Singular BSDEs & Emissions Derivative Pricing

René Carmona

ORFE, Bendheim Center for Finance
Princeton University

Essen Energy & Finance Conference
October 7, 2010
R.C, M. Fehr, J. Hinz, A. Prochet

- Putting a Price on CO\textsubscript{2} by \textit{internalizing} its Social Cost
- Regulatory Economic Instruments
 - Carbon \textbf{TAX}
 - Permits Allocation & Trading (\textit{Cap-and-Trade})
- Calibrate the Different Schemes for
 - \textbf{MEANINGFUL} \& \textbf{FAIR} comparisons

- \textbf{Dynamic Stochastic General Equilibrium}
- \textbf{Inelastic} Demand (to start with)
 - Electricity Production for the purpose of \textit{illustration}

- Novelty (if any): \textbf{Random} Factors
 - \textbf{Demand} for goods \(\{D^{k}_{t}\}_{t\geq0} \)
 - \textbf{Costs} of Production \(\{C^{i,j,k}_{t}\}_{t\geq0} \)
 - Spot Price of Coal
 - Spot Price of Natural Gas
Emissions (Cap-and-Trade) Markets MAY or MAY NOT exist in the US (and Canada, Australia, Japan,)

In any case, a liquid option market ALREADY exists in Europe

- Underlying $\{A_t\}_t$ non-negative martingale with binary terminal value (single phase model)
- Think of A_t as of a binary option
- Underlying of binary option should be Emissions

Need for Formulae (closed or computable)

- Prices and Hedges difficult to compute (only numerically)
- Jumps due to announcements (Cetin et al.)

Reduced Form Models
Option quotes on Jan. 3, 2008

<table>
<thead>
<tr>
<th>Option Maturity</th>
<th>Option Type</th>
<th>Volume</th>
<th>Strike</th>
<th>Allowance Price</th>
<th>Implied Vol</th>
<th>Settlement Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec-08</td>
<td>Call</td>
<td>150,000</td>
<td>24.00</td>
<td>23.54</td>
<td>50.50%</td>
<td>4.19</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Call</td>
<td>250,000</td>
<td>26.00</td>
<td>23.54</td>
<td>50.50%</td>
<td>3.50</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Call</td>
<td>300,000</td>
<td>27.00</td>
<td>23.54</td>
<td>50.50%</td>
<td>3.20</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Call</td>
<td>350,000</td>
<td>30.00</td>
<td>23.54</td>
<td>50.50%</td>
<td>2.00</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Call</td>
<td>400,000</td>
<td>40.00</td>
<td>23.54</td>
<td>50.50%</td>
<td>1.00</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Put</td>
<td>500,000</td>
<td>15.00</td>
<td>23.54</td>
<td>50.50%</td>
<td>0.83</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Put</td>
<td>1,000,000</td>
<td>15.00</td>
<td>23.54</td>
<td>50.50%</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Carmona Singular BSDEs
<table>
<thead>
<tr>
<th>Option Maturity</th>
<th>Option Type</th>
<th>Volume</th>
<th>Strike</th>
<th>Allowance Price</th>
<th>Implied Vol</th>
<th>Settlement Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec-08</td>
<td>Call</td>
<td>200,000</td>
<td>22.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>5.06</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Call</td>
<td>150,000</td>
<td>26.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>3.57</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Call</td>
<td>450,000</td>
<td>27.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>3.27</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Call</td>
<td>100,000</td>
<td>28.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>2.99</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Call</td>
<td>125,000</td>
<td>29.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>2.74</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Call</td>
<td>525,000</td>
<td>30.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>2.51</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Call</td>
<td>250,000</td>
<td>40.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>1.04</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Call</td>
<td>700,000</td>
<td>50.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>0.45</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Put</td>
<td>1,000,000</td>
<td>14.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>0.64</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Put</td>
<td>200,000</td>
<td>15.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>0.86</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Put</td>
<td>200,000</td>
<td>15.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>0.86</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Put</td>
<td>400,000</td>
<td>16.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>1.13</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Put</td>
<td>100,000</td>
<td>17.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>1.43</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Put</td>
<td>1,000,000</td>
<td>18.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>1.78</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Put</td>
<td>500,000</td>
<td>20.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>2.60</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Put</td>
<td>200,000</td>
<td>21.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>3.07</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Put</td>
<td>200,000</td>
<td>22.00</td>
<td>23.55</td>
<td>51.25%</td>
<td>3.57</td>
</tr>
</tbody>
</table>
Allowance price should be of the form

\[A_t = \lambda \mathbb{E}\{1_N \mid \mathcal{F}_t\} \]

for a non-compliance set \(N \in \mathcal{F}_t \). Choose

\[N = \{\Gamma_T \geq 1\} \]

for a random variable \(\Gamma_T \) representing the normalized emissions at compliance time. So

\[A_t = \lambda \mathbb{E}\{1_{\{\Gamma_T \geq 1\}} \mid \mathcal{F}_t\}, \quad t \in [0, T] \]

We choose \(\Gamma_T \) in a parametric family

\[\Gamma_T = \Gamma_0 \exp \left[\int_0^T \sigma_s dW_s - \frac{1}{2} \int_0^T \sigma_s^2 ds \right] \]

for some square integrable deterministic function

\[(0, T) \ni t \mapsto \sigma_t \]
Dynamic Price Model for $a_t = \frac{1}{\lambda} A_t$

- a_t is given by

$$a_t = \Phi \left(\frac{\Phi^{-1}(a_0) \sqrt{\int_0^T \sigma_s^2 ds} + \int_0^t \sigma_s dW_s}{\sqrt{\int_t^T \sigma_s^2 ds}} \right) \quad t \in [0, T)$$

where Φ is standard normal c.d.f.

- a_t solves the SDE

$$da_t = \Phi'(\Phi^{-1}(a_t)) \sqrt{z_t} dW_t$$

where the positive-valued function $(0, T) \ni t \mapsto z_t$ is given by

$$z_t = \frac{\sigma_t^2}{\int_t^T \sigma_u^2 du}, \quad t \in (0, T)$$
Risk Neutral Densities

Figure: Histograms for each day of a 4 yr compliance period of 10^5 simulated risk neutral allowance price paths.
Aside: Binary Martingales as Underliers

Allowance prices are given by \(A_t = \lambda a_t \) where \(\{a_t\}_{0 \leq t \leq T} \) satisfies

- \(\{a_t\}_t \) is a martingale
- \(0 \leq a_t \leq 1 \)
- \(\mathbb{P}\{\lim_{t \to T} a_t = 1\} = 1 - \mathbb{P}\{\lim_{t \to T} a_t = 0\} = p \) for some \(p \in (0, 1) \)

The model

\[
d a_t = \Phi'(\Phi^{-1}(a_t)) \sqrt{z_t} dW_t
\]

suggests looking for martingales \(\{Y_t\}_{0 \leq t < \infty} \) satisfying

- \(0 \leq Y_t \leq 1 \)
- \(\mathbb{P}\{\lim_{t \to \infty} Y_t = 1\} = 1 - \mathbb{P}\{\lim_{t \to \infty} T_t = 0\} = p \) for some \(p \in (0, 1) \)

and do a time change to get back to the (compliance) interval \([0, T)\)
Feller’s Theory of 1-D Diffusions

Gives conditions for the SDE

\[da_t = \Theta(a_t) dW_t \]

for \(x \mapsto \Theta(x) \) satisfying
- \(\Theta(x) > 0 \) for \(0 < x < 1 \)
- \(\Theta(0) = \Theta(1) = 0 \)

to
- Converge to the boundaries 0 and 1
- NOT explode (i.e. NOT reach the boundaries in finite time)

Interestingly enough the solution of

\[dY_t = \Phi'(\Phi^{-1}(Y_t)) dW_t \]

IS ONE OF THEM!
Explicit Examples

The SDE

\[dX_t = \sqrt{2}dW_t + X_t\,dt \]

has the solution

\[X_t = e^t(x_0 + \int_0^t e^{-s}\,dW_s) \]

and

\[\lim_{t \to \infty} X_t = +\infty \quad \text{on the set } \{\int_0^\infty e^{-s}\,dW_s > -x_0\} \]

\[\lim_{t \to \infty} X_t = -\infty \quad \text{on the set } \{\int_0^\infty e^{-s}\,dW_s < -x_0\} \]

Moreover, \(\Phi \) is harmonic so if we choose

\[Y_t = \Phi(X_t) \]

we have a martingale with the desired properties.

Another (explicit) example can be constructed from Ph. Carmona, Petit and Yor on Dufresne formula.
Publicly available option data being unreliable, calibration

Has to Be Historical !!!!!!

- Choose **Constant** Market Price of Risk
- **Two-parameter** Family for Time-change

\[
\{ z_t(\alpha, \beta) = \beta(T - t)^{-\alpha} \}_{t \in [0, T]}, \quad \beta > 0, \alpha \geq 1.
\]

Volatility function \(\{ \sigma_t(\alpha, \beta) \}_{t \in (0, T)} \) given by

\[
\sigma_t(\alpha, \beta)^2 = z_t(\alpha, \beta) e^{-\int_0^t z_u(\alpha, \beta) \, du}
\]

\[
= \begin{cases}
\beta(T - t)^{-\alpha} e^{\beta \frac{T - \alpha + 1 - (T - t)^{-\alpha + 1}}{-\alpha + 1}} & \text{for } \beta > 0, \alpha > 1 \\
\beta(T - t)^{\beta - 1} T^{-\beta} & \text{for } \beta > 0, \alpha = 1
\end{cases}
\]

Maximum Likelihood
for $\alpha = 1$, $\beta > 0$, the price of an European call with strike price $K \geq 0$ written on a one-period allowance futures price at time $\tau \in [0, T]$ is given at time $t \in [0, \tau]$ by

$$C_t = e^{-\int_t^\tau r_s ds} \mathbb{E}\{(A_\tau - K)^+ | \mathcal{F}_t\}$$

$$= \int (\lambda \Phi(x) - K)^+ N(\mu_{t,\tau}, \nu_{t,\tau})(dx)$$

where

$$\mu_{t,\tau} = \Phi^{-1}(A_t / \lambda) \sqrt{(T - t)/(T - \tau)} \beta$$

$$\nu_{t,\tau} = \left(\frac{T - t}{T - \tau}\right)^\beta - 1.$$
Price Dependence on T and Sensitivity to β

Figure: Dependence $\tau \mapsto C_0(\tau)$ of Call prices on maturity τ. Graphs \square, \triangle, and ∇ correspond to $\beta = 0.5$, $\beta = 0.8$, $\beta = 1.1$.

Carmona Singular BSDEs
Implied Volatilities $\beta = 1.2$

Implied Volatilities for Different Maturities

- Maturity=1yr
- Maturity=2yr
- Maturity=3yr

Graph showing the relationship between implied volatilities and maturity.
Implied Volatilities $\beta = 0.6, \lambda = 100$

Implied Volatilities for Different Maturities

- Maturity=1yr
- Maturity=2yr
- Maturity=3yr

K

Carmona
Singular BSDEs
<table>
<thead>
<tr>
<th>Option Maturity</th>
<th>Option Type</th>
<th>Volume</th>
<th>Strike</th>
<th>Allowance Price</th>
<th>Implied Vol</th>
<th>Settlement Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec-10</td>
<td>Call</td>
<td>750,000</td>
<td>14.00</td>
<td>13.70</td>
<td>29.69</td>
<td>1.20</td>
</tr>
<tr>
<td>Dec-10</td>
<td>Call</td>
<td>150,000</td>
<td>15.00</td>
<td>13.70</td>
<td>29.89</td>
<td>0.85</td>
</tr>
<tr>
<td>Dec-10</td>
<td>Call</td>
<td>250,000</td>
<td>16.00</td>
<td>13.70</td>
<td>30.64</td>
<td>0.61</td>
</tr>
<tr>
<td>Dec-10</td>
<td>Call</td>
<td>250,000</td>
<td>18.00</td>
<td>13.70</td>
<td>32.52</td>
<td>0.34</td>
</tr>
<tr>
<td>Dec-10</td>
<td>Call</td>
<td>1,000,000</td>
<td>20.00</td>
<td>13.70</td>
<td>33.07</td>
<td>0.17</td>
</tr>
<tr>
<td>Dec-10</td>
<td>Put</td>
<td>1,000,000</td>
<td>10.00</td>
<td>13.70</td>
<td>37.42</td>
<td>0.29</td>
</tr>
<tr>
<td>Dec-10</td>
<td>Put</td>
<td>500,000</td>
<td>12.00</td>
<td>13.70</td>
<td>32.12</td>
<td>0.67</td>
</tr>
<tr>
<td>Dec-10</td>
<td>Put</td>
<td>500,000</td>
<td>13.00</td>
<td>13.70</td>
<td>30.37</td>
<td>1.01</td>
</tr>
</tbody>
</table>
Relax demand inelasticity
Include preferences to relax risk neutrality
(RC-Delarue-Espinosa-Touzi)
"Representative Agent" form already considered in Seifert-Uhrig-Homburg-Wagner, RC-Fehr-Hinz

Mathematical Set-Up (continuous time)
- \((\Omega, \mathcal{F}, \mathbb{P})\) historical probability structure
- \(W\) D-dimensional Wiener process on \((\Omega, \mathcal{F}, \mathbb{P})\)
- \(T > 0\) finite horizon (end of the single compliance period)
- \(\mathcal{F} = \{\mathcal{F}_t; 0 \leq t \leq T\}\) filtration of \(W\)

Goal of equilibrium analysis is to derive pollution permit price \(\{A_t; 0 \leq t \leq T\}\) allowing firms to maximize their expected utilities simultaneously
Emissions Dynamics

Assume allowance price $A = \{A_t; \, 0 \leq t \leq T\}$ exists.

- A is a \mathbb{F}-martingale under \mathbb{Q}
- $dA_t = Z_t \, dB_t$ for some adapted process Z s.t. $Z_t \neq 0$ a.s. and B is a D-dim Wiener process for spot martingale measure \mathbb{Q}
- $A_T = \lambda 1_{[\Lambda, \infty)}(E_T)$ where
 - λ is the penalty
 - $E_t = \sum_{i \in I} E^i_t$ is the aggregate of the E^i_t representing the cumulative emission up to time t of firm i
 - Λ is the cap imposed by the regulator

Assume the following dynamics under \mathbb{P}

$$dE^i_t = (b^i_t - \xi^i_t)dt + \sigma^i_t dW_t, \quad E^i_0 = 0.$$

- $\{E^i_t(\xi^i_t \equiv 0)\}_{0 \leq t \leq T}$ cumulative emissions of firm i in BAU
- $\{\xi^i_t\}\}_{0 \leq t \leq T}$ abatement rate of firm i
- Assumptions on emission rates b^i_t and volatilities σ^i_t to be articulated later
Abatement costs for firm i given by cost function $c^i_t : \mathbb{R} \rightarrow \mathbb{R}$

- c^i is C^1 and strictly convex
- c^i satisfies Inada-like conditions for each $t \in [0, T]$

$$
(c^i)'(-\infty) = -\infty \quad \text{and} \quad (c^i)'(+\infty) = +\infty.
$$

- $c^i(0) = \min c^i_t$ ($\xi^i \equiv 0$ corresponds to BAU)

Typical example for c^i

$$
\lambda|x|^{1+\alpha},
$$

for some $\lambda > 0$ and $\alpha > 0$.

Each firm chooses its abatement strategy ξ^i and its investment θ^i in allowances. Its wealth is given by

$$
X^i_t = X^{i,\xi,\theta}_t = x^i + \int_0^T \theta^i_t dA_t - \int_0^T c^i(\xi^i_t) dt - E^i_T A_T.
$$
Preferences of firm i given by a C^1, increasing, strictly concave utility function $U^i : \mathbb{R} \rightarrow \mathbb{R}$ satisfying Inada conditions:

$$(U^i)'(-\infty) = +\infty \quad \text{and} \quad (U^i)'(+\infty) = 0.$$

The optimization problem for firm i is:

$$V(x^i) := \sup_{(\xi^i, \theta^i) \in A^i} \mathbb{E}^P\{ U^i(X^i_T, \xi^i \theta^i) \}$$

If no non-standard restriction on A^i set of admissible strategies for firm i

Proposition

If an equilibrium allowance price $\{A_t\}_{0 \leq t \leq T}$ exists, then the optimal abatement strategy $\hat{\xi}^i$ is given by

$$\hat{\xi}^i_t = [(c^i)']^{-1}(A_t).$$

NB: The optimal abatement strategy $\hat{\xi}^i$ is independent of the utility function U^i!
Finding the Equilibrium Allowance Price

- Recall
 \[
 dE^i_t = \left[\tilde{b}^i_t - [(c^i)']^{-1}(A_t) \right] dt + \sigma^i_t dB_t, \quad E^i_0 = 0, \text{ for each } i
 \]

- Assume
 - \(\forall i, \tilde{b}^i_t = \tilde{b}^i(t)E^i_t \) or \(\forall i, \tilde{b}^i_t = \tilde{b}^i(t) \)
 - \(\forall i, \sigma^i_t = \sigma^i(t) \).

- Set
 \[
 b := \sum_{i \in I} \tilde{b}^i, \quad \sigma := \sum_{i \in I} \sigma^i, \text{ and } f := \sum_{i \in I} [(c^i)']^{-1}.
 \]

Therefore we have the following FBSDE

\[
\begin{align*}
 dE_t &= \{ b(t, E_t) - f_t(A_t) \} dt + \sigma(t) dB_t, \quad E_0 = 0 \quad (1) \\
 dA_t &= Z_t dB_t, \quad A_T = \lambda 1_{[\Lambda, +\infty)}(E_T), \quad (2)
\end{align*}
\]

with \(b(t, E_t) = b(t)E_t^\beta \) with \(\beta \in \{0, 1\} \) and \(f \) increasing.
Theoretical Existence and Uniqueness

Theorem

If \(\sigma(t) \geq \sigma > 0 \) then for any \(\lambda > 0 \) and \(\Lambda \in \mathbb{R} \), FBSDE (1)-(2) admits a unique solution \((E, A, Z) \in M^2\). Moreover, \(A_t \) is nondecreasing w.r.t \(\lambda \) and nonincreasing w.r.t \(\Lambda \).

Proof

- Approximate the singular terminal condition \(\lambda 1_{[\Lambda, +\infty)}(E_T) \) by increasing and decreasing sequences \(\{\varphi_n(E_T)\}_n \) and \(\{\psi_n(E_T)\}_n \) of smooth monotone functions of \(E_T \)
- Use
 - comparison results for BSDEs
 - the fact that \(E_T \) has a density (implying \(\mathbb{P}\{E_T = \Lambda\} = 0 \))

 to control the limits
Assume GBM for BAU emissions (Chesney-Taschini, Seifert-Uhrig-Homburg-Wagner, Grüll-Kiesel) i.e. \(b(t, e) = be \) and \(\sigma(t, e) = \sigma e \)

\[
\begin{aligned}
E_t &= E_0 + \int_0^t (b E_s - f(Y_s)) ds + \int_0^t \sigma E_s d\bar{W}_s \\
A_t &= \lambda 1_{[\Lambda, \infty)}(E_T) - \int_t^T Z_t d\bar{W}_t.
\end{aligned}
\]

Allowance price \(A_t \) constructed as \(A_t = v(t, E_t) \) for a function \(v \) which **MUST** solve

\[
\begin{aligned}
\partial_t v(t, e) + (be - f(v(t, e))) \partial_e v(t, e) + \frac{1}{2} \sigma^2 e^2 \partial_{ee} v(t, e) &= 0, \\
v(T, \cdot) &= 1_{[\Lambda, \infty)}
\end{aligned}
\]

The price at time \(t \) of a call option with maturity \(\tau \) and strike \(K \) on an allowance forward contract maturing at time \(T > \tau \) is given by

\[
V(t, E_t) = \mathbb{E}_t \{(Y_\tau - K)^+\} = \mathbb{E}_t \{(v(\tau, E_\tau) - K)^+\}.
\]

\(V \) solves:

\[
\begin{aligned}
\partial_t V(t, e) + (be - f(v(t, e))) \partial_e V(t, e) + \frac{1}{2} \sigma^2 e^2 \partial_{ee} V(t, e) &= 0, \\
V(\tau, \cdot) &= (v(\tau, \cdot) - K)^+
\end{aligned}
\]
Black-Scholes Case: \(f \equiv 0 \).

\[
\begin{align*}
 v^0(t, e) &= \lambda \mathbb{P} \left[E_t^0 \geq \Lambda | E_t^0 = e \right] = \lambda \Phi \left(\frac{\ln (e/\Lambda e^{-b(T-t)})}{\sigma \sqrt{T-t}} - \frac{\sigma \sqrt{T-t}}{2} \right) \\
 V^0(t, e) &= \mathbb{E} \left[(v^0(\tau, E_\tau^0) - K)^+ | E_t^0 = e \right],
\end{align*}
\]

where \(E^0 \) is the geometric Brownian motion:

\[
dE_t^0 = E_t^0 [b dt + \sigma d\tilde{W}_t].
\]

used as proxy estimation of the cumulative emissions in business as usual.
For $\epsilon \geq 0$ small, let v^ϵ and V^ϵ be the prices of the allowances and the option for $f = \epsilon f_0$. We denote by

$$v^\epsilon(T, .) = \lambda 1_{[\Lambda, \infty)}$$ and $$-\partial_t v^\epsilon - (be - \epsilon f_0(v^\epsilon))\partial_e v^\epsilon - \frac{1}{2}\sigma^2 e^2 \partial_{ee} v^\epsilon = 0,$$

$$V^\epsilon(T, .) = (v^\epsilon(T, .) - K)^+$$ and $$-\partial_t V^\epsilon - (be - \epsilon f_0(v^\epsilon))\partial_e V^\epsilon - \frac{1}{2}\sigma^2 e^2 \partial_{ee} V^\epsilon = 0,$$

Proposition

As $\epsilon \to 0$, we have

$$V^\epsilon(t, s) = V^0(t, s)$$

$$+ \epsilon \mathbb{E}_{t, \epsilon} \left[1_{[\Lambda, \infty)}(v^0)(\tau, E^0_{\tau}) \int_t^T f_0(v^0)(s, E^0_s)\partial_e v^0(s \vee \tau, E^0_{s \vee \tau}) \frac{E^0_{s \vee \tau}}{E^0_s} ds \right]$$

$$+ o(\epsilon),$$
11 valeurs de EPSILON de 0 a 1.0

Option Prices

EUA Price

Option Price

EUA Price
A Slightly Different Model

Single good (e.g. electricity) regulated economy, with price dynamics given \textbf{exogenously}!

\[
\frac{dP_t}{P_t} = \mu(t, P_t)dt + \sigma(t, P_t)dW_t
\]

Firm i

- Controls its \textit{instantaneous rate of production} q^i_t
- \textbf{Production} over $[0, t]$

\[
Q^i_t := \int_0^t q^i_t dt.
\]

- \textbf{Costs of production} given by $c^i_t : \mathbb{R}_+ \rightarrow \mathbb{R}$ \textit{C}^1 strictly convex satisfying Inada-like conditions

\[
(c^i_t)'(0) = 0, \quad (c^i_t)'(+\infty) = +\infty
\]

- \textbf{Cumulative emissions} $E^i_t := e^i Q^i_t$
- \textbf{P&L} (wealth)

\[
X^i_t = X^i_{t,q^i,\theta^i} = x^i + \int_0^T \theta^i_t dA_t - \int_0^T [P_t q^i_t - c^i_t(q^i_t)]dt - e^i Q^i_T A_T.
\]
Proposition

If such an equilibrium exits, the optimal production strategy \hat{q}^i is given by:

$$\hat{q}^i_t = [(c^i)']^{-1} (P_t - e^i A_t).$$

NB: As before the optimal production schedule \hat{q}^i **DOES NOT** DEPEND upon the utility function!
Existence of Allowance Equilibrium Prices

- Set $E_t := \sum_{i \in I} E_t^i$ for the total aggregate emissions up to time t
- Define $f(p, y) := \sum_{i \in I} \varepsilon^i (c^i)' \varepsilon^i(p - \varepsilon^i y)$

Then the corresponding FBSDE under \mathcal{Q} reads

\[
\begin{align*}
 dP_t &= \sigma(t, P_t) dB_t, \quad P_0 = p \\
 dE_t &= f(P_t, A_t) dt, \quad E_0 = 0 \\
 dA_t &= Z_t dB_t, \quad A_T = \lambda 1_{[\Lambda, +\infty)}(E_T).
\end{align*}
\]

NB: The volatility of the forward equation is **degenerate**!

Still, **Natural Conjecture**: For $\lambda > 0$ and $\Lambda \in \mathbb{R}$, the above FBSDE has a unique solution (P, E, A, Z).
An Enlightening Example (R.C. - Delarue)

\[
\begin{align*}
 dP_t &= dW_t, \quad P_0 = p, \\
 dE_t &= (P_t - A_t) \, dt, \quad E_0 = e \\
 dA_t &= Z_t dW_t, \quad 0 \leq t \leq T, \quad A_T = 1_{[\Lambda, \infty)}(E_T)
\end{align*}
\]

(6)

Theorem

- There exists a unique progressively measurable triple \((P_t, E_t, A_t)_{0 \leq t \leq T}\) satisfying (6) and

\[
1_{(\Lambda, \infty)}(E_T) \leq A_T \leq 1_{[\Lambda, \infty)}(E_T).
\]

- The marginal distribution of \(E_t\)
 - is absolutely continuous for \(0 \leq t < T\)
 - has a Dirac mass at \(\Lambda\) when \(t = T\), \(\mathbb{P}\{E_T = \Lambda\} > 0\).

The terminal condition \(A_T = 1_{[\Lambda, \infty)}(E_T)\) may not be satisfied!
Comments on the Existence of a Point Mass for E_T

- Ruled out (by assumption) in early equilibrium model studies

Assumption

The \mathcal{F}_{T-1}-conditional distribution of $\sum_{i \in I} \Delta^i$ possesses almost surely no point mass, or equivalently, for all \mathcal{F}_{T-1}-measurable random variables Z

$$\mathbb{P}\left\{ \sum_{i \in I} \Delta^i = Z \right\} = 0 \quad (7)$$

- Thought to be *innocent*!
- We should have known better!
 - Numerical Evidence from Case Studies Shows High Emission Concentration below Λ

Carmona

Singular BSDEs
Japanese Electricity Market:

- **TOKYO** recently unveiled a **Carbon Scheme**
- Eastern & Western Regions (1GW Interconnection)
- Electricity Production: Nuclear, **Coal, Natural Gas**, Oil
 - Coal is **expensive**
 - Visible Impact of Regulation (**fuel switch**)
- **Regulation** Gory Details
 - **Cap** (Emission Target) 300 Mega-ton CO$_2$ = 20% w.r.t. 2012 BAU
 - Calibration for Fair Comparisons: **Meet Cap 95% of time**
 - Penalty 100 USD
 - Tax Level 40 USD
 - Numerical Solution of a **Stochastic Control** Problem (**HJB**) in 4-D
Yearly emissions from electricity production for the Standard Scheme, the Relative Scheme, a Tax Scheme and BAU.
Lectures based on

3. R.C., and J. Hinz: Risk-Neutral Modeling of Emission Allowance Prices and Option Valuation (working paper)