
On Forward Modelling In Electricity Markets:
An Infinite Dimensional Stochastic Analysis Perspective

Essen, 2013/10/10

Paul Krühner, Universitetet i Oslo

This talk is based on joint work with Prof. Dr. F. E. Benth.

I am gratefull for support from the MAWREM project.



Contents

1 Modelling futures in electricity markets

2 Spot and futures dynamics when the noise term is Gaussian or normal
inverse Gaussian

3 Representing the futures by a sum of OU-type processes



Contents

1 Modelling futures in electricity markets

2 Spot and futures dynamics when the noise term is Gaussian or normal
inverse Gaussian

3 Representing the futures by a sum of OU-type processes



The market

Underlying: Spot price S(t), t ∈ R+ of the electricity.

Derivatives: Futures F (t,T1,T2) with delivery period [T1,T2],

t ∈ [0,T2] with F (T2,T1,T2) = 1
T2−T1

∫ T2

T1
S(r)dr . Futures are more

traded than the underlying itself.

Instataneous future rates in Musiela parametrisation

f (t, x) := E (S(t + x)|Ft) = lim
h↘0

F (t, t + x , t + x + h), t, x ∈ R+

where the expectation is to be taken under the pricing measure.
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The Heath-Jarrow-Morton (HJM) setup

We follow the HJM approach and model the instantaneous future rates in
Musiela parametrisation rates in a function space.

We use the Hilbert space

Hα := {f : R+ → C : f ′eα/2 ∈ L2([0,∞))}

endowed with the scalar product
〈f , g〉α := f (0)g(0) +

∫∞
0 f ′(y)g ′(y)eα(y)dy where eα(x) = exp(αx) and

α > 0.
We consider the general dynamics under the pricing measure

df (t) = ∂x f (t)dt + Ψ(t)dL(t)

where L is some square integrable mean zero Lévy process and Ψ ∈ L2L.
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Some properties of the space Hα

Hα is a Hilbert space and its elements are bounded and uniformly
continuous.

Point evaluations δx : Hα → C, f 7→ f (x) are continuous.

Hα is a Banach algebra relative to the pointwise multiplication, i.e. the
pointwise multiplication is bilinear and continuous.

Hilbert-Schmidt operators on Hα can be classified completely. They
are a sum of a one-dimensional operator and an integral operator.

The space-derivative ∂x is the generator of the shifting semigroup
(Ut)t≥0, i.e. Utg(x) = g(x + t), t, x ≥ 0, g ∈ Hα. (Ut)t≥0 is a quasi
contractive strongly continuous semigroup.
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Mild solutions to SPDEs

Assume that Ψ(t) = Γ(t, f (t)) for some Lipschitz-continuous function

Γ : R+ × Hw → L(Hw )

and f0 ∈ Hα. Then there is a càdlàg process f with values in Hα such that

f (t) = Ut f0 +

∫ t

0
Ut−sΓ(s, f (s))dL(s)

where (Ut)t≥0 is the shifting semigroup. For each g ∈ ∂∗x we also have

〈g , f (t)〉 = 〈g , f0〉+

∫ t

0
〈∂∗xg , f (s)〉ds +

∫ t

0
〈g , Γ(s, f (s))dL(s)〉 t ≥ 0.

Note: The Lipschitz conditions on Γ can be weakend substantially! Cf.
[Tappe, 12]
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Two examples of possible dynamics

Assume that df (t) = ∂x f (t)dt + dL(t). Then

S(t) = f0(t) +
∑
n

∫ t

0
gn(t − s)dLn(s)

for some Lévy processes Ln and some gn ∈ Hα. Moreover,
(F (t,T1,T2)− F (0,T1,T2))t∈[0,T1] is a time-inhomogenous Lévy process.

Assume that df (t) = ∂x f (t)dt + f (t)dL(t). Then

S(t) = f0(t) +
∑
n

∫ t

0
f (s, t − s)gn(t − s)dLn(s)

for some Lévy processes Ln and some gn ∈ Hα. Moreover,
F (t,T1,T2) = 1

T2−T1

∫ T2

T1
E(Ny )(t)dy where Nx is a time-inhomogenous

Lévy process and E(Nx) denotes its stochastic exponential.
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for some Lévy processes Ln and some gn ∈ Hα. Moreover,
(F (t,T1,T2)− F (0,T1,T2))t∈[0,T1] is a time-inhomogenous Lévy process.
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Theorem

Let f (t) = Ut f0 +
∫ t
0 Ut−sΨ(s)dW (s) where f0 ∈ Hα, W is a (possibly with

values in a separable infinite dimensional Hilbert space) Brownian motion with
covariance Q and Ψ ∈ L2W (Hα) a suitable operater valued integrand.

Then
the spot is a Volterra-process, i.e.

S(t) = f0(t) +

∫ t

0
k(t, s)dB(s)

where B is a standard Brownian motion,

k2(t, s) := (Ψ(s)QΨ∗(s)ht−s)(t − s)

and ht ∈ Hw is given by hy (x) = 1
α(1− e−α(x∧y)) + 1.
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Hilbert space valued normal inverse Gaussian process (HNIG)

Definition

Let U be a Hilbert space and L be a U-valued Lévy process. L is an HNIG
process if 〈u, L(1)〉 is normal inverse Gaussian distributed for any u ∈ U.

Remark: HNIG processes can be characterised completely.
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Theorem

Let f (t) = Ut f0 +
∫ t
0 Ut−sΨ(s)dL(s) where f0 ∈ Hα, L is an HNIG process

with covariance Q and Ψ ∈ L2L(Hα) a suitable operater valued integrand.

Then the spot is a Lévy driven Volterra-process, i.e.

S(t) = f0(t) +

∫ t

0
k(t, s)dN(s)

where N is a normal inverse Gaussian process,

k2(t, s) := β(Ψ(s)QΨ∗(s)ht−s)(t − s)

for some β ≥ 0 and ht ∈ Hw is given by hy (x) = 1
α(1− e−α(x∧y)) + 1.
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Dynamics of 2 Futures

Corollary

Let f (t) = Ut f0 +
∫ t
0 Ut−sΨ(s)dW (s) where f0 ∈ Hα, W is a (possibly with

values in an separable infinite dimensional Hilbert space) Brownian motion with
covariance Q and Ψ ∈ L2W (Hα) a suitable operater valued integrand. Let
0 ≤ t ≤ T1 ≤ T2 and X (t) := (F (t,T1),F (t,T2)). Then we have

X (t) = (f0(T1), f0(T2)) +

∫ t

0
m(s)dB(s)

for some 2-dimensional standard Brownian motion B and

(m(s)2)ij = 〈yi ,UT1−sΨ(s)QΨ(s)∗U∗T1−syj〉, i , j = 1, 2

for some known functions y1, y2.
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A nice subspace of Hα

Lemma

Let x0 > 0. Then there is a closed subspace Hx0
α of Hα such that the

following statements hold.

1 There is a continuous projection Πx0 : Hα → Hx0
α such that

Πx0g(x) = g(x) for any g ∈ Hα, x ∈ [0, x0].

2 Hx0
α is invariant under the shift semigroup (Ut)t≥0.

3 Hx0
α has a Riesz basis (gn)n≥0 such that g0(x) = 1, x ∈ R+ and

gn(x) = 1
λn
√
x0

(1− e−λnx), x ∈ R+, n ≥ 1 for a sequence (λn)n≥1 in C.

4 If (gn)n≥0 is as in (3), (g∗n )n≥0 the corresponding biorthogonal system,
then U∗t g∗n = e−λntg∗n , n ≥ 1, t ≥ 0 and g∗0 = g0.
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α of Hα such that the

following statements hold.
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Πx0g(x) = g(x) for any g ∈ Hα, x ∈ [0, x0].
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OU-type representation

Theorem

Assume that the futures price process (f (t))t≥0 has values in Hx0
w for some

x0 > 0.

Then there is a sequence (Mn)n∈N of complex valued square
integrable martingales such that

f (t) = g0S(t) +
∞∑
n=1

gn

∫ t

0
e(s−t)λndMn(s), t ∈ R+.

where the sum converges almost surely in Hα and (gn)n≥0 is the Riesz basis
provided in the theorem before.
The complex valued martingales are given by

Mn(t) =

∫ t

0
〈g∗n ,Ψ(s)dL(s)〉, t ≥ 0.
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