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Price Formation: Equilibrium Analysis

R.C, M. Fehr, J. Hinz, A. Prochet
Putting a Price on CO2 by internalizing its Social Cost
Regulatory Economic Instruments

Carbon TAX
Permits Allocation & Trading (Cap-and-Trade)

Calibrate the Different Schemes for
MEANINGFUL & FAIR comparisons

Dynamic Stochastic General Equilibrium
Inelastic Demand (to start with)

Electricity Production for the purpose of illustration
Novelty (if any): Random Factors

Demand for goods {Dk
t }t≥0

Costs of Production {C i,j,k
t }t≥0

Spot Price of Coal
Spot Price of Natural Gas
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Reduced Form Models & Option Pricing

(Uhrig-Homburg-Wagner, R.C - Hinz)
Emissions (Cap-and-Trade) Markets MAY or MAY NOT exist in
the US (and Canada, Australia, Japan, ....)
In any case, a liquid option market ALREADY exists in Europe

Underlying {At}t non-negative martingale with binary terminal
value (single phase model)
Think of At as of a binary option
Underlying of binary option should be Emissions

Need for Formulae (closed or computable)
Prices and Hedges difficult to compute (only numerically)
Jumps due to announcements (Cetin et al.)

Reduced Form Models
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Option quotes on Jan. 3, 2008

Option Option Volume Strike Allowance Implied Vol Settlement
Maturity Type Price Price

Dec-08 Call 150,000 24.00 23.54 50.50% 4.19
Dec-08 Call 500,000 26.00 23.54 50.50% 3.50
Dec-08 Call 25,000 27.00 23.54 50.50% 3.20
Dec-08 Call 300,000 35.00 23.54 50.50% 1.56
Dec-08 Call 1,000,000 40.00 23.54 50.50% 1.00
Dec-08 Put 200,000 15.00 23.54 50.50% 0.83
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Option quotes on Jan. 4, 2008

Option Option Volume Strike Allowance Implied Vol Settlement
Maturity Type Price Price

Dec-08 Cal 200,000 22.00 23.55 51.25% 5.06
Dec-08 Call 150,000 26.00 23.55 51.25% 3.57
Dec-08 Call 450,000 27.00 23.55 51.25% 3.27
Dec-08 Call 100,000 28.00 23.55 51.25% 2.99
Dec-08 Call 125,000 29.00 23.55 51.25% 2.74
Dec-08 Call 525,000 30.00 23.55 51.25% 2.51
Dec-08 Call 250,000 40.00 23.55 51.25% 1.04
Dec-08 Call 700,000 50.00 23.55 51.25% 0.45
Dec-08 Put 1,000,000 14.00 23.55 51.25% 0.64
Dec-08 Put 200,000 15.00 23.55 51.25% 0.86
Dec-08 Put 200,000 15.00 23.55 51.25% 0.86
Dec-08 Put 400,000 16.00 23.55 51.25% 1.13
Dec-08 Put 100,000 17.00 23.55 51.25% 1.43
Dec-08 Put 1,000,000 18.00 23.55 51.25% 1.78
Dec-08 Put 500,000 20.00 23.55 51.25% 2.60
Dec-08 Put 200,000 21.00 23.55 51.25% 3.07
Dec-08 Put 200,000 22.00 23.55 51.25% 3.57
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Reduced Form Models and Calibration
Allowance price should be of the form

At = λE{1N |Ft}

for a non-compliance set N ∈ Ft . Choose

N = {ΓT ≥ 1}

for a random variable ΓT representing the normalized emissions at
compliance time. So

At = λE{1{ΓT≥1} |Ft}, t ∈ [0,T ]

We choose ΓT in a parametric family

ΓT = Γ0 exp
[ ∫ T

0
σsdWs −

1
2

∫ T

0
σ2

s ds
]

for some square integrable deterministic function

(0,T ) 3 t ↪→ σt
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Dynamic Price Model for at = 1
λAt

at is given by

at = Φ

Φ−1(a0)
√∫ T

0 σ2
s ds +

∫ t
0 σsdWs√∫ T

t σ2
s ds

 t ∈ [0,T )

where Φ is standard normal c.d.f.
at solves the SDE

dat = Φ′(Φ−1(at ))
√

ztdWt

where the positive-valued function (0,T ) 3 t ↪→ zt is given by

zt =
σ2

t∫ T
t σ2

udu
, t ∈ (0,T )
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Risk Neutral Densities

Figure: Histograms for each day of a 4 yr compliance period of 105 simulated
risk neutral allowance price paths.
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Aside: Binary Martingales as Underliers

Allowance prices are given by At = λat where {at}0≤t≤T satisfies
{at}t is a martingale

0 ≤ at ≤ 1

P{limt→T at = 1} = 1− P{limt→T at = 0} = p for some p ∈ (0, 1)

The model
dat = Φ′(Φ−1(at ))

√
ztdWt

suggests looking for martingales {Yt}0≤t<∞ satisfying

0 ≤ Yt ≤ 1

P{limt→∞ Yt = 1} = 1− P{limt→∞ Tt = 0} = p for some p ∈ (0, 1)

and do a time change to get back to the (compliance) interval [0,T )
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Feller’s Theory of 1-D Diffusions

Gives conditions for the SDE

dat = Θ(at )dWt

for x ↪→ Θ(x) satisfying
Θ(x) > 0 for 0 < x < 1
Θ(0) = Θ(1) = 0

to
Converge to the boundaries 0 and 1
NOT explode (i.e. NOT reach the boundaries in finite time)

Interestingly enough the solution of

dYt = Φ′(Φ−1(Yt ))dWt

IS ONE OF THEM !
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Explicit Examples
The SDE

dXt =
√

2dWt +Xtdt

has the solution

Xt = et(x0 +

∫ t

0
e−sdWs

)
and

lim
t→∞

Xt = +∞ on the set {
∫ ∞

0
e−sdWs > −x0}

lim
t→∞

Xt = −∞ on the set {
∫ ∞

0
e−sdWs < −x0}

Moreover Φ is harmonic so if we choose

Yt = Φ(Xt )

we have a martingale with the desired properties.

Another (explicit) example can be constructed from Ph. Carmona,
Petit and Yor on Dufresne formula.
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Calibration

Publicly available option data being unreliable, calibration

Has to Be Historical !!!!

Choose Constant Market Price of Risk

Two-parameter Family for Time-change

{zt (α, β) = β(T − t)−α}t∈[0,T ], β > 0, α ≥ 1.

Volatility function {σt (α, β)}t∈(0,T ) given by

σt (α, β)2 = zt (α, β)e−
R t

0 zu(α,β)du

=

{
β(T − t)−αeβ

T−α+1−(T−t)−α+1

−α+1 for β > 0, α > 1
β(T − t)β−1T−β for β > 0, α = 1

Maximum Likelihood

Carmona Singular BSDEs



Call Option Price in One Period Model

for α = 1, β > 0, the price of an European call with strike price K ≥ 0
written on a one-period allowance futures price at time τ ∈ [0,T ] is
given at time t ∈ [0, τ ] by

Ct = e−
R τ

t rsdsE{(Aτ − K )+ | Ft}

=

∫
(λΦ(x)− K )+N(µt,τ , νt,τ )(dx)

where

µt,τ = Φ−1(At/λ)

√(
T − t
T − τ

)β
νt,τ =

(
T − t
T − τ

)β
− 1.

Easily extended to several periods
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Price Dependence on T and Sensitivity to β
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Figure: Dependence τ 7→ C0(τ) of Call prices on maturity τ . Graphs 2, 4,
and ∇ correspond to β = 0.5, β = 0.8, β = 1.1.
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Implied Volatilities β = 1.2
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Implied Volatilities β = 0.6, λ = 100
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Option quotes on April 9, 2010

With a Smile Now!

Option Option Volume Strike Allowance Implied Vol Settlement
Maturity Type Price Price

Dec-10 Call 750,000 14.00 13.70 29.69 1.20
Dec-10 Call 150,000 15.00 13.70 29.89 0.85
Dec-10 Call 250,000 16.00 13.70 30.64 0.61
Dec-10 Call 250,000 18.00 13.70 32.52 0.34
Dec-10 Call 1,000,000 20.00 13.70 33.07 0.17
Dec-10 Put 1,000,000 10.00 13.70 37.42 0.29
Dec-10 Put 500,000 12.00 13.70 32.12 0.67
Dec-10 Put 500,000 13.00 13.70 30.37 1.01
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Partial Equilibrium Models

Relax demand inelasticity
Include preferences to relax risk neutrality
(RC-Delarue-Espinosa-Touzi)
”Representative Agent” form already considered in
Seifert-Uhrig-Homburg-Wagner, RC-Fehr-Hinz

Mathematical Set-Up (continuous time)
(Ω,F ,P) historical probability structure
W D-dimensional Wiener process on (Ω,F ,P)

T > 0 finite horizon (end of the single compliance period)
F = {Ft ; 0 ≤ t ≤ T} filtration of W

Goal of equilibrium analysis is to derive pollution permit price
{At ; 0 ≤ t ≤ T} allowing firms to maximize their expected utilities
simultaneously
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Emissions Dynamics

Assume allowance price A = {At ; 0 ≤ t ≤ T} exists.
A is a F-martingale under Q
dAt = Zt dBt for some adapted process Z s.t. Zt 6= 0 a.s. and B
D-dim Wiener process for spot martingale measure Q
AT = λ1[Λ,∞)(ET ) where

λ is the penalty
Et =

P
i∈I E i

t is the aggregate of the E i
t representing the

cumulative emission up to time t of firm i
Λ is the cap imposed by the regulator

Assume the following dynamics under P

dE i
t = (bi

t − ξi
t )dt + σi

tdWt , E i
0 = 0.

{E i
t (ξi

t ≡ 0)}0≤t≤T cumulative emissions of firm i in BAU
{ξi

t )}0≤t≤T abatement rate of firm i
Assumptions on emission rates bi

t and volatilities σi
t to be

articulated later
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Individual Firm Optimization Problems

Abatement costs for firm i given by cost function c i
t : R→ R

c i is C1 and strictly convex
c i satisfies Inada-like conditions for each t ∈ [0,T ]

(c i )′(−∞) = −∞ and (c i )′(+∞) = +∞.

c i (0) = min c i
t (ξi ≡ 0 corresponds to BAU)

Typical example for c i

λ|x |1+α,

for some λ > 0 and α > 0.
Each firm chooses its abatement strategy ξi and its investment θi in
allowances. Its wealth is given by

X i
t = X i,ξ,θ

t = x i +

∫ T

0
θi

tdAt −
∫ T

0
c i (ξi

t )dt − E i
T AT .
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Solving the Individual Firm Optimization Problems
Preferences of firm i given by a C1, increasing, strictly concave utility
function U i : R→ R satisfying Inada conditions:

(U i )′(−∞) = +∞ and (U i )′(+∞) = 0.

The optimization problem for firm i is:

V (x i ) := sup
(ξi ,θi )∈Ai

EP{U i (X i,ξiθi

T )}

If no non-standard restriction on Ai set of admissible strategies for
firm i

Proposition

If an equilibrium allowance price {At}0≤t≤T exists, then the optimal
abatement strategy ξ̂i is given by

ξ̂i
t = [(c i )′]−1(At ).

NB: The optimal abatement strategy ξ̂i is independent of the utility
function U i !
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Finding the Equilibrium Allowance Price

Recall

dE i
t =

[
b̃i

t − [(c i )′]−1(At )
]

dt + σi
tdBt , E i

0 = 0, for each i

Assume
∀i , b̃i

t = b̃i (t)E i
t or ∀i , b̃i

t = b̃i (t)
∀i , σi

t = σi (t).

Set
b :=

∑
i∈I

b̃i , σ :=
∑
i∈I

σi , and f :=
∑
i∈I

[(c i )′]−1.

Therefore we have the following FBSDE

dEt = {b(t ,Et )− ft (At )}dt + σ(t)dBt , E0 = 0 (1)
dAt = ZtdBt , AT = λ1[Λ,+∞)(ET ), (2)

with b(t ,Et ) = b(t)Eβ
t with β ∈ {0,1} and f increasing.
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Theoretical Existence and Uniqueness

Theorem

If σ(t) ≥ σ > 0 then for any λ > 0 and Λ ∈ R, FBSDE (1)-(2) admits a
unique solution (E ,A,Z ) ∈ M2. Moreover, At is nondecreasing w.r.t λ
and nonincreasing w.r.t Λ.

Proof
Approximate the singular terminal condition λ1[Λ,+∞)(ET ) by
increasing and decreasing sequences {ϕn(ET )}n and {ψn(ET )}n
of smooth monotone functions of ET

Use
comparison results for BSDEs
the fact that ET has a density (implying P{ET = Λ} = 0)

to control the limits
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PDE Characterization
Assume GBM for BAU emissions (Chesney-Taschini,
Seifert-Uhrig-Homburg-Wagner, Grüll-Kiesel) i.e. b(t , e) = be and
σ(t , e) = σe (

Et = E0 +
R t

0 (bEs − f (Ys))ds +
R t

0 σEsdW̃s

At = λ 1[Λ,∞)(ET )−
R T

t ZtdW̃t .
(3)

Allowance price At constructed as At = v(t ,Et ) for a function v which MUST
solve (

∂tv(t , e) + (be − f (v(t , e)))∂ev(t , e) + 1
2σ

2e2∂2
eev(t , e) = 0,

v(T , .) = 1[Λ,∞)

(4)

The price at time t of a call option with maturity τ and strike K on an
allowance forward contract maturing at time T > τ is given by

V (t ,Et ) = Et{(Yτ − K )+} = Et{(v(τ,Eτ )− K )+}.

V solves:(
∂tV (t , e) + (be − f (v(t , e)))∂eV (t , e) + 1

2σ
2e2∂2

eeV (t , e) = 0,
V (τ, .) = (v(τ, .)− K )+

(5)
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Black-Scholes Case: f ≡ 0.

v0(t ,e) = λP
[
E0

T ≥ Λ|E0
t = e

]
= λΦ

(
ln(e/Λe−b(T−t))

σ
√

T − t
− σ
√

T − t
2

)
V 0(t ,e) = E

[
(v0(τ,E0

τ )− K )+|E0
t = e

]
,

where E0 is the geometric Brownian motion:

dE0
t = E0

t [bdt + σdW̃t ].

used as proxy estimation of the cumulative emissions in business as
usual.
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Small Abatement Asymptotics

R.C. - Delarue - Espinosa - Touzi For ε ≥ 0 small, let vε and V ε be the
prices of the allowances and the option for f = εf0. We denote by .

vε(T , .) = λ1[Λ,∞) and −∂t vε − (be − εf0(vε))∂evε −
1
2
σ2e2∂2

eevε = 0,

V ε(T , .) = (vε(T , .)− K )+ and −∂t V ε − (be − εf0(vε))∂eV ε −
1
2
σ2e2∂2

eeV ε = 0,

Proposition

As ε→ 0, we have

V ε(t , s) = V 0(t , s)

+ε Et,e

[
1[Λ,∞)(v0)(τ,E0

τ )

∫ T

t
f0(v0)(s,E0

s )∂ev0(s ∨ τ,E0
s∨τ )

E0
s∨τ
E0

s
ds

]
+ ◦ (ε),
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Option Prices
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A Slightly Different Model
Single good (e.g. electricity) regulated economy, with price
dynamics given exogenously!

dPt

Pt
= µ(t ,Pt )dt + σ(t ,Pt )dWt

Firm i
Controls its instataneous rate of production q i

t
Production over [0, t ]

Q i
t :=

∫ t

0
q i

t dt .

Costs of production given by c i
t : R+ 7→ R C1 strictly convex

satisfying Inada-like conditions

(c i
t )
′(0) = 0, (c i

t )
′(+∞) = +∞

Cumulative emissions E i
t := eiQ i

t
P&L (wealth)

X i
t = X i,q i ,θi

t = x i +

∫ T

0
θi

tdAt −
∫ T

0
[Ptq i

t − c i
t (q

i
t )]dt − eiQ i

T AT .
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Individual Firm Optimization Problem

Proposition

If such an equilibrium exits, the optimal production strategy q̂ i is given
by:

q̂ i
t = [(c i )′]−1(Pt − eiAt ).

NB: As before the optimal production schedule q̂ i DOES NOT
DEPEND upon the utility function!
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Existence of Allowance Equilibrium Prices

Set Et :=
∑
i∈I

E i
t for the total aggregate emissions up to time t

Define f (p, y) :=
∑

i∈I ε
i [(c i )′]−1(p − εiy)

Then the corresponding FBSDE under Q reads
dPt = σ(t ,Pt )dBt , P0 = p
dEt = f (Pt ,At )dt , E0 = 0
dAt = ZtdBt , AT = λ1[Λ,+∞)(ET ).

NB: The volatility of the forward equation is degenerate!

Still, Natural Conjecture: For λ > 0 and Λ ∈ R, the above FBSDE
has a unique solution (P,E ,A,Z ).
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An Enlightening Example (R.C. - Delarue)


dPt = dWt , P0 = p
dEt =

(
Pt − At

)
dt , E0 = e

dAt = ZtdWt , 0 ≤ t ≤ T , AT = 1[Λ,∞)(ET )

(6)

Theorem
There exists a unique progressively measurable triple
(Pt ,Et ,At )0≤t≤T satisfying (6) and

1(Λ,∞)(ET ) ≤ AT ≤ 1[Λ,∞)(ET ).

The marginal distribution of Et

is absolutely continuous for 0 ≤ t < T
has a Dirac mass at Λ when t = T , P{ET = Λ} > 0.

The terminal condition AT = 1[Λ,∞)(ET ) may not be satisfied!
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Comments on the Existence of a Point Mass fot ET

Ruled out (by assumption) in early equilibrium model studies

Assumption

the FT−1-conditional distribution of
∑

i∈I ∆i possesses almost surely
no point mass, or equivalently, for all FT−1-measurable random
variables Z

P

{∑
i∈I

∆i = Z

}
= 0 (7)

Thought to be innocent !
We should have known better!

Numerical Evidence from Case Studies Shows High Emission
Concentration below Λ
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Numerical Illustration: Japan Case Study

Japanese Electricity Market:
TOKYO recently unveiled a Carbon Scheme
Eastern & Western Regions (1GW Interconnection)
Electricity Production: Nuclear, Coal, Natural Gas, Oil

Coal is expensive
Visible Impact of Regulation (fuel switch)

Regulation Gory Details
Cap (Emission Target) 300 Mega-ton CO2 = 20% w.r.t. 2012 BAU
Calibration for Fair Comparisons: Meet Cap 95% of time

Penalty 100 USD
Tax Level 40 USD

Numerical Solution of a Stochastic Control Problem (HJB) in 4-D
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Yearly Emissions Equilibrium Distributions
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Yearly emissions from electricity production for the Standard Scheme, the
Relative Scheme, a Tax Scheme and BAU.
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Lectures based on

1 R.C., M. Fehr and J. Hinz: Mathematical Equilibrium and Market
Design for Emissions Markets Trading Schemes. SIAM J. Control
and Optimization (2009)

2 R.C., M. Fehr, J. Hinz and A. Porchet: Mathematical Equilibrium
and Market Design for Emissions Markets Trading Schemes.
SIAM Review (2010)

3 R.C., and J. Hinz: Risk-Neutral Modeling of Emission Allowance
Prices and Option Valuation (working paper)

4 R.C., F. Delarue, G.E. Espinosa and N. Touzi: Singular BSDEs
and Emission Derivative Valuation (working paper)
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