On Forward Modelling In Electricity Markets: An Infinite Dimensional Stochastic Analysis Perspective

Essen, 2013/10/10

Paul Krühner, Universitetet i Oslo

This talk is based on joint work with Prof. Dr. F. E. Benth. I am gratefull for support from the MAWREM project.

Contents

1 Modelling futures in electricity markets

Spot and futures dynamics when the noise term is Gaussian or normal inverse Gaussian

Contents

1 Modelling futures in electricity markets

2 Spot and futures dynamics when the noise term is Gaussian or normal inverse Gaussian

3 Representing the futures by a sum of OU-type processes

• Underlying: Spot price S(t), $t \in \mathbb{R}_+$ of the electricity.

- Underlying: Spot price S(t), $t \in \mathbb{R}_+$ of the electricity.
- Derivatives: Futures $F(t, T_1, T_2)$ with delivery period $[T_1, T_2]$, $t \in [0, T_2]$ with $F(T_2, T_1, T_2) = \frac{1}{T_2 T_1} \int_{T_1}^{T_2} S(r) dr$. Futures are more traded than the underlying itself.

- Underlying: Spot price S(t), $t \in \mathbb{R}_+$ of the electricity.
- Derivatives: Futures $F(t, T_1, T_2)$ with delivery period $[T_1, T_2]$, $t \in [0, T_2]$ with $F(T_2, T_1, T_2) = \frac{1}{T_2 T_1} \int_{T_1}^{T_2} S(r) dr$. Futures are more traded than the underlying itself.
- Instataneous future rates in Musiela parametrisation

$$f(t,x) := E(S(t+x)|\mathcal{F}_t) = \lim_{h \searrow 0} F(t,t+x,t+x+h), \quad t,x \in \mathbb{R}_+$$

where the expectation is to be taken under the pricing measure.

The Heath-Jarrow-Morton (HJM) setup

We follow the HJM approach and model the instantaneous future rates in Musiela parametrisation rates in a function space.

The Heath-Jarrow-Morton (HJM) setup

We follow the HJM approach and model the instantaneous future rates in Musiela parametrisation rates in a function space. We use the Hilbert space

$$H_{\alpha} := \{ f : \mathbb{R}_+ \to \mathbb{C} : f' e_{\alpha/2} \in L^2([0,\infty)) \}$$

endowed with the scalar product

 $\langle f,g \rangle_{\alpha} := f(0)g(0) + \int_0^{\infty} f'(y)g'(y)e_{\alpha}(y)dy$ where $e_{\alpha}(x) = \exp(\alpha x)$ and $\alpha > 0$.

We consider the general dynamics under the pricing measure

$$df(t) = \partial_{x}f(t)dt + \Psi(t)dL(t)$$

where L is some square integrable mean zero Lévy process and $\Psi \in \mathcal{L}^2_L$.

Some properties of the space H_{α}

Some properties of the space H_{α}

• H_{α} is a Hilbert space and its elements are bounded and uniformly continuous.

Some properties of the space H_{α}

- H_{α} is a Hilbert space and its elements are bounded and uniformly continuous.
- Point evaluations $\delta_x : H_\alpha \to \mathbb{C}, f \mapsto f(x)$ are continuous.

Some properties of the space H_{lpha}

- H_{α} is a Hilbert space and its elements are bounded and uniformly continuous.
- Point evaluations $\delta_x : H_\alpha \to \mathbb{C}, f \mapsto f(x)$ are continuous.
- H_{α} is a Banach algebra relative to the pointwise multiplication, i.e. the pointwise multiplication is bilinear and continuous.

Some properties of the space H_{lpha}

- H_{α} is a Hilbert space and its elements are bounded and uniformly continuous.
- Point evaluations $\delta_x : H_\alpha \to \mathbb{C}, f \mapsto f(x)$ are continuous.
- H_{α} is a Banach algebra relative to the pointwise multiplication, i.e. the pointwise multiplication is bilinear and continuous.
- Hilbert-Schmidt operators on H_{α} can be classified completely. They are a sum of a one-dimensional operator and an integral operator.

Some properties of the space H_{lpha}

- H_{α} is a Hilbert space and its elements are bounded and uniformly continuous.
- Point evaluations $\delta_x : H_\alpha \to \mathbb{C}, f \mapsto f(x)$ are continuous.
- H_{α} is a Banach algebra relative to the pointwise multiplication, i.e. the pointwise multiplication is bilinear and continuous.
- Hilbert-Schmidt operators on H_{α} can be classified completely. They are a sum of a one-dimensional operator and an integral operator.
- The space-derivative ∂_x is the generator of the shifting semigroup (U_t)_{t≥0}, i.e. U_tg(x) = g(x + t), t, x ≥ 0, g ∈ H_α. (U_t)_{t≥0} is a quasi contractive strongly continuous semigroup.

Assume that $\Psi(t) = \Gamma(t, f(t))$ for some Lipschitz-continuous function

 $\Gamma:\mathbb{R}_+\times H_w\to L(H_w)$

and $f_0 \in H_{\alpha}$.

Assume that $\Psi(t) = \Gamma(t, f(t))$ for some Lipschitz-continuous function

 $\Gamma:\mathbb{R}_+\times H_w\to L(H_w)$

and $f_0 \in H_{\alpha}$. Then there is a càdlàg process f with values in H_{α} such that

$$f(t) = U_t f_0 + \int_0^t U_{t-s} \Gamma(s, f(s)) dL(s)$$

where $(U_t)_{t\geq 0}$ is the shifting semigroup. For each $g\in \partial_x^*$ we also have

$$\langle g, f(t) \rangle = \langle g, f_0 \rangle + \int_0^t \langle \partial_x^* g, f(s) \rangle ds + \int_0^t \langle g, \Gamma(s, f(s)) dL(s) \rangle \quad t \ge 0.$$

Assume that $\Psi(t) = \Gamma(t, f(t))$ for some Lipschitz-continuous function

 $\Gamma:\mathbb{R}_+\times H_w\to L(H_w)$

and $f_0 \in H_{\alpha}$. Then there is a càdlàg process f with values in H_{α} such that

$$f(t) = U_t f_0 + \int_0^t U_{t-s} \Gamma(s, f(s)) dL(s)$$

where $(U_t)_{t\geq 0}$ is the shifting semigroup. For each $g\in \partial_x^*$ we also have

$$\langle g, f(t)
angle = \langle g, f_0
angle + \int_0^t \langle \partial_x^* g, f(s)
angle ds + \int_0^t \langle g, \Gamma(s, f(s)) dL(s)
angle \quad t \geq 0.$$

Note: The Lipschitz conditions on Γ can be weakend substantially! Cf. [Tappe, 12]

Two examples of possible dynamics

$$S(t) = f_0(t) + \sum_n \int_0^t g_n(t-s) dL_n(s)$$

for some Lévy processes L_n and some $g_n \in H_{\alpha}$.

$$S(t) = f_0(t) + \sum_n \int_0^t g_n(t-s) dL_n(s)$$

for some Lévy processes L_n and some $g_n \in H_\alpha$. Moreover, $(F(t, T_1, T_2) - F(0, T_1, T_2))_{t \in [0, T_1]}$ is a time-inhomogenous Lévy process.

$$S(t) = f_0(t) + \sum_n \int_0^t g_n(t-s) dL_n(s)$$

for some Lévy processes L_n and some $g_n \in H_\alpha$. Moreover, $(F(t, T_1, T_2) - F(0, T_1, T_2))_{t \in [0, T_1]}$ is a time-inhomogenous Lévy process.

Assume that $df(t) = \partial_x f(t) dt + f(t) dL(t)$.

$$S(t) = f_0(t) + \sum_n \int_0^t g_n(t-s) dL_n(s)$$

for some Lévy processes L_n and some $g_n \in H_\alpha$. Moreover, $(F(t, T_1, T_2) - F(0, T_1, T_2))_{t \in [0, T_1]}$ is a time-inhomogenous Lévy process.

Assume that $df(t) = \partial_x f(t) dt + f(t) dL(t)$. Then

$$S(t) = f_0(t) + \sum_n \int_0^t f(s, t-s)g_n(t-s)dL_n(s)$$

for some Lévy processes L_n and some $g_n \in H_{\alpha}$.

$$S(t) = f_0(t) + \sum_n \int_0^t g_n(t-s) dL_n(s)$$

for some Lévy processes L_n and some $g_n \in H_\alpha$. Moreover, $(F(t, T_1, T_2) - F(0, T_1, T_2))_{t \in [0, T_1]}$ is a time-inhomogenous Lévy process.

Assume that $df(t) = \partial_x f(t) dt + f(t) dL(t)$. Then

$$S(t) = f_0(t) + \sum_{n} \int_0^t f(s, t-s)g_n(t-s)dL_n(s)$$

for some Lévy processes L_n and some $g_n \in H_\alpha$. Moreover, $F(t, T_1, T_2) = \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} \mathcal{E}(N_y)(t) dy$ where N_x is a time-inhomogenous Lévy process and $\mathcal{E}(N_x)$ denotes its stochastic exponential.

Contents

1 Modelling futures in electricity markets

Spot and futures dynamics when the noise term is Gaussian or normal inverse Gaussian

Representing the futures by a sum of OU-type processes

Theorem

Let $f(t) = U_t f_0 + \int_0^t U_{t-s} \Psi(s) dW(s)$ where $f_0 \in H_\alpha$, W is a (possibly with values in a separable infinite dimensional Hilbert space) Brownian motion with covariance Q and $\Psi \in \mathcal{L}^2_W(H_\alpha)$ a suitable operater valued integrand.

Theorem

Let $f(t) = U_t f_0 + \int_0^t U_{t-s} \Psi(s) dW(s)$ where $f_0 \in H_\alpha$, W is a (possibly with values in a separable infinite dimensional Hilbert space) Brownian motion with covariance Q and $\Psi \in \mathcal{L}^2_W(H_\alpha)$ a suitable operater valued integrand. Then the spot is a Volterra-process, i.e.

$$S(t) = f_0(t) + \int_0^t k(t,s) dB(s)$$

where B is a standard Brownian motion,

$$k^2(t,s) := (\Psi(s)Q\Psi^*(s)h_{t-s})(t-s)$$

and $h_t \in H_w$ is given by $h_y(x) = \frac{1}{\alpha}(1 - e^{-\alpha(x \wedge y)}) + 1$.

Hilbert space valued normal inverse Gaussian process (HNIG)

Hilbert space valued normal inverse Gaussian process (HNIG)

Definition

Let U be a Hilbert space and L be a U-valued Lévy process. L is an HNIG process if $\langle u, L(1) \rangle$ is normal inverse Gaussian distributed for any $u \in U$.

Remark: HNIG processes can be characterised completely.

Theorem

Let $f(t) = U_t f_0 + \int_0^t U_{t-s} \Psi(s) dL(s)$ where $f_0 \in H_\alpha$, *L* is an HNIG process with covariance *Q* and $\Psi \in \mathcal{L}^2_1(H_\alpha)$ a suitable operater valued integrand.

Theorem

Let $f(t) = U_t f_0 + \int_0^t U_{t-s} \Psi(s) dL(s)$ where $f_0 \in H_\alpha$, *L* is an HNIG process with covariance *Q* and $\Psi \in \mathcal{L}^2_L(H_\alpha)$ a suitable operater valued integrand. Then the spot is a Lévy driven Volterra-process, i.e.

$$S(t) = f_0(t) + \int_0^t k(t,s) dN(s)$$

where N is a normal inverse Gaussian process,

$$k^2(t,s) := eta(\Psi(s)Q\Psi^*(s)h_{t-s})(t-s)$$

for some $\beta \ge 0$ and $h_t \in H_w$ is given by $h_y(x) = \frac{1}{\alpha}(1 - e^{-\alpha(x \land y)}) + 1$.

Dynamics of 2 Futures

Corollary

Let $f(t) = U_t f_0 + \int_0^t U_{t-s} \Psi(s) dW(s)$ where $f_0 \in H_\alpha$, W is a (possibly with values in an separable infinite dimensional Hilbert space) Brownian motion with covariance Q and $\Psi \in \mathcal{L}^2_W(H_\alpha)$ a suitable operater valued integrand. Let $0 \le t \le T_1 \le T_2$ and $X(t) := (F(t, T_1), F(t, T_2))$. Then we have

$$X(t) = (f_0(T_1), f_0(T_2)) + \int_0^t m(s) dB(s)$$

for some 2-dimensional standard Brownian motion B and

$$(m(s)^2)_{ij} = \langle y_i, U_{T_1-s}\Psi(s)Q\Psi(s)^*U^*_{T_1-s}y_j\rangle, \quad i,j=1,2$$

for some known functions y_1 , y_2 .

Contents

1 Modelling futures in electricity markets

2 Spot and futures dynamics when the noise term is Gaussian or normal inverse Gaussian

Lemma

Let $x_0 > 0$. Then there is a closed subspace $H_{\alpha}^{x_0}$ of H_{α} such that the following statements hold.

Lemma

Let $x_0 > 0$. Then there is a closed subspace $H_{\alpha}^{x_0}$ of H_{α} such that the following statements hold.

• There is a continuous projection $\Pi_{x_0} : H_{\alpha} \to H_{\alpha}^{x_0}$ such that $\Pi_{x_0}g(x) = g(x)$ for any $g \in H_{\alpha}$, $x \in [0, x_0]$.

Lemma

Let $x_0 > 0$. Then there is a closed subspace $H_{\alpha}^{x_0}$ of H_{α} such that the following statements hold.

• There is a continuous projection $\Pi_{x_0} : H_{\alpha} \to H_{\alpha}^{x_0}$ such that $\Pi_{x_0}g(x) = g(x)$ for any $g \in H_{\alpha}$, $x \in [0, x_0]$.

2 $H^{x_0}_{\alpha}$ is invariant under the shift semigroup $(U_t)_{t\geq 0}$.

Lemma

Let $x_0 > 0$. Then there is a closed subspace $H_{\alpha}^{x_0}$ of H_{α} such that the following statements hold.

• There is a continuous projection $\Pi_{x_0} : H_{\alpha} \to H_{\alpha}^{x_0}$ such that $\Pi_{x_0}g(x) = g(x)$ for any $g \in H_{\alpha}$, $x \in [0, x_0]$.

2 $H^{x_0}_{\alpha}$ is invariant under the shift semigroup $(U_t)_{t\geq 0}$.

Solution H^{x₀} has a Riesz basis (g_n)_{n≥0} such that g₀(x) = 1, x ∈ ℝ₊ and g_n(x) = $\frac{1}{\lambda_n \sqrt{x_0}} (1 - e^{-\lambda_n x})$, x ∈ ℝ₊, n ≥ 1 for a sequence (λ_n)_{n≥1} in ℂ.

Lemma

Let $x_0 > 0$. Then there is a closed subspace $H_{\alpha}^{x_0}$ of H_{α} such that the following statements hold.

• There is a continuous projection $\Pi_{x_0} : H_{\alpha} \to H_{\alpha}^{x_0}$ such that $\Pi_{x_0}g(x) = g(x)$ for any $g \in H_{\alpha}$, $x \in [0, x_0]$.

2 $H^{x_0}_{\alpha}$ is invariant under the shift semigroup $(U_t)_{t\geq 0}$.

- $H_{\alpha}^{x_0}$ has a Riesz basis $(g_n)_{n\geq 0}$ such that $g_0(x) = 1$, $x \in \mathbb{R}_+$ and $g_n(x) = \frac{1}{\lambda_n \sqrt{x_0}} (1 e^{-\lambda_n x})$, $x \in \mathbb{R}_+$, $n \geq 1$ for a sequence $(\lambda_n)_{n\geq 1}$ in \mathbb{C} .
- If $(g_n)_{n\geq 0}$ is as in (3), $(g_n^*)_{n\geq 0}$ the corresponding biorthogonal system, then $U_t^*g_n^* = e^{-\lambda_n t}g_n^*$, $n\geq 1$, $t\geq 0$ and $g_0^* = g_0$.

Theorem

Assume that the futures price process $(f(t))_{t\geq 0}$ has values in $H_w^{x_0}$ for some $x_0 > 0$.

Theorem

Assume that the futures price process $(f(t))_{t\geq 0}$ has values in $H_w^{x_0}$ for some $x_0 > 0$. Then there is a sequence $(M_n)_{n\in\mathbb{N}}$ of complex valued square integrable martingales such that

Theorem

Assume that the futures price process $(f(t))_{t\geq 0}$ has values in $H_w^{x_0}$ for some $x_0 > 0$. Then there is a sequence $(M_n)_{n\in\mathbb{N}}$ of complex valued square integrable martingales such that

$$f(t) = g_0 S(t) + \sum_{n=1}^{\infty} g_n \int_0^t e^{(s-t)\lambda_n} dM_n(s), \quad t \in \mathbb{R}_+.$$

Theorem

Assume that the futures price process $(f(t))_{t\geq 0}$ has values in $H_w^{x_0}$ for some $x_0 > 0$. Then there is a sequence $(M_n)_{n\in\mathbb{N}}$ of complex valued square integrable martingales such that

$$f(t) = g_0 S(t) + \sum_{n=1}^{\infty} g_n \int_0^t e^{(s-t)\lambda_n} dM_n(s), \quad t \in \mathbb{R}_+.$$

where the sum converges almost surely in H_{α} and $(g_n)_{n\geq 0}$ is the Riesz basis provided in the theorem before.

Theorem

Assume that the futures price process $(f(t))_{t\geq 0}$ has values in $H_w^{x_0}$ for some $x_0 > 0$. Then there is a sequence $(M_n)_{n\in\mathbb{N}}$ of complex valued square integrable martingales such that

$$f(t) = g_0 S(t) + \sum_{n=1}^{\infty} g_n \int_0^t e^{(s-t)\lambda_n} dM_n(s), \quad t \in \mathbb{R}_+.$$

where the sum converges almost surely in H_{α} and $(g_n)_{n\geq 0}$ is the Riesz basis provided in the theorem before.

The complex valued martingales are given by

$$M_n(t) = \int_0^t \langle g_n^*, \Psi(s) dL(s) \rangle, \quad t \ge 0.$$

References

- Benth, F. and Kallsen, J. and Meyer-Brandis, T., A non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing, Applied Mathematical Finance 14, 153-169, 2005
- Björk, T., Interest Rate Theory, in Financial Mathematics, Lecture Notes in Mathematics 1656, 53-122, Springer Berlin, 1997
- Carmona, R. and Tehranchi, M., *Interest Rate Models: an Infinite Dimensional Stochastic Analysis Perspective*, Springer Berlin Heilderber New York, 2006
- Filipović, D. Consistency Problems for Heath-Jarrow-Morton Interest Rate Models, Lecture Notes in Mathematics 1760, Springer Berlin, 2001
- Koekebakker, S. and Ollmar, F., *Future curve dynamics in the Nordic electricity market*, Managerial Finance 32 (6), 73-94, 2005
- Tappe, S., Some refinements of existence results for SPDEs driven by Wiener processes and Poisson random measures., International Journal of Stochastic Analysis. 2012
- Filipović, D., Teichmann, J. and Tappe, S., *Term Structure Models Driven by Wiener Process and Poisson Measures: Existence and Positivity*, Preprint, 2009

Thank you for your attention!