

Keeping the lights on until the regulator makes up his mind

Stein-Erik Fleten, Erik Haugom, Carl J. Ullrich*

* Corresponding author: ullriccj@jmu.edu

≻Test real options theory

- The real option to...
 - Shutdown
 - Startup
 - Abandon

≻ Results

- Single most important driver of status changes is **expected future profitability**.
- High expected profitability \rightarrow
 - Fewer shutdowns & abandonments.
 - More startups.
- Low expected profitability \rightarrow
 - More shutdowns & abandonments.
 - Fewer startups.

≻ Results

- Profit margin uncertainty
 - Important for shutdown and abandonment.
 - Important for startups. (But not for small plants.)
 - Higher spark spread volatility \rightarrow more startups.
- Regulatory uncertainty
 - Reduces/delays status changes
 - More uncertainty \rightarrow fewer shutdowns
 - More uncertainty \rightarrow fewer startups
 - No significant effect on abandonments

➤The real options problem

Switching costs

- Shutdown cost, restart cost, maintenance costs and salvage value
- Assume that the switching decisions are made as a function of profitability state variable and occur instantly
- Assume time invariance
- Three value-matching and three smooth-pasting conditions

- Sample period 2001-2009
 - EIA 860 (data source) format changes in 2001
- Focus on peaking plants (CTs)
 - Natural gas and #2 oil
- Final sample:
 - 1,121 unique plants
 - 8,189 plant-year observations

Table I – Plant summary statistics

	Age (years)	Size (MW)	Eff. (%)
NOBS	1,121	1,121	1,121
Mean	18.6	43.1	24.7%
Stdev	14.1	41	4.6%
Min	0	0.4	5.4%
Max	60	246	41.8%

≻Status code

- OP operating
- SB on standby (mothballed/shutdown)
- RE retired

Shutdown occurrences

from year	to year	OP	SB	Total
2001	2002	695	2	697
2002	2003	803	1	804
2003	2004	808	43	851
2004	2005	820	12	832
2005	2006	829	16	845
2006	2007	848	0	848
2007	2008	851	2	853
2008	2009	885	0	885
	Total	6,539	76	6,615

Startup & abandonment

from year	to year	OP	SB	RE	Total
2001	2002	60	221	1	282
2002	2003	47	198	1	246
2003	2004	9	143	49	201
2004	2005	22	153	13	188
2005	2006	1	158	6	165
2006	2007	6	173	0	179
2007	2008	32	139	2	173
2008	2009	7	127	6	140
	Total	184	1,312	78	1,574

≻Reserve margin

- > RM_{kt} = (C_{kt} D_{kt})/D_{kt}
 - RM_{kt} reserve margin
 - C_{kt} capacity (year t, region k)
 - D_{kt} demand

≻Proxy for future profitability

- Low RM high electricity prices high future profitability
- High RM low electricity prices low future profitability

> Spark Spread (\$/MWh)

$$SPRD_{ijkn} = PE_{kn} - HR_i PF_{jn} - VOM_i$$

- $PE_{k,n} = \text{day } n \text{ elec price in region } k$
- HR_i = heat rate for plant *i*
- $PF_{j,n} = \operatorname{day} n$ fuel price for fuel *j*
- VOM_i = variable O&M costs for plant *i*

> Electricity prices (\$/MWh)

- Three markets
 - 1. New England (ISO-NE)
 - 2. Pennsylvania-NJ-Maryland (PJM)
 - 3. New York (NYISO)

Sources: PEHC; Map Hesources (map).

- Approximately upper right quadrant of US
- Average daily peak price
 - Hours Ending 07:00 22:00

Source: ISO-NE, PJM, NYISO websites

≻ Fuel prices (\$/MMBtu)

- Daily spot prices
 - NY Harbor No. 2 Oil
 - Henry Hub Natural Gas

Source: EIA website

http://www.eia.gov/petroleum/data.cfm http://www.eia.gov/naturalgas/data.cfm

>Spark spread volatility

 $SPRDSD_{it} = Stdev (SPRD_{in})$

Stdev taken over days of previous year
 n=1,T

> Plants = options

- Power plants are (a series of) call options on the spark spread
- An increase in volatility increases the option value of the plant.
 - Fewer shutdowns & abandonments.
 - More startups.

➢ State-Level retail competition index

- 1. No activity
- 2. Investigation underway
- 3. Competition recommended
- 4. Law passed
- 5. Competition implemented

Source: EIA; State Utility Commissions

➢ Regulatory uncertainty indicator

- REGUNCERT = 0
 - When competition index = 1, 4, 5
- REGUNCERT = 1
 - When competition index = 2, 3

➢ Regulatory uncertainty

- Likely to reduce the probability of *any* status change.
 - Fewer shutdowns
 - Fewer startups
 - Fewer abandonments

Shutdown Binary Logit Regression

- Plant *i* (which is operating in year *t*)
- Fuel *j*
- Region k

<u>Define</u>

 $I_{i,t+1}^{SB} \left\{ \begin{array}{l} = & 0 \text{ if plant } \mathbf{i} \text{ is operating in year } \mathbf{t+1} \\ = & 1 \text{ if plant } \mathbf{i} \text{ is on standby in year } \mathbf{t+1} \end{array} \right.$

Table VI – Shutdown estimation results

 $I_{i,t+1}^{SB} = \alpha + (\beta_1 * RM_{k,t+1}) + (\beta_2 * T10_t) + (\beta_3 * EFF_i) + (\beta_4 * SIZE_i) + (\beta_5 * TOTCAP_i)$

$$+(\beta_6 * SPRDSD_{ijk,t}) + (\beta_7 * REGUNCERT_t) + \varepsilon,$$
(5)

RM	0.252***							0.235***
<i>T</i> 10		-0.902***						0.799**
EFF			-0.064**					-0.047*
SIZE				-0.133**				-0.052
TOTCAP					-1.718***			-1.416***
SPRDSD						-1.016***		-0.609*
REGUNCERT							-0.014***	-0.012***
pseudo-R ²	14.3%	1.2%	0.7%	1.3%	4.1%	6.0%	4.0%	22.6%
Log-likelihood	-355.8	-409.9	-412.0	-409.8	-398.1	-390.3	-398.4	-321.0
AIC	715.6	823.8	828.0	823.7	800.1	784.5	800.9	658.1
BIC	729.2	837.4	841.6	837.2	813.7	798.1	814.5	712.5

Startup & abandonment multinomial logit regression

- Plant *i* (which is on standby in year *t*)
- Fuel *j*
- Region *k*

<u>Define</u>

 $I_{i,t+1}^{OPRE} \begin{cases} 0 \text{ if plant } \mathbf{i} \text{ is operating in year } t+1 \\ 1 \text{ if plant } \mathbf{i} \text{ is on standby in year } t+1 \\ 2 \text{ if plant } \mathbf{i} \text{ is retired in year } t+1 \end{cases}$

Table VIII – Startup & abandonment estimation $I_{i,t+1}^{OPRE} = \alpha + (\beta_1 * RM_{k,t+1}) + (\beta_2 * T10_t) + (\beta_3 * EFF_i) + (\beta_4 * SIZE_i) + (\beta_5 * TOTCAP_i)$

$$+(\beta_6 * SBTIME_{i,t}) + (\beta_7 * SPRDSD_{ijk,t}) + (\beta_8 * REGUNCERT_t) + \varepsilon,$$
(6)

Startup	RM	-0.835***								-0.757***
•	T10		7.764***							-2.145
	EFF			0.542**						0.121
	SIZE				1.117***					0.947***
	TOTCAP					-4.064*				-6.124**
	SBTIME						-0.039***			-0.035***
	SPRDSD							1.725***		0.613
	REGUNCERT								-0.046	-0.064***
Abandon	RM	1.057***								0.242*
	T10		-4.469***							-1.237
	EFF			-0.588***						-0.004
	SIZE				-2.664***					-4.363***
	TOTCAP					10.965***				12.322***
	SBTIME						0.002			0.013***
	SPRDSD							-3.229***		-1.367***
	REGUNCERT								-0.033**	0.010
	pseudo-R ²	9.6%	3.6%	1.9%	4.4%	7.8%	4.6%	2.7%	0.3%	29.0%
	Log-likelihood	-784.5	-836.9	-852.0	-830.3	-800.8	-828.7	-845.0	-865.3	-616.1
	AIC	1,577	1,682	1,712	1,669	1,609	1,665	1,698	1,739	1,268
	BIC	1,599	1,703	1,734	1,690	1,631	1,687	1,719	1,760	1,365

➤ Conclusions

- Single most important driver of status changes is future profitability.
- High future profitability \rightarrow
 - Fewer shutdowns & abandonments.
 - More startups.
- Low future profitability \rightarrow
 - More shutdowns & abandonments.
 - Fewer startups.

➤ Conclusions

- Strong evidence of real options effects.
- Regulatory uncertainty
 - Fewer shutdowns
 - Fewer startups
- Spark spread volatility
 - Fewer shutdowns & abandonments
 - More startups (but not for smallest plants)

➤ Questions? > ullriccj@jmu.edu > <u>Stein-Erik.Fleten@iot.ntnu.no</u>

≻Future plan

 Estimation of transition costs using structural estimation