{\left\{ \sum_{k=1}^{i-1} C_T^k \le D_T \le \sum_{k=1}^{i} C_T^k \right\}} \right]$$

< □ > < 同 > < 回 > < 回 > < 回 >

э

Futures Options

Futures prices - hedging

Demand & capacities

$$dD_{t} = a(t, D_{t}) dt + b(t, D_{t}) dW_{t}^{D}$$
$$dC_{t}^{i} = \alpha_{i} (t, C_{t}^{i}) dt + \beta_{i} (t, C_{t}^{i}) dW_{t}^{C,i}$$

Futures price dynamics

$$dF_t^e(T) = \sum_{i=1}^n h_i \left[G_i^T(t, C_t, D_t) dF_t^i(T) + F_t^i(T) dG_i^T(t, C_t, D_t) \right]$$

$$dG_i^{T}(t, C_t, D_t) = \sum_{k=1}^{n} \frac{\partial G_i^{T}}{\partial c_k}(t, C_t, D_t) \beta_k(t, C_t^k) dW_t^{C,k} + \frac{\partial G_i^{T}}{\partial z}(t, C_t, D_t) b(t, D_t) dW_t^D$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Futures Options

Futures prices - hedging

• To go further, need to choose dynamics for demand and capacities

< □ > < □ > < □ > < □ > < □ > < □ >

Futures Options

Futures prices - hedging

- To go further, need to choose dynamics for demand and capacities
- deterministic part for seasonality + Ornstein-Uhlenbeck

< □ > < □ > < □ > < □ > < □ > < □ >

Futures Options

Futures prices - hedging

- To go further, need to choose dynamics for demand and capacities
- deterministic part for seasonality + Ornstein-Uhlenbeck
- G_i^T explicite as function of extended incomplete Goodwin-Staton integral :

$$\widetilde{\mathcal{G}}(x,y;\nu) = \int_{x}^{\infty} \frac{1}{(y+z)^{\nu}} e^{-z^{2}} dz$$

4 3 5 4 3

▲
 ▲
 ▲

Futures Options

Futures prices - hedging

- To go further, need to choose dynamics for demand and capacities
- deterministic part for seasonality + Ornstein-Uhlenbeck
- G_i^T explicite as function of extended incomplete Goodwin-Staton integral :

$$\widetilde{\mathcal{G}}(x,y;\nu) = \int_{x}^{\infty} \frac{1}{(y+z)^{\nu}} e^{-z^{2}} dz$$

 ... for which efficient numerical algorithms are provided in A., Campi & Langrené (10).

イヨト イモト イモト

Futures Options

Futures prices - hedging : spot simulations

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 28 / 39

Futures Options

Futures prices - hedging : spot simulations

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 29 / 39

Futures Options

Futures prices - hedging : spot simulations

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 30 / 39

Futures Options

Futures prices - hedging

Numerical test

- Hedging an electricity futures with a delivery period of 1 hour
- with a daily rebalanced basket of futures contracts on fuels

(B)

< 1 k

Futures Options

Futures prices - hedging

Numerical test

- Hedging an electricity futures with a delivery period of 1 hour
- with a daily rebalanced basket of futures contracts on fuels

글 🖌 🖌 글

< A IN

Futures Options

Futures prices - hedging

Numerical test

- Hedging an electricity futures with a delivery period of 1 hour
- with a daily rebalanced basket of futures contracts on fuels

글 🖌 🖌 글

Futures Options

Futures prices - hedging

Sample paths (in €)

< 47 ▶

-

Futures Options

Futures prices - hedging

René Aïd, Luciano Campi, Nicolas Langrené

Futures Options

Futures prices - hedging

René Aïd, Luciano Campi, Nicolas Langrené

A structural risk-neutral model for pricing and hedging power derivatives 32 / 39

Futures Options

Futures prices - hedging

Remarks

- Positive values are losses
- Far from maturity : perfect hedge; electricity futures is equivalent to a basket of fuels

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< □ > < 同 >

Futures Options

Futures prices - hedging

Remarks

- Positive values are losses
- Far from maturity : perfect hedge; electricity futures is equivalent to a basket of fuels
- Close to maturity : inefficient hedge

(3) (3) (4) (3)

René Aïd, Luciano Campi, Nicolas Langrené

< □ > < 同 >

Futures Options

Spread options (do not panic)

Spread option with a 2 fuel model

The price π_0 at time t = 0 of a call spread option with pay-off $H = (P_T - h_1 S_T^1 - K)^+$ is given by :

$$\pi_{0} = \int_{\mathbb{R}^{2}} f_{C_{T}^{1} - D_{T}}(z) f_{C_{T}^{2}}(c) \left\{ \phi_{1}(c, z) \mathbf{1}_{\{z \geq 0\}} + \phi_{2}(c, z) \mathbf{1}_{\{z \leq 0\}} \right\} dcdz,$$

$$\phi_1 = (g-1)BS_0(\sigma_1, K)\mathbf{1}_{\{g>1\}}$$

$$\phi_{2} = g \int_{0}^{\infty} \hat{f}_{Y_{T}^{1}}(y) BS_{0}\left(\sigma_{2}, \frac{K + (1 - g)y}{g}\right) \left(\mathbf{1}_{\{g \leq 1\}} + \mathbf{1}_{\{g > 1\}}\mathbf{1}_{\{y < \frac{K}{g - 1}\}}\right) dy$$

$$+\left(gY_0^2\mathcal{N}\left(\frac{\left(r-\frac{\sigma_1^2}{2}\right)T-\ln\left(\frac{\kappa}{(g-1)Y_0^1}\right)}{\sigma_1\sqrt{T}}\right)+\left(g-1\right)BS_0\left(\sigma_1,\frac{\kappa}{g-1}\right)\right)\mathbf{1}_{\{g>1\}}$$

with g := g(c + z).

Futures Options

Spread options (do not panic)

Spread option with a 2 fuel model

The price π_0 at time t = 0 of a call spread option with pay-off $H = (P_T - h_1 S_T^1 - K)^+$ is given by :

$$\pi_{0} = \int_{\mathbb{R}^{2}} f_{C_{T}^{1} - D_{T}}(z) f_{C_{T}^{2}}(c) \left\{ \phi_{1}(c, z) \mathbf{1}_{\{z \geq 0\}} + \phi_{2}(c, z) \mathbf{1}_{\{z \leq 0\}} \right\} dcdz,$$

$$\phi_1 = (g-1)BS_0(\sigma_1, K)\mathbf{1}_{\{g>1\}}$$

$$\phi_{2} = g \int_{0}^{\infty} \hat{f}_{Y_{T}^{1}}(y) BS_{0}\left(\sigma_{2}, \frac{K + (1 - g)y}{g}\right) \left(\mathbf{1}_{\{g \le 1\}} + \mathbf{1}_{\{g > 1\}}\mathbf{1}_{\{y < \frac{K}{g - 1}\}}\right) dy$$

$$+\left(gY_0^2\mathcal{N}\left(\frac{\left(r-\frac{\sigma_1^2}{2}\right)T-\ln\left(\frac{\kappa}{(g-1)Y_0^1}\right)}{\sigma_1\sqrt{T}}\right)+\left(g-1\right)BS_0\left(\sigma_1,\frac{\kappa}{g-1}\right)\right)\mathbf{1}_{\{g>1\}}$$

with g := g(c + z).

Futures Options

Spread options (do not panic)

Spread option with a 2 fuel model

The price π_0 at time t = 0 of a call spread option with pay-off $H = (P_T - h_1 S_T^1 - K)^+$ is given by :

$$\pi_{0} = \int_{\mathbb{R}^{2}} f_{C_{T}^{1} - D_{T}}(z) f_{C_{T}^{2}}(c) \left\{ \phi_{1}(c, z) \mathbf{1}_{\{z > 0\}} + \phi_{2}(c, z) \mathbf{1}_{\{z \le 0\}} \right\} dcdz$$

$$\phi_1 = (g-1)BS_0(\sigma_1, K)\mathbf{1}_{\{g>1\}}$$

$$\phi_{2} = g \int_{0}^{\infty} \hat{f}_{Y_{T}^{1}}(y) BS_{0}\left(\sigma_{2}, \frac{K + (1 - g)y}{g}\right) \left(\mathbf{1}_{\{g \leq 1\}} + \mathbf{1}_{\{g > 1\}}\mathbf{1}_{\{y < \frac{K}{g-1}\}}\right) dy$$

$$+\left(gY_0^2\mathcal{N}\left(\frac{\left(r-\frac{\sigma_1^2}{2}\right)\mathcal{T}-\ln\left(\frac{\mathcal{K}}{(g-1)Y_0^1}\right)}{\sigma_1\sqrt{\mathcal{T}}}\right)+\left(g-1\right)BS_0\left(\sigma_1,\frac{\mathcal{K}}{g-1}\right)\right)\mathbf{1}_{\{g>1\}}$$

with g := g(c + z).

Futures Options

Spread options

• semi-explicit formula : numerical integration

- partial hedging with futures on fuels and electricity
- applied on European dark spread call option with a period of delivery of 1 hour

< □ > < □ > < □ > < □ > < □ > < □ >

Futures Options

Spread options

- semi-explicit formula : numerical integration
- partial hedging with futures on fuels and electricity
- applied on European dark spread call option with a period of delivery of 1 hour

< □ > < □ > < □ > < □ > < □ > < □ >

- semi-explicit formula : numerical integration
- partial hedging with futures on fuels and electricity
- applied on European dark spread call option with a period of delivery of 1 hour

A (1) < A (1) < A (1)</p>

Futures Options

Spread options

Marginal oil probability (%)

э

- ∢ ⊒ →

Futures Options

Spread options

Marginal oil probability (%)

< 4 ₽ >

э.

seasonality pattern

Futures Options

Spread options

Marginal oil probability (%)

- seasonality pattern
- information on planned outages

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

Perspectives

3 1 4
Conclusion

Conclusions

• SRN electricity spot price model with a scarcity function

- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures.

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

- comparison with 'real' quoted futures
- comparison with calibration procedure
- American options for investment problem

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

Perspectives

comparison with "real" quoted futures.

▲ ▲□ ▶

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

Perspectives

- comparison with "real" quoted futures
- comparison with calibration procedure
- American options for investment problem

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

- comparison with "real" quoted futures
- comparison with calibration procedure
- American options for investment problem

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

- comparison with "real" quoted futures
- comparison with calibration procedure
- American options for investment problem

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

- comparison with "real" quoted futures
- comparison with calibration procedure
- American options for investment problem

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

- comparison with "real" quoted futures
- comparison with calibration procedure
- American options for investment problem

References

- A., Campi, Nguyen Huu & Touzi, *Int. J. Theoretical & Applied Finance*, 2010
- Barlow, Math. Finance, 2002
- Benth & Koekebakker, J. of Energy Economics, 2007
- Benth & Vos, Tech. Rep., Math. Dept. Oslo, 2009
- Benth, Ekeland, Hauge & Nielsen, *Applied Math. Finance*, 2003
- Burger, Klar, Müller & Schlindlmayr, *Quantitative Finance*, 2004

イヨト イモト イモ

References

- Cartea & Figueroa, Applied Math. Finance, 2005
- Cartea & Villaplana, J. of Banking & Finance, 2008
- Coulon & Howison, J. of Energy Markets, 2009
- Deng, Tech. Rept., California Energy Institute, 2000
- Geman & Roncoroni, J. of Business, 2006
- Kanamura & Ohashi, Energy Economics, 2007
- Kolodnyi, J. of Engineering Mathematics, 2004

References

- Lyle & Elliott, Energy Economics, 2009
- Pham, Math. Meth. of Operations Research, 2000
- Pirrong & Jermakyan, J. of Banking & Finance, 2008¹
- Schweizer, Handbook Math. Finance, Cambridge Univ. Press, 2001

1. Olin Business School Tech. Rep. 2000