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Intro: Risk management of a gas power plant

Companies operating a gas power plant have an immanent

I short forward position of natural gas (NG),

I long forward position of power.

To reduce price risk they

I buy natural gas on forward markets,

I sell power on forward markets.

Suppose that a German energy company wants to buy today the NG it
needs in 2015.

Problem: German gas forward market is illiquid.
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Germany Netherlands

Ask

Ask

1 e/MWh 0.1 e/MWh

Bid

Bid

• Bid-ask-spread ↓ as time to delivery approaches
• Dutch and German gas prices are highly correlated
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2 Ways of Hedging

I Hedge 1:

Buy natural gas in G

I Hedge 2:

Buy natural gas in NL.
Shortly before delivery: sell in NL and buy in G.

Pros & Cons:

Hedge 1 Hedge 2
Pro No risk Low liqu. costs
Con High liqu. costs Basis risk
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Optimal trade-off via stochastic control

Trade-off: High liquidity costs versus basis risk

Question: What is the optimal position in German and Dutch NG at any
time before 2015?

Aim: Explicit formulas for stylized models
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The model

I initial short position : x0 < 0

I Xt = primary asset position (e.g. German NG)

I Yt = proxy position (e.g. Dutch NG)
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Model cont’d: execution costs

• Kt = bid-ask-spread of primary asset at time t

• L = bid-ask-spread of proxy

Expected execution costs

Costs(X ,Y ) = E

[∫
[0,T ]

Ks

2
|dXs |+

∫
[0,T ]

L

2
|dYs |

]
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Target function and minimum variance hedge

Control problem with constraints:

Costs(X ,Y ) + λ Risk(X ,Y ) −→ min!

How to solve that?

Analytic solution approach
The value function V (t, x , y) satisfies the variational equality

min {−Vx(t, x , y)− Kt ,−Vy (t, x , y)− L,−Vt(t, x , y)− g(f (x , y)} = 0.

Probabilistic solution approach
Connection between singular control and optimal stopping
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Minimum variance hedge

Lemma
Let X be a given primary position path and assume that L = 0. Then the
optimal cross hedge is given by

Y ∗
t = −hXt

h = ρσ1

σ2
= minimum variance hedge ratio
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Optimal position paths are (piecewise) monotone
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Our method for getting explicit solutions

Assumption A: The optimal cross hedge Y (X ) associated to any X is
non-increasing after 0, i.e. of the form

Y (X )t = y ∧ −hXt .

Iterative Method:

1. For a given y ≥ 0 determine the optimal primary position X = X (y).
To this end reformulate the problem as a family of stopping
problems.

2. Determine optimal initial cross hedge position y∗.

3. The optimal positions are given by

X ∗
t = Xt(y

∗) and Y ∗
t = y∗ ∧ −hX ∗

t .
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Examples

Explicit solutions for the following examples:

I Liquidity does not improve soon

I Liquidity does improve soon

I Liquidity kicks in at a random time
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Example 1: Concave deterministic costs

I ”Liquidity does not improve soon” (Mathematically: liquidity costs
are deterministic, decreasing and concave)
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Example cont’d: Optimal strategies are static

Proposition
Suppose that K is decreasing and concave on [0,T ]. Then the optimal
position strategy is of the form

X ∗
t = x∗1[0,T )(t) and Y ∗

t = y∗1[0,T )(t),

with x∗ ≤ 0 and y∗ ≥ 0.
The optimal positions x∗ and y∗ can be calculated explicitly (tedious!).
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Example cont’d: Decision tree

L < L̄

∆K ≥ λσ1T

keep primary open

do not cross hedge

yes

close primary

do not cross hedge
nono

keep primary open

cross hedge with A forwards
ye

s

I L̄ = σ2
2σ1

(
∆Kρ−

√
(1− ρ2)(λ2σ2

1T
2 −∆K2)+

)
I A = −σ1

σ2
max

(
0, ρ− 2L

√
1−ρ2√

(λ2σ2
2T

2−4L2)+

)
x0
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Example 2: Active trading kicks in at a random time

I K jumps at a random time τ̃ from a high level K+ to a low level K−.

I τ̃ is the first jump time of an inhomogeneous Poisson process with
non-decreasing jump intensity.

→ Close positions at time τ̃ : Xs = Ys = 0 for all s ≥ τ̃ .
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Example 2 cont’d: Optimal strategies are static

Proposition
Suppose that K jumps from K+ to K− at time τ̃ . Then the optimal
position strategy is of the form

X ∗
t = x∗1[0,τ̃)(t) and Y ∗

t = y∗1[0,τ̃)(t),

with x∗ ≤ 0 and y∗ ≥ 0.
The optimal positions x∗ and y∗ can be calculated explicitly.
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Conclusion

I There is a trade-off between liquidity costs and basis risk when
hedging on forward markets.

I We present an iterative, probabilistic method for deriving optimal
hedging positions.

I We have explicit decision trees for stylized examples

I If liquidity does not improve soon, then it is optimal to trade only at
0 or T .

I If liquidity does improve soon, then it is optimal to close the position
when the marginal cost saving = marginal add. risk.
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Thank you!
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