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Intro: Risk management of a gas power plant

Companies operating a gas power plant have an immanent
» short forward position of natural gas (NG),

» long forward position of power.

To reduce price risk they
» buy natural gas on forward markets,

» sell power on forward markets.

Suppose that a German energy company wants to buy today the NG it
needs in 2015.

Problem: German gas forward market is illiquid.
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Germany Netherlands

1€/MWh 0.1 €/ MWh

Ask

Bid

e Bid-ask-spread | as time to delivery approaches
e Dutch and German gas prices are highly correlated
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2 Ways of Hedging

> Hedge 1:
Buy natural gas in G

> Hedge 2:

Buy natural gas in NL.
Shortly before delivery: sell in NL and buy in G.

Pros & Cons:

Hedge 1 Hedge 2
Pro No risk Low liqu. costs
Con | High liqu. costs Basis risk
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Optimal trade-off via stochastic control

Trade-off: High liquidity costs versus basis risk

Question: What is the optimal position in German and Dutch NG at any
time before 20157

Aim: Explicit formulas for stylized models
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model

> initial short position : xp < 0
» X; = primary asset position (e.g. German NG)
> Y; = proxy position (e.g. Dutch NG)
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—Y
0
0
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Model cont'd: execution costs

e K; = bid-ask-spread of primary asset at time t
e [ = bid-ask-spread of proxy
Expected execution costs

K, L
Costs(X,Y) = E / —\dXs|+/ Z|avs|
[0,7] 2 [0,7] 2
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Target function and minimum variance hedge

Control problem with constraints:

Costs(X, Y) + A Risk(X, Y) — min!

How to solve that?

Analytic solution approach
The value function V/(t, x, y) satisfies the variational equality

min{*vx(nxv.y) - Kt,*\/y(t,X,y) - L,*Vt(ﬁX,y) 7g(f(X7y)} = 0

Probabilistic solution approach
Connection between singular control and optimal stopping
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Minimum variance hedge

Lemma
Let X be a given primary position path and assume that L = 0. Then the

optimal cross hedge is given by

Y = —hX,

h = pZt = minimum variance hedge ratio
02
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Optimal position paths are (piecewise) monotone

- -h*X
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Our method for getting explicit solutions

Assumption A: The optimal cross hedge Y(X) associated to any X is
non-increasing after 0, i.e. of the form

Iterative Method:

1. For a given y > 0 determine the optimal primary position X = X(y).
To this end reformulate the problem as a family of stopping
problems.

2. Determine optimal initial cross hedge position y*.

3. The optimal positions are given by

X =Xe(y") and Y7 =y" A —hX].
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Explicit solutions for the following examples:

» Liquidity does not improve soon
» Liquidity does improve soon

» Liquidity kicks in at a random time
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Example 1: Concave deterministic costs

» "Liquidity does not improve soon” (Mathematically: liquidity costs
are deterministic, decreasing and concave)

liguidation costs

time
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Example cont’'d: Optimal strategies are static

Proposition

Suppose that K is decreasing and concave on [0, T]. Then the optimal
position strategy is of the form

X = x"1pp,1)(t) and Y7 = y* 1o, 1)(t),

with x* <0 and y* > 0.
The optimal positions x* and y* can be calculated explicitly (tedious!).
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Example con Decision tree

keep primary open

5 cross hedge with A forwards
£
- close primary
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do not cross hedge
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Example 2: Active trading kicks in at a random time

» K jumps at a random time 7 from a high level K, to a low level K_.

> 7 is the first jump time of an inhomogeneous Poisson process with
non-decreasing jump intensity.

— Close positions at time 7: X; = Ys; =0 for all s > 7.

liquidation costs

time
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Example 2 cont'd: Optimal strategies are static

Proposition
Suppose that K jumps from K, to K_ at time 7. Then the optimal
position strategy is of the form

X; =x"1pz(t) and Y = y1p(t),

with x* <0 and y* > 0.
The optimal positions x* and y* can be calculated explicitly.
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Conclusion

» There is a trade-off between liquidity costs and basis risk when
hedging on forward markets.

» We present an iterative, probabilistic method for deriving optimal
hedging positions.

» We have explicit decision trees for stylized examples

» If liquidity does not improve soon, then it is optimal to trade only at
Oor T.

» If liquidity does improve soon, then it is optimal to close the position
when the marginal cost saving = marginal add. risk.
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Thank you!
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