On Forward Modelling In Electricity Markets:
An Infinite Dimensional Stochastic Analysis Perspective

Essen, 2013/10/10

Paul Krihner, Universitetet i Oslo

This talk is based on joint work with Prof. Dr. F. E. Benth.
| am gratefull for support from the MAWREM project.



Contents

@ Modelling futures in electricity markets

© Spot and futures dynamics when the noise term is Gaussian or normal

inverse Gaussian

© Representing the futures by a sum of OU-type processes



Contents

@ Modelling futures in electricity markets



The market

1/11



The market

e Underlying: Spot price S(t), t € R of the electricity.

1/11



The market

e Underlying: Spot price S(t), t € R of the electricity.

e Derivatives: Futures F(t, T1, T) with delivery period [T1, T3],
t € [0, To) with F(T2, T1, T2) = ﬁ T? S(r)dr. Futures are more
traded than the underlying itself.

1/11



The market

e Underlying: Spot price S(t), t € R of the electricity.

e Derivatives: Futures F(t, T1, T) with delivery period [T1, T3],
t € [0, To) with F(T2, T1, T2) = ﬁ T-’;Q S(r)dr. Futures are more
traded than the underlying itself.

@ Instataneous future rates in Musiela parametrisation

f(t,x) = E(S(t+ x)|Fe) = Kno F(t,t+x,t+x+h), t,xeRy

where the expectation is to be taken under the pricing measure.
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The Heath-Jarrow-Morton (HJM) setup

We follow the HJM approach and model the instantaneous future rates in
Musiela parametrisation rates in a function space.
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The Heath-Jarrow-Morton (HJM) setup

We follow the HJM approach and model the instantaneous future rates in
Musiela parametrisation rates in a function space.
We use the Hilbert space

H(y = {f . R+ — C: f/ea/2 € Lz([0,00))}

endowed with the scalar product

(f,8)a = f(0)g(0) + 3~ F'(¥)g'(v)ea(y)dy where eq(x) = exp(ax) and
a > 0.

We consider the general dynamics under the pricing measure

df (t) = Oxf(t)dt + W(t)dL(t)

where L is some square integrable mean zero Lévy process and V € E%.
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Some properties of the space H,

@ H, is a Hilbert space and its elements are bounded and uniformly
continuous.

e Point evaluations Jy : H, — C, f — f(x) are continuous.

@ H, is a Banach algebra relative to the pointwise multiplication, i.e. the
pointwise multiplication is bilinear and continuous.

@ Hilbert-Schmidt operators on H, can be classified completely. They
are a sum of a one-dimensional operator and an integral operator.

@ The space-derivative Jy is the generator of the shifting semigroup
(Ut)e>o0, i.e. Uig(x) =g(x+1t), t,x >0, g € Hy. (Ut)t>0 is a quasi
contractive strongly continuous semigroup.
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Mild solutions to SPDEs

Assume that W(t) = I'(t,f(t)) for some Lipschitz-continuous function
MRy x Hy — L(Hw)

and fy € H,. Then there is a cadlag process f with values in H,, such that
ot
f(t) = Uifo —I—/ Ui—sT(s, f(s))dL(s)
0
where (U;)¢>0 is the shifting semigroup. For each g € 0} we also have

't

(g,f(t)) = (&, fo) + /Ot((?;“& f(s))ds +/0 (g, (s, f(s))dL(s)) t=0.

Note: The Lipschitz conditions on [ can be weakend substantially! Cf.
[Tappe, 12]

4/11



Two examples of possible dynamics

5/ 11



Two examples of possible dynamics
Assume that df (t) = O.f(t)dt + dL(t).

5/ 11



Two examples of possible dynamics
Assume that df (t) = Oif(t)dt + dL(t). Then

5= 60+ [ el -~ )aa(s)

for some Lévy processes L, and some g, € H,.

5/ 11



Two examples of possible dynamics
Assume that df (t) = Oxf(t)dt + dL(t). Then

5= 60+ [ el -~ )aa(s)

for some Lévy processes L, and some g, € H,. Moreover,
(F(t, T1, T2) — F(0, T1, T2))tefo,7,] is @ time-inhomogenous Lévy process.

5/ 11



Two examples of possible dynamics
Assume that df (t) = Oxf(t)dt + dL(t). Then

5= 60+ [ el -~ )aa(s)

for some Lévy processes L, and some g, € H,. Moreover,
(F(t, T1, T2) — F(0, T1, T2))tefo,7,] is @ time-inhomogenous Lévy process.

Assume that df (t) = O, f(t)dt + f(t)dL(t).

5/ 11



Two examples of possible dynamics
Assume that df (t) = Oxf(t)dt + dL(t). Then

0= 60+ [ et~ )aa(s)

for some Lévy processes L, and some g, € H,. Moreover,
(F(t, T1, T2) — F(0, T1, T2))tefo,7,] is @ time-inhomogenous Lévy process.

Assume that df (t) = O, f(t)dt + f(t)dL(t). Then

£) = folt +Z/ $)gn(t — s)dLa(s)

for some Lévy processes L, and some g, € H,,.

5/ 11



Two examples of possible dynamics
Assume that df (t) = Oxf(t)dt + dL(t). Then

0= 60+ [ et~ )aa(s)

for some Lévy processes L, and some g, € H,. Moreover,
(F(t, T1, T2) — F(0, T1, T2))tefo,7,] is @ time-inhomogenous Lévy process.

Assume that df (t) = O, f(t)dt + f(t)dL(t). Then

£) = folt +Z/ $)gn(t — s)dLa(s)

for some Lévy processes L, and some g, € H,. Moreover,
F(t, Ty, T2) = 1T1 TT12 E(N,)(t)dy where N, is a time-inhomogenous
Lévy process and E(Ny) denotes its stochastic exponential.
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Theorem

Let £(t) = Utfy + [5 Ur_sW(s)dW(s) where fo € Hy, W is a (possibly with
values in a separable infinite dimensional Hilbert space) Brownian motion with
covariance Q and WV € £3,(H,) a suitable operater valued integrand.
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Theorem

Let £(t) = Utfy + [5 Ur_sW(s)dW(s) where fo € Hy, W is a (possibly with
values in a separable infinite dimensional Hilbert space) Brownian motion with
covariance Q and V € L£3,(H,,) a suitable operater valued integrand. Then
the spot is a Volterra-process, i.e.

where B is a standard Brownian motion,
k2(t, s) == (V(s)QW*(s)hi—s)(t — s)

and h, € H,, is given by h,(x) = 1(1 — e~ ON)) 1.
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Hilbert space valued normal inverse Gaussian process (HNIG)

Definition
Let U be a Hilbert space and L be a U-valued Lévy process. L is an HNIG
process if (u,L(1)) is normal inverse Gaussian distributed for any v € U.

Remark: HNIG processes can be characterised completely.
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Theorem
Let f(t) = Uiy + fot Ui—sV(s)dL(s) where fy € H,, L is an HNIG process

with covariance @ and W € L3(H,,) a suitable operater valued integrand.
Then the spot is a Lévy driven Volterra-process, i.e.

t
() = () + | K(t:5)aN(s)
0
where N is a normal inverse Gaussian process,

K2(t,5) = BW(s)QU" (s)he—s)(t — 5)

for some 3 > 0 and h; € H,, is given by hy(x) = 1(1 — ey 41,
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Dynamics of 2 Futures

Corollary

Let f(t) = Uiy + jot Ui—sV(s)dW(s) where fy € H,, W is a (possibly with
values in an separable infinite dimensional Hilbert space) Brownian motion with
covariance Q and V € L3, (H,) a suitable operater valued integrand. Let
0<t<Ty<TyandX(t):=(F(t, T1), F(t, T2)). Then we have

t
X(t) = (fo(T1), fo(T2)) +/ m(s)dB(s)
0
for some 2-dimensional standard Brownian motion B and

(m(s)2)/j - <yia UTI—S\U(S)QIU(S)*U";'I,S}/J'% Ia_/ — 1’2

for some known functions y1, y».
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Let xo > 0. Then there is a closed subspace H° of H, such that the
following statements hold.
@ There is a continuous projection [y, : H, — H° such that
My,g(x) = g(x) for any g € Ha, x € [0, x0].
@ H° is invariant under the shift semigroup (U;):>o.
© H° has a Riesz basis (g,)n>0 such that go(x) =1, x € Ry and
gn(x) = \F(l —e M), x € Ry, n>1 for a sequence (\p)n>1 in C.
Q If(gn)n>0 is as in (3), (g)n>0 the corresponding biorthogonal system,
then Uigt = e Mtgi, n>1,t >0 and gf = go-
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Theorem

Assume that the futures price process (f(t)):>o has values in H,? for some
xo > 0.
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OU-type representation

Theorem

Assume that the futures price process (f(t)):>o has values in H° for some

xo > 0. Then there is a sequence (M,),cxn of complex valued square
integrable martingales such that

F(t) = goS(t +Zgn/e5”nd/w(), teR,.

where the sum converges almost surely in H,, and (gn)n>0 is the Riesz basis
provided in the theorem before.

The complex valued martingales are given by

mo(e) = [ g V(s)dL(s)), 20
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Thank you for your attention!



