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Abstract

We investigate the impact of Thompson Reuters News Analytics (TRNA) news sentiment on the
price dynamics of natural gas futures traded on the New York Mercantile Exchange (NYMEX). We
propose a Local News Sentiment Level (LNSL) model, based on the Local Level model of Durbin and
Koopman (2001), to construct a running series of news sentiment on the basis of the 5-minute time
grid. Additionally, we construct several return and variation measures to proxy for the fine dynamics
of the front month natural gas futures prices. We employ event studies and Granger causality tests to
assess the effect of news on the returns, price jumps and the volatility.

We find significant relationships between news sentiment and the dynamic characteristics of natural
gas futures returns. For example, we find that the arrival of news in non-trading periods causes
overnight returns, that news sentiment is Granger caused by volatility and that strength of news
sentiment is more sensitive to negative than to positive jumps. In addition to that, we find strong
evidence that news sentiment severely Granger causes jumps and conclude that market participants
trade as some function of aggregated news.

We apply several state-of-the-art volatility models augumented with news sentiment and conduct
an out-of-sample volatility forecasting study. The first class of models is the generalized autoregressive
conditional heteroskedasticity models (GARCH) of Engle (1982) and Bollerslev (1986) and the second
class is the high-frequency-based volatility (HEAVY) models of Shephard and Sheppard (2010) and
Noureldin et al. (2011). We adapt both models to account for asymmetric volatility, leverage and time
to maturity effects. By augmenting all models with a news sentiment variable, we test the hypothesis
whether including news sentiment in volatility models results in superior volatility forecasts. We find
significant evidence that this hypothesis holds.

Keywords: news sentiment, natural gas futures, state space modelling, Kalman filter, realized vari-
ance, bipower variation, Granger causality, volatility modelling.

1 Introduction

Over the last decade, the rise of algorithmic trading catalyzed the IT revolution in global financial mar-
kets. Algorithmic trading, and more specifically high frequency trading, has urged the need for more
refined data to analyze security price dynamics. Traditionally, the analysis of security price dynamics
was concentrated on responses of quantitative or hard measures, such as price derived data, corporate
fundamentals, macro economic statistics or other variables intended to proxy for qualitative characteris-
tics. Nowadays, rapid IT developments unable to process huge bulks of digitalized text to quantify soft
qualitative information such as sentiment. Recently, the business data provider Thompson Reuters has
introduced the Thompson Reuters News Analytics Engine (TRNAE). This engine is based on powerful
linguistic analysis techniques and conducts a computerized analysis on millions of news articles to deter-
mine whether the news articles reflect a positive, negative or neutral sentiment and the relevance for a
specific security.
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Behavioral economics and behavioral finance literatuteitethat sentiment can affect the behavior and decision
making of individuals, se8mith (2003 andNofsinger(2005. However, the amount of research on news sentiment
and security price dynamics is small. The articléleflock (2007 studies the relationship between daily Dow Jones
Industrial Average (DJIA) returns and sentiment measusetiérvard 1V-4 Psychology Dictionary (HPSD) in the
Wall Street Journal. The same author studied the relatipristween Standard & Poors 500 (S&P 500) companies
and HPSD based news sentiment, $edock et al.(2008. In both articles he finds that news sentiment helps to
predict price dynamics. The more recent studyBojlen et al.(2011) employs Granger causality analysis and Self-
Organizing Fuzzy Neural Networks to investigate the priadiitity of DJIA returns by sentiment derived from daily
text content of microblog Twitter. They find 86.7% accuratedictions of daily up and down changes in daily DJIA
returns.

The aim of our research is to investigate the impact of TRNA&Eve&d news sentiment on the dynamics of daily
natural gas futures prices traded on the New York Mercahtiighange (NYMEX). After crude oil, natural gas is the
largest and most liquid energy commaodity traded. Like ofeeergy) commodities, natural gas is traded in the form
of futures contracts with monthly maturities that streteliesal years into the future. Therefore, most researchdbase
on (energy) commodities investigates the forward curveutifires prices, see for examf®rovkova (2004 and
Borovkova and Gemaf2006. However,Samuelsorf1965 states that futures contracts with shorter time-to-nitgtur
should be more volatile. Because of that, the first monthrésteontract is the most liquid and thus sensitive contract.
Therefore, we only consider first month futures prices.

The TRNAE data contains news articles with measures of igesiheutral and negative sentiment, which are
intended to be interpreted as probabilities that the ariohveys a positive, neutral or negative outlook on a sgecifi
security price. We map the natural gas tagged TRNAE dataaintaggregated news sentiment on a 5-minute time
grid from the beginning of 2003 to the end of 2010.

Literature on behavioral processes states that antnvaisially discount future payoffs as a function of their
seemingly exponential or hyperbolic decay, see for exaBpd@non et al(2007), Nickerson(2009, Uttal (2008
andReilly et al. (201]). Given that economic agents are in fact animals and asstorieel at least as intelligent as
the animals used in these studies we can state that econgeritsaaggregate news sentiment as a function of some
time decay. This gives reason to assume that the real un@ossentiment can be modeled as an autoregressive time
series model.

Therefore, we utilize the state space modeling frameworRwbin and Koopmar§2001) to model the real un-
observed autoregressive news sentiment. Specifically,pply @heir Local Level (LL) model specification to the
5-minute time grid news article probabilities. We name this Local News Sentiment Level (LNSL) model. By
means of the Kalman filter we are able to filter-out the unoleskstates of all probabilities for each day. By doing
this, we construcautocorrelatednews sentiment probabilities (news sentiment) which cpgswsitive, neutral or
negative outlook on natural gas prices, based on a 5-mimaéegrid from the beginning of 2003 to the end of 2010.

We construct several return and variation measures baséifferent time frequencies to proxy for the dynamics
of natural gas futures prices. Specifically, we construiy dsquared) returns based on close-to-close (CtC), dlose
open (CtO) and open-to-close (OtC) prices. Additionallg,make several daily realized measures based on intradaily
data on a 1- and 5-minute time grid. Specifically, we constitue realized variance, the more robust realized kernel
of Barndorff-Nielsen et al(20083 and Barndorff-Nielsen et al(2008h, and the jump robust bipower variation of
Barndorff-Nielsen and Shepha(@004), to estimate the daily quadratic variance. The worBlzfck (1976, Nelson
(1992, Engle and Ng1993 andGlosten et al(1993 indicated the importance of asymmetric returns as a dafer
conditional variance, also known aseaerage effectTherefore, we also construct realized semivariance aretale
jump variation variables to proxy for (asymmetric) jumpsséa on the work oBarndorff-Nielsen and Shephard
(2009 andBarndorff-Nielsen et al(2008-42.

To analyze the impact of news sentiment on the dynamics &f datural gas futures prices, we employ event
studies. Specifically, we setup event studies as descrnibddé¢Kinlay (1997 and used ifetlock et al.(2008.

We find that the price evolution of first month natural gas ffesucontracts shows a mean reverting effect around
days which we refer to as extreme positive sentiment days,A¥e find that the price evolution around extreme neg-
ative sentiment days shows negative price momentum whichglly continues after the event day before we observe

IMost of these studies are based on experiments with animelgilijeons, rats and mice.
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a return to fundamentals. From this we conclude that thesesignificant relationship between news sentiment and
the evolution of natural gas futures returns.

We find no unit roots in the constructed news sentiment andalajas futures price dynamic measures. Therefore,
we are able to employ Granger causality test as first sugegt&ranger(1969 and used byletlock (2007 and
Bollen et al.(2011). We construct bivariate vector autoregression modelshvfar all news sentiment measures with
all constructed price dynamic measures. We perform Grareygsality tests on these models to investigate whether
news sentiment measures Granger cause the price dynanscmegand vice versa.

We find that the arrival of news in non-trading periods cawsfests in overnight returns and that news sentiment
is Granger caused by volatility in the market. Also, we finatthews sentiment, in an absolute sense, is more sensitive
to negative jumps in the market than by jumps in generalyitiog positive jumps. However, we find strong evidence
that news sentiment severely Granger causes jumps.

From this we conclude that market participants trade as danwion of aggregated news. More specifically,
market participants seem to hard sell or hard buy naturafigases contracts when news sentiment is high in an
absolute sense.

We conduct an out-of-sample volatility forecasting studywihich we compare the one-step-ahead forecasting
performance of two types of volatility models of so-callddtbrical volatility models. The first is the generalized
autoregressive conditional heteroskedasticity (GARCHIEiogle (1982 andBollerslev (1986 and the second the
high-frequency-based volatility (HEAVY) models 8hephard and SheppaizD10 andNoureldin et al(2011). The
main difference between both models is that GARCH modelsaguared daily return driven and HEAVY models are
driven by daily estimates of the quadratic variance suchasdalized variance or the realized kernel. Put diffeyentl
GARCH models are daily return (low frequency) driven and NEAnodels are intraday (high frequency) driven.

Specifically, we model GARCH and HEAVY-r type models for s&lerror return distributions, including models
that allow for asymmetric returns based on the wortstafsten et al(1993 (GARCH type) andarndorff-Nielsen et al.
(2008-43 (HEAVY-r type). We extend all volatility models with a tira®-maturity variable to account for the Samuel-
son effect, as suggested Bprovkova and Gemaf2006 andBaillie et al.(2007).

The setup of our forecasting study is similar to the worRoélersen et a[1999, Marteng2002, Hansen and Lunde
(2005H andKoopman et al(2005. The essential difference is that we are not interestetierfdrecasting perfor-
mance of a particular model. Instead, we are interestedermyipothesis if including news sentiment to volatility
models results in superior volatility forecasts. Specificave follow the work of Hansen and Lund&005h and
Koopman et al(2005 and conduct Superior Predictive Ability testshdinsen(20053 to test our hypothesis.

We find significant evidence that including news sentimenlatility models results in superior volatility fore-
casts.

This writing is organized as follows. Secti@describes the construction of the LNSL model. The natural ga
futures price data and constructed low and high frequen@smmes are described in Secti@nSection4 considers
the details on several volatility models and the methodploancerning the forecasting of the volatility models are
described in SectioB. All results, including the event studies and Granger di@ydasts are presented in Sectién
Section7 contains a summary and suggestions for further research.

2. Modeling news sentiment

2.1. Average news sentiment

We define the news sentiment of a news it&i as a triple(s'’;,, s%, s%’7) for all n = 1,2,..., N. Here
she s S5 ands'y’™ represent the probability that news ite¥), conveys a positive, neutral or negative outlook on
the news item, respectively. Given that the sum of these threbabilities adds up to 1 ang®;; =1 — s — 57,
the news sentiment of a news item can be seen as a draw fronstgmost likely time-varying, trinomial distribution
with parameterst’” | s'"9 andNV.

News items méy arrive non-equispaced and non-sequentgaltiove. To gauge news sentiment with respect to
time we propose a functiofi which maps the news sentiment of all thg news itemsX,,, observed atd — 1, d] to
d,suchthal”) | SN ng = N, whichimpliesy";_, N; = N. This results in an aggregated news it&iagiven
by

Xd ::f(wd7X7d)7 for d:1’27""D’ (1)
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wherew, is a Ny-dimensional vector of weights and the V-dimensional vector of news items. In this research we

neg

use a simple weighted average fbfw,, X, d), such that the aggregated news sentinﬁeﬁ‘fn, 80 8 ) IS given
by

Na
sh = d_l Z wndsg(md, Vp € {pos,neu,neg}, 2
nd:1
where0 < Ny, Ny # Ny andNy; = N, whered # s, d # r Vd,s,r € {1,2,...,D}. The averaged probabilitieg
are normalized by

gp
g = d ®)

_pos + sneu + gneg

When nothing is observed & — 1,d], N, is equal to zero. In this case, we defiffeand thuss’, as missing.

2.2. Absolute news sentiment

As mentioned earlier the news sentiment of a news iféconsist three probabilities(s?,”*, 57, 57,7). By
definition this is a relative measdreWe introduce a new variable which we define as the absolwts sentiment.
This variable is given by

ASq = |55 — 5091 — &5°). 4)

The absolute news sentiment variable can be interpretedrasaaure of news sentiment regardless of whether the
news sentiment is positive or negative. This reduces tlogrimdtion about the news sentiment but it does indicate the
news sentiment in an absolute positive or absolute negsense.

2.3. Local news sentiment level model

We defineS” as the real unobserved probability on news sentiment atdinhéterature on behavioral processes
states that animalwirtually discount future payoffs as a function of their sgegly exponential or hyperbolic decay,
see for exampl®&rannon et al(2007), Nickerson(2009, Uttal (2008 andReilly et al.(2011). Given that economic
agents are in fact animals and assumed to be at least agenekhs the animals used in these studies we can state that
economic agents aggregate news sentiment as a functiomeftsme decay. This gives reason to assume that the real
probability S? contains information on future probabilities and impliattS? can be modeled as an autoregressive
time series model.

Unfortunately, S’ is unobserved. As a proxy fd” we use the observed probabilit}} as defined ing). A
simple but effective way of modeling an unobserved aut@®gjve time series is the Local Level (LL) described in
Durbin and Koopmar2001)*. Applied to the observed and unobserved probabiliffeand S we define the Local
News Sentiment Level (LNSL) model as follows

S;lkﬁl = S;i” 4 775 nd —> I7D(0, O',,p) )
s =5 +¢€ & 4 71D(0,02),

wheresj‘l’_’H and S;" | are the logit transformed equivalents €f and S;°. The first equation ing) is the state
equation which describes the evolution of the unobserveie stf S;”. The second equation represents the signal
equation. Obviously, the signal equation describes thkigea of the observed*p Both equations are modeled as
random walks, such that the LNSL model is equivalent to themddef. Modifications and extensions of the LL,
and thus the LNSL model, such as an Autoregressive Movingae(ARMA) model for the state equation, can be
found in the work oDurbin and Koopmati{2001).

2If for example X4 is defined ags%,°* = 0.5 5t =04,5 5,9 = 0.1) and X, as(s£°° = 0.5,57¢" = 0.1,5.° = 0.4) the values of
5P9% ands£°® are equal in value but are dlfferent in |nterpretat|0n

SMost of these studies are based on experiments with animalgitjeons, rats and mice.

4As mentioned earlier, the news sentiment can also be seenrag-aadiying trinomial distribution with parametes$°*, s’ and N. For
such distributiondDurbin and Koopmar{2001) propose a non-Gaussian state space model instead of thehiekefére we actually propose a
quasi-LL model.

SForz € [0, 1], the logit transformation of is given byz* = In (x) — In (1 — ) such thatz* is a real value. The logit transformations of
the prObabIlItIESsZ andSp are required by the LNSL model because both equations aresdegimR.

6The LNS model is a model representation for the Exponentiagiited Moving Average (EWMA) model, s&urbin and Koopmai(2001).
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2.3.1. The Kalman filter

We are interested in the unobserved statg gffor all d. Because the states cannot be observed the LNSL model
represents a system of many unknowns. However, by assurntnastic processes for the evolution of both the
unobserved state and the signal, the dimensionality osgstem is reduced to the characteristic parameters of these
stochastic processes. Because of that, these parametais@calledhyperparameters

One way to filter the LNS model ir} is by means of a Kalman Filter Applied to the LNSL model it updates
our knowledge of the unobserved state when a new observgfidmecomes available. That is, it updates the mean

S = E[S}"|Fs-1) and varianceP; = Var[S;"|Fq4_1], where F4;_; contains{s}”,s;",..., s}’ }. The state

momentsS P = E[S:?|F, 1] and Py = Var[S;?|F,_,] can be computed by recursively solving the following
equations

Vg = sk — P Fo=Py+o0?,

Kqg = PsF; !,

§;i1 = S;p—l—Kd’Ud Pat1 = Py (1 —K)—&-J%,
SiP =8P P, = 1é7,

wherew, is the prediction errorfF,; the prediction error variancey,; the Kalman gain and = 1,3,...,D. The
Kalman filter estimates the state at tichby exponentially weighting previous states. More detail$ generalizations
can be found iburbin and Koopmaif2003).

2.3.2. The Kalman smoother

The Kalman Smoother considers the estimation of the ${dte conditional onF . HereFp, contains{s}”, s,”, ..., 577}
The conditional density ofS};”|Fp) is N (37, Va), whereS3? = E[SP|Fp] andV,; = Var[S;?|Fp]. These quan-
tities can be computed by solving the following backwardiremn equations

ri—1 = ¢ + Lara Ng_1 = F; ' Zy+ L3Ny,
Ls=1- Ky,
S;p = S;p + Pyrq_1 Vg=P;— Pdefl,

whererp = 0 andd = 1,2,...,D. Since the Kalman smoother makes use of both forward (Kalfitten) and
backward recursions it effectively estimates the statavad & by exponentially weighting the states around it. More
details and generalizations can be foun®urbin and Koopmat(2007).

2.3.3. Missing observations and forecasting

As mentioned before!, can be missing in case of no observed news. An advantage lyirspthe Kalman filter
and smoother to the LNSL model is that it handles such missiisgrvations with great ease.

In cases?, is missing,S;‘fi1 can be computed by setting and K, to zero in the Kalman filter equations. This
yields togsil = §;” andP;, = P; + o;. Effectively, the expectation of the state at tise- 1 is equal to the
expectation of the state at tinake The state variance grows since the uncertainty about ¢te ist case of a missing
observation becomes bigger.

Likewise,Sji1 can be computed by also settihg = 1 in cases’, is missing. The difference is that the uncertainty
about the state might be growing slower since future obsen&can be inFp, hence, provide information about
future states and hence, provide information about thertaiogy of the state at timé.

The h—step ahead forecaB{S;}, , |Fp] can be found by simply handling= (D +1,D +2,...,D + h) as a

G*p

missing observations. Notice that, singe = 0, bothS7), ,, and§;p+h are equal.

"The Kalman Filter was first derived b¢alman(1960).



2.4. Parameter estimation

Let U be the vector of parameters representing the unknowns ibNIg:. model specified in Equatiorb). The
Kalman filter recursions construct prediction erroysand prediction error variancdg; subject tol. We assume
that the prediction errors are independent and identickdlyibuted with mean zero and finite variance. If we assume
normality for the prediction errors we can use the Gaussketihood functionL (y, 8) for the LNSL model. The
Gaussian for the LNSL model log-likelihood is specified dkofos

D

D
D 1 1 1
L(s,¥) =logL(y,0) = == log2r — 5 ; |Fal = 5 ;ngd v, (6)
wheres represents the news sentiment data. Maximum likelihood)(&timation can be used to estimdte The
ML estimation procedure involves maximization of the ldgelihood function in 6) subject tol. The ML estimate
¥ maximizes the log-likelihood function ir6). Since we assume normality for the prediction errors theddtimate

¥ is actually a Quasi maximum likelihood estimate (QML).

2.5. News sentiment data

The news items we use in this research are provided by the 3twrReuters NewsScope Sentiment Engine
(RNSE) for historical commodities data. The dataset costaews items from the beginning of 2003 until the end
of 2010, and are time-flagged to the millisecond. Each nesva it provided with a positive, neutral and negative
sentiment measurement intended to be interpreted as aljiigbaf a positive, neutral and negative outlook on the
news item. Since all items are tagged by product name, tHeapilities can also be interpreted as a positive, neutral
and negative outlook on the commaodity price of the taggedycb Additionally, the RNSE news items also provide
a relevance indicator, item-type and several other vaggable will not use in this work. The relevance indicator is a
measure represented by the probability that the news iteeidgant for the tagged product. The item type variable
shows if the news item represents an 'ALERT’, 'ARTICLE’ ohet types of news items.

We are interested in the impact of news sentiment on the dgineamics of natural gas futures prices. Therefore
we filter the RNSE dataset for news items tagged as 'NGS’, vaie natural gas related. We consider the resulting
310614 news items as; forn = 1,...,310,614. From this dataset we only consider the 'ALERT" and 'ARTICLE
item types because they convey actual news. Also we remave items for which the relevance indicator is smaller
than 0.3 and items for whigls’y? — s'\™?| < 0.05. This cleaning procedure resulted in 185982 news items thath
X,forn=1,...,185,982. '

We aggregate the cleaned news item dataset on a 5-minutgtichby applying equation2j and @) to every
probability in X,,. From the beginning of 2003 to the end of 2010 this resultih B36 5-minute intervals of which
126,789 are estimated &5;.

In Table 1 some descriptive statistics are presented Xg, X,, and X,. Interesting are the time difference
statistics for the retained dataset. Here we see that new news arrives within 23 minutes on agexad according
to a median of less than 6 minutes, most of the times everrfagtes is due to less news item arrivals in weekends
and after trading hours. The time distribution of the estedantervals or aggregated news itefis are equal by
definition. The weekday frequencies in Figurelearly show the weekday dependent news item arrival ratee T
month frequencies show a small decreasing peak from Septamblovember. This can be related to the beginning
of the natural gas seasbn

Finally, Figure2 shows the sample autocorrelation functions (SACF) basatiégrobabilities inX;. The SACFs
are constructed with 95% confidence intervals based ondsiedasticity robust standard error&/diite (1980. The
SACFs show clear autocorrelation for the probabilitiessBtrengthens the statement that economic agents aggregat
news sentiment as a function of some time decay and hence¢hef the LNSL model.

8The natural gas season starts around September-October amdens items can arrive due to projected supply and demariddeiaws for
the winter months.



Table 1:Descriptive statistics - Raw.X,, and 5-minute aggregatedf(t news sentiment.

Total dataset

pos

neu

neg

Retained dataset

pos

neuw neg

SX*.n SX*.n SX*.n 'SX,n SX.n 'SX,n
Observations 310614 310614 310614 Observations 185982 98285 185982
Mean 0.402 0.236 0.362 Mean 0.421 0.209 0.370
Median 0.357 0.156 0.320 Median 0.390 0.152 0.324
Std.Dev. 0.245 0.205 0.228 Std.Dev. 0.251 0.164 0.234
Skewness 0.280 1.481 0.617 Skewness 0.171 1.440 0.557
Kurtosis 1.636 4.373 2.157 Kurtosis 1.529 4.421 1.974
Minimum 0.030 0.014 0.038 Minimum 0.030 0.014 0.038
Maximum 0.786 0.880 0.830 Maximum 0.786 0.824 0.830
Time differences Time differences
minutes days minutes days
Mean 13.540 0.009 Mean 22.614 0.016
Median 3.800 0.003 Median 5.967 0.004
Std.Dev. 59.515 0.041 Std.Dev. 93.909 0.065
Skewnes¥/3 31.177 2.761 Skewnelss 29.073 2.575
Kurtosis'/4 31.556 5.123 Kurtosig 4 27.908 4.530
Minimum 0.000 0.000 Minimum 0.000 0.000
Maximum 4457.367 3.095 Maximum 4865.350 3.379
Aggregated news sentiment - 5-minute
512705 gzwu 5'27'59
Intervals 841536 841536 841536
Estimated intervals 126789 126789 126789
Mean 0.423 0.199 0.377
Median 0.412 0.152 0.346
Std.Dev. 0.231 0.146 0.219
Skewness 0.145 1.533 0.580
Ex.Kurtosis -1.305 2.133 -0.840
Minimum 0.030 0.014 0.038
Maximum 0.030 0.014 0.038
Est. interval frequency - week days Est. interval frequency - months
30000 12000
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Figure 1:Aggregated interval frequencies.
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Figure 2:Aggregated interval autocorrelation functions with 95% confidence intervals bagesteroskedasticity robust standard errorgvite (1980.

3. Natural gas futures returns, volatility and jumps

We investigate the price dynamics of first month natural gasrés contracts traded on New York Mercantile
Exchange (NYMEX). Since the first-month-ahead contracteseriquid than futures contracts with higher time-to-
maturity we do not consider multi-month-ahead futuresi@ats. Thompson Reuters provided us a sample of 415,371
last quotes from January 3 2006 to December 31 2010 on a ltertime-frame, based on 1,257 trading days. After
cleaning the samplewe constructed a 1-minute and a 5-minute time grid from @00D4:30 EST, corresponding to
331 and 67 quotes per trading day. Finding the closest qbefiese or equal to each grid point in time resulted in a
total of 416,067 and 84,219 quotes for the 1-minute and Sitaitime grid respectively.

From the 5-minute time grid quotes we constructed mid-gpoies P, ;, wherei = 1,...,331 in trading day
t. From these mid-quote prices we constructed 5-minyteclose-to-close (CtC); c.c, close-to-open (CtO); cro
and open-to-close (OtG) o continuously compounded retun"ﬁsWheren,th, r,cto andry oc are daily return
measures denoting the log returns(@—_1 ss1, Pr,331), (Pi—1,331, P,1) and (P, 1, P, 331), respectively. Obviously,
this results in 1257, o.c and only 1,256+ c+c andr, c:o returns.

Following Barndorff-Nielsen et al(2008-43, we assume the log price process to be represented by a Brown

semimartingale S M)
t t
y, = / auds + / o dW,, 20, (7)
0 0

wherea is a locally bounded predictable drift process anid acadlag volatility process, adapted to some common
filtration F;, allowing for leverage effects. The quadratic variance Y@\given by

t
Y], = / olds, 8
0
and thus
d[Y], = o2dt, )
tell us everything we can know about tee-postvariation ofY". In case ofr, ; fori: = 1,..., I, the squared realized

volatility or realized variance estimator is a consistestineator for QV and is given by

I
RV, =17, (10)
i=1

9We cleaned the quote data according to the cleaning proeetdscribed iBarndorff-Nielsen et al20088).
10A continuously compounded or log return for prigis defined asog (PfDil )
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An econometric formalization can be found Amdersen et al(2001) and Barndorff-Nielsen and Shepha(d002).
However, as pointed out bdansen and Lund€006), the impact of microstructure noise severly influenéds.
More microstructure noise robust estimators are: preagegJacod et al(2009, multiscalezhang(2006 and the
realized kerneBarndorff-Nielsen et al(20083. In this research we use the realized kernel with a Parzeghive
function which is given by

H I
h
RK; = Z k <H—|—1> Yhy  Th = Z TitTj—|nlt (11)

i=—H j=|h|+1

wherek (x) is the Parzen kernel function

1—622+622 ifO<z<1/2
k(z)={ 2(1—=x)° if1/2<z<1
0 otherwise

To consistently estimate the quadratic variance it is rearggor H to increase with the sample size. Since the degree
of microstructure noise, and thus the sizefdf can differ for differentt, we used the 1-minute time grid futures
prices to allow for highe# in case of more noisy days. We refer to the workBafrndorff-Nielsen et al(20083
and Barndorff-Nielsen et al(20080 for the details of the bandwidth choice é&f, since we used the exact same
implementation.

In case of jumps in the log-price process the assumption3# .41 is not sufficient. Now we assume a Brownian
semimartingale plus jump proceds{M.7) given by

t t
Y, = / asds —l—/ osdWs+ Jy, t2>0, (12)
0 0

whereJ is a jump process. If we write jumps Wi asAY; =Y, — Y;_1, then

t
[YL=/ o2ds + 3 (AY,)?, (13)
0 s<t
and
d[Y], = oZdt + AY,. (14)

The work of Barndorff-Nielsen and Shephaf@004 and Barndorff-Nielsen and Shepha(@008 introduced the
[1, 1]-order Bipower variation process, defined as

[t/d]

{Y}LM] = Z [Yi—Yeioa|[Yeio1r — Yiiol, (15)
i=3

for 0 — 0. They also showed that ¥f is aBSM .7, with zero drift ands independent ofV then
t
(H = [ ot (16)
0

whereu; = Elu| = /2/7 ~ 0.79788 andu % A/(0,1). Hencep; 2 {Y}}"'! = [ 02ds. They found that this
estimator forfot o2ds is quite robust to jumps. This implies the following equalit

V], - ur 2V =3 (av)®. (17)

s<t

Thus, Bipower variation allows us to robustly estimate tive variance_, _, (AY:)”.
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Table 2:Summary statistics for daily NG first month trade data based on 1257 trading dys from the beginning of 2006 to the end of 2010. The realized kernét K, is based on 1-minute price data time-grid. All
other realized measuresRk V4, RSVf, RSV,”, BPV;, BPJV;, BPUV; and BP DV, are based on the 5-minute price data time-grid. TheSAC F(1) statistic represent the sample autocorrelation function
for lag I. Bold SACF'(1) statistics are significant at a 5% significance level based on heteroskedasty robust standard errors described in White (1980. PP + drift statistic represents the Phillips Perron
unit-root test statistic where a drift term is assumed in the model, se@hillips and Perron (1988 for details. ADF(l) + drift is the Augmented Dickey Fuller test statistic where wp to [ lags and a drift term are

assumed in the model, seBaid et al.(1984) for details. Bold (and italic) Phillips Perron and Augmented Dickey Fuller test statistics represent rejection of an unit-root based on a 5% (1%) significancevel. The
lowertriangle matrix represents the correlation matrix.

roton  TCtOg  TOtC.t rgtc’t 2004 r%tc’t RV RK:; RSV, RSV," BPV, BPJV, BPDV, BPUV,

meanle? -0.71 0.65 -1.36 1.23 0.93 0.32 0.35 0.32 0.18 0.17 0.28 006 .040 0.03
mediante? 0.03 -0.33 -1.15 0.44 0.28 0.13 0.24 0.24 0.12 0.11 0.20 002 .010 0.01
std.dev.le3 35.05 30.44 17.93 2.94 3.10 0.55 0.36 0.31 0.21 0.21 0.28 0.18 0.16 0.14
skewness 0.63 1.15 -0.06 12.31 15.99 3.86 4.08 4.42 5.40 5.181.46 7.95 9.42 7.51
ex.kurtosis 3.79 9.11 0.85 220.61 323.53 21.00 2533 3221 1.795 36.97 34.60 89.56 149.56 83.32
SACF(1) -0.02 -0.05 0.02  0.02 0.02 0.13 0.57 0.60 0.37 0.45 0.64 0.03 0.01 0.06
SACF(5) -0.03 -0.04 0.01 0.08 0.04 0.12 0.48 0.46 0.29 0.31 0.51 0.32 0.08 0.04
SACF(10) -0.03 -0.02 0.03 0.08 0.04 0.09 0.41 0.39 0.35 0.21 0.44 0.21 0.11 -0.02
SACF(20) 0.01 0.05 0.02 0.05 0.05 0.05 0.27 0.27 0.20 0.17 0.32 0.06 0.02 0.02
PP + drift -36.09 -37.23 -34.76 -34.57 -34.59 -31.04 -1859 -17.72 -23.89 -21.81  -16.65 -34.29 -34.91 -33.21
ADF(1) + drift -2475  -2521  -2387  -2410 -2428 -2094 -1325 -1349 -16.39 -14.68  -12.75 -22.36 -24.22 -21.53
ADF(12) + drift -8.80 -9.06 -9.32 -6.26 -6.91 -6.26 -4.90 -4.70 -4.60 -5.72 -4.69 -1.27 -8.40 -9.36
ADF(24) + drift -7.67 -6.57 -6.37 -4.26 -4.49 -4.01 -3.31 -3.29 -3.36 -3.83 -3.42  -455 -5.90 -5.76
TCcto,t -

TCtO,t 0.86 -

TOtC,t 0.50 -0.02 -

oy 024 031 -0.05 -

2400 030 036 -003 092 -

TOLo -0.08 -0.02 -0.13 0.16 0.04 -

RV; 0.05 0.05 0.02 0.22 0.16 0.56 -

RK; 0.07 0.05 0.06 0.25 0.20 0.50 0.90 -

RSV~ -0.14 0.05 -0.36 0.20 0.13 0.56 0.84 0.72 -

RSV, * 0.22 0.02 0.40 0.17 0.14 0.37 0.84 0.80 0.41 -

BPV}; 0.09 0.05 0.08 0.24 0.20 0.44 0.86 0.93 0.68 0.77 -

BPJV; -0.04 0.01 -0.09 0.08 0.01 0.42 0.64 0.36 0.61 0.47 0.16 -

BPDV; -0.27 0.02 -0.57 0.07 0.00 0.38 0.37 0.16 0.76 -0.13 0.03 0.68 -

BPUV 0.26 -0.02 0.53 0.03 0.02 0.14 0.43 0.30 -0.05 0.77 0.18 0.56 0.22- -
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Applied to our 5-minute returnsg ; we estimate the Bipower variatiddPV; process as

i<t

BPV, = i) |rei = rical reim — el (18)
=3

For simplicity we already multiplied the estimator fd5j by uﬁ. We estimate the Bipower jump variatidhP .JV;
for ry ; by
BPJV, = RV, — BPV,, (29)

where RV; is the simple QV estimator given irlQ) and BPV; the scaled Bipower variation estimator given in
(18). Notice that sincd3 PV, is a jump robust estimator for QB P.JV; is asymptotically equal to zero in case of
Y; € BSM, which means that the log-price process does not contaimp process. In the case of nonzé?® .JV;
we havey; € BSM .7 implying a jump process in the log-price evolution. TherefaheBPJV; is a neat proxy for
jump variation and jumps over time.

The research dBlack (1976, Nelson(1991), Engle and Ng1993 andGlosten et al(1993 indicated the impor-
tance of asymmetric returns as a driver of conditional venéaalso known aslaverage effectBarndorff-Nielsen et al.
(2008-43 introduce the Realized semivariance (RSV) which allowsousstimate the negative and positive part of
the QV and hence the negative and positive part of jump VanaT he downside realized semivariance appliec} to
is estimated by

I
RSV =) i, <o, (20)
i=1
wherel . is the indicator function. Equivalently, the upside reatizemivariance is given by
1
RSViE =3 riily, ><o. (21)
i=1
This implies
RV = RSV~ + RSV, (22)

Barndorff-Nielsen et al(2008-49 show that in probability the2SV — and RSV T are both half theRV. Following
this result allows us to estimate negative and positivevedgmts of BPJV;, see 19). Specifically, the Bipower
downward variancé3 P DV, is given by

1
BPDV, = RSV,” — §BPVt. (23)
Equivalently, the Bipower upward varianéePUV; is given by
1
BPUV, = RSV, — 5 BPVi. (24)

These variables are proxies for negative and positive juan@tion. Also theBPDV; and BPUV; can be negative
for small samples, sinc23 and24 hold asymptotically, seBarndorff-Nielsen et al(2008-42.

For our dataset Tabl® reports the basic summary statistics. It is interestingdie rthat the realized measure
estimates? K; and RV, are much smaller than the variance of squared daily remﬁ'g§c. Notice that, ¢ is the
sum ofr, cro andr, orc. Given thatr, o.c is constructed by the first and last price of daysed by the realized
measures, it is not strange thét,, is of the same order @K, and RV;. This implies that the more noisyr? -,
severely influences the size fﬁcw. The summary statistics clearly show strong autocor@idior most realized
measures. The squared returns show much less significartoargtlation. The correlation between the realized
measures are high. Interesting are the correlations batthegump variation measures and the returns. This implies
evidence of leverage effects. Als&K; shows a higher correlation with the jump robusPV; then RV;. This
implies thatR K is more robust to jumps thaRl; and hence superior representatiorerfpostvariance.

11The CtO measures are more noisy because markets are not openr@4tiay and 7 days a week. Additionally, extra noise isedl&h
roll-effects, since the first month futures contract is mlever into the second month contract at the end of every month.
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4. \Volatility models

In this section we discuss modeling of time-varying voigtilSpecifically, we discuss extensions of two classes
of so-called historical volatility models. The first is thergralized autoregressive conditional heteroskedstici
(GARCH) of Engle(1982 andBollerslev(1986 and the second the high-frequency-based (HEAVY) votgtifiodels
of Shephard and Sheppa(@d010 and Noureldin et al.(2011). The main difference between both models is that
GARCH models are squared daily return driven and HEAVY medek driven by daily estimates of the quadratic
variance such as the realized variance or the realized lkePog differently, GARCH models are daily return (low
frequency) driven and HEAVY models are intraday (high freiey) driven.

For both model classes we assume the following model for dlilg ceturns

rt,ctC :e%hteh t= 17"'7T7 (25)

wheree, is either:e, % A (0, 1) (Normal) ore; -5 L (v) (Student-t) ok, - S||]3 — LU (A, v) (Hansen Skewed-).
Here\ is related to the skewness andb the degrees of freedom, where we require 2. The Student-t and Hansen
Skewed-t distributions allow for fatter tails and, in theseaf the Hansen Skewed-t distribution, positive or negativ
skewness, which are both very common in commodity returtmiligions.

The work ofBorovkova and Gema(R2006 implies a strong relationship between time-to-matufity/ and the
variance of natural gas futures returns. Specifically, #tarns of futures contract with shorter time-to-maturity
showed a higher variance. This time-to-maturity effect banmelated to the Samuelson hypothesis which states that
futures prices should exhibit higher volatility for shartene-to-maturity, se&amuelsorf1965. Baillie et al.(2007)
acknowledge the same relationship with other commodityr&g returns and estimate time-to-maturity augmented
volatility models. For that reason we augment all our vbitgtimodels with a time-to-maturity variablé' )/, to
adjust for the time-to-maturity effect. Hefel/; represents the number of days left at timetil the futures contract
matures.

4.1. GARCH models
The GARCH(P,Q) model for3p) is given by

P Q
Var[roie+1|Fi] = exp (hyy1) = exp (ozo + Z Tt —pi1 T Z tht> (26)

p=1 q=1

whereg, € (0,1) for all ¢ and F; contains the set of returns up to tirheln this research we only considér = 1
and P = 1. Including the time-to-maturity terri' M/;, we define our GARCH model as

hiy1 = ap + alrétc’t + Bhy + 7T M,. 27)

For the GARCH model we assumgin (35) to be normally distributed. We name the GARCH model withdet-t
and Skewed-t distributions fef as GARCH-t and GARCH-skewt respectively. Notice that theletdn (33) allows
to forecast the volatility for time + 1 at timet. For all GARCH models we usk; = (ao + 6°(r¢,¢,))/1 — B as
initial value, wheres*(r¢,, ,) is the sample variance o, ;.

4.2. HEAVY models
Given 35), the HEAVY model ofShephard and SheppaizD10 is defined as a system of two equations

Var[rth,Hﬂ}'tHF] = exp(hit1) = exp(an,o + an 1 RM; + Brhy) (28)

E[RM; 1| F/'F] = pugr = o + ouari + Buhe(29)

wherey,,8, € [0,1) and F/'F" contains the set of high frequency returns up to tim&he second equation can
be used to estimate h-step-ahead forecdstgr, . ,|F/ ¥ for h > 1. In this research we are only interested in

12Details on the Hansen Skewed-t distribution can be fourtdinser(1994.
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1-step-ahead forecasts. Therefore we only consider theéjtmtion whictShephard and Sheppai2D10 define as
the HEAVY-r model. ForRM,; we use the more robust realized kerdK;. Including the time-to-maturity terri’
we define the HEAVY-r model as

hiy1 = apo + ap 1 RKy + Bphy + 7T My, (30)

under the restrictiom;, € (0,1). For the HEAVY-r model we assumg in (35) to be normal distributed. We name
the HEAVY-r model with Student-t and Skewed-t distribusdior e, as HEAVY-rt and HEAVY-rskewt respectively.
For all HEAVY-r models we usé; = (a0 + RK)/1 — B, as initial value, wheréR K is the sample mean @t K.
Notice that the (distribution homogeneous) HEAVY-r modais equal to the GARCH modelsﬂfth is substituted
for RK,;. Comparable to the GARCH model, notice that the model allmxmpute the expected volatility for time
t + 1 at timet.

4.3. Leverage effects

As noted earlier, literature suggests the importance ahasgtric returns as a driver of conditional variance also
known as deverage effectseeBlack (1976, Nelson(1991), Engle and Ng(1993 and Glosten et al(1993. We
extend our GARCH model in the spirit @losten et al(1993. Doing so, 83) becomes

hit1 = oo + Ozw%tc,t + Bhy + 7T M, + W%tc,tl(rcm,Kow (31)

wherel ., is the indicator function. We name this model the GJRGARQHodel. Analogously to the GARCH case,
for the GJRGARCH model we assumgin (35) to be normally distributed. We name the GJIRGARCH model with
Student-t and Skewed-t distributions tgras GJRGARCH-t and GJRGARCH-skewt, respectively.

The class of HEAVY models can be extended in the same way d@BARCH models concerning the leverage ef-
fect. Shephard and Sheppd@D10 suggest including a realized semivariance measu@oBarndorff-Nielsen et al.
(2008-43 found log-likelihood improvements by also including thip&wver variation estimat& PV;. Therefore, we
propose to extend3(Q) with the Bipower downward variation estimateP DV; which includes both the realised
semivariance estimateSV,” and the Bipower variation estimai#PV;. The model is given by

ht+1 = Qh0 + ah,lRKt + ﬁhht + TT]V[t + V}LBPD‘/M (32)

We name this the LHEAVY-r model. Analogously to the HEAVY eagor the LHEAVY-r model we assumg in
(35) to be normal distributed. We name the LHEAVY-r model withu@tnt-t and Skewed-t distributions fey as
LHEAVY-rt and LHEAVY-rskewt, respectively.

4.4. News sentiment augmented volatility models
We are interested in the effect of news sentiment on the tiondi variancéVar|r,1.c:c|Fi ). For simplicity
reasons and to reduce the number of parameters, we augntiethd®&GARCH and HEAVY-r model classes with only
the Kalman filtered absolute sentiment variaﬂvlét‘t“. In the spirit of naming cross-sectional variable augmente
GARCH models, seEngle(2002, we name the news sentiment augmented model a GARCHX ftodféé define
it as follows -
hiy1 = oo + a1rgyey + Bhe + TT My + GASy,. (33)

Analogously the HEAVYX-r is the news sentiment augmented¥E equivalent of the GARCH model. This model
is defined as o
hiy1 = ano + an1 RKy + Brhy + 7T My + ¢ASy;. (34)

For both the GARCHX and the HEAVY X-r models we assugén (35) to be normally distributed. The GARCHX
and HEAVY X-r models with Student-t and Skewed-t distrilbas fore, are denoted as GARCHX-t, HEAVY X-rt,

13The abbreviation GJR stands for Glosten Jagannathan Ruh&lauthors oGlosten et al(1993.

14See Section® and6.1 for the exact definition oﬂ@‘m

15Notice that the inclusion of the (cross-sectional) timewtaturity term7" M, in the standard GARCH model already is a GARCHX model.
But since the inclusion d¢f' M, is essential when working with commaodity futures prices, wadbname our GARCH models GARCHX models.
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GARCHX-skewt and HEAVY X-rskewt respectively. In the samawthe GJRGARCHX and LHEAVYX models
represent the news sentiment augmented equivalents of IR&GRCH B1) and LHEAVY (32) models. Obvi-
ously, the GJRGARCHX-t, LHEAVYX-t models assume a Studedistribution fore, and GJRGARCHX-skewt,
LHEAVY X-skewt a Skewed-t distribution. Based on the mod#éined in this section, the functional forms of these
models are trivial to derive. For that we reason we do noterhiem down explicitly.

5. Volatility forecasting methodology

In this section we present the methodology concerning arobsample volatility forecasting study in which we
compare the one-step-ahead forecasting performance aebthtlity models described in sectiogh The setup of
our forecasting study is similar to the work Ahdersen et al(1999, Martens(2002, Hansen and Lundé€005H
andKoopman et al(2009. The essential difference is that we are not interestederfdrecasting performance of a
particular model. Instead, we are interested in the hymigh&including news sentiment to volatility models result
in superior volatility forecasts.

As mentioned in sectio, GARCH models are driven by low frequent daily returns andAM¥r models driven
by high frequent intraday returns. For that reasonfaHl- 24 volatility models can be divided into two groups. The
first group considers the class of GARCH models and the seibentlass of HEAVY-r models. Additionally, both the
GARCH and HEAVY-r volatility model classes can be dividetbisubgroups of base and news sentiment augmented
models. For example, in the case of GARCH models we have GARBHRCH-t, GARCH-skewt et cetera in the
base model group and GARCHX, GARCHX-t, GARCHX-skewt et cef@ the news sentiment augmented model
group. All the GARCH-type models are denoted\ds and all HEAVY-r models are denoted 44, forg =1,...,G
andh =1,..., H where obvioushG = H =12 andG + H = K.

We estimate allX’ = 24 volatility models 1007 times based on 1007 samples of 25§ dakservations, where
the first sample is based on an estimation window which starfanuary 2 2006 and ends at January 2 2007. A
one-step-ahead volatility forecast is computed for January 3 2007 based on the estimation wificlogach model
My, wherek € K. By rolling the estimation window forward by one trading dag have a second sample of the
same size which starts at January 3 2006 and ends at Januady 3/ain, a one-step-ahead volatility forecasts
computed for January 4 2007 based on the estimation windoeeith modek € K. More specifically, we estimate
M = 1007 one-day-ahead forecast§ ,, wherem € M, such that

Som =E [0—1271‘-7m7250,m71a \if} ; (35)

whereF,, _a50,m—1 contains all information on intervéi — 250, m — 1] and¥ is the maximum likelihood estimate
of the parameter vectok.

The volatility o2, is not observable. In sectighwas shown that realized volatilitiV;,, is a consistent estimator
for the latentr2,. However, we will make use of the realized kerik ,,, since it is a more robust estimatorex-post
variation. Notice that the latent?, represents the variation of close-to-close returasc,. and the realized kernel
RK,, is a measure based on open-to-close returns. For that regsdn some way, have to add the much more
noisy variation of close-to-open (overnight) returRg.o; to RK,,. Martens(2002, Koopman et al(20095 and
Hansen and Lund&005h propose similar scaling methods. We follow the methodHahsen and Lund&0058
who introduces?2, as an estimator for2,. SubstitutingR K ,,, for RV, in their estimatorg?, is defined as

T_1 T Y
62, = ¢RK,,, where ¢= Lz (rews — R (36)
T-1%- RK;

and whereii = 71 Z;T:l rorct- As mentioned earlier the less noisy:c; contains the noisy overnight return
rcto,t. Hence, by scaling the realized kernel by the varianee-@f » we implicitly scale it by the variance ot;o +
and henc&?2, is an approximately unbiased estimator #gy.

Of interest are the volatility forecasﬁg",m for all k € K models andr2,. One way to evaluate out-of-sample
volatility forecast is in terms of2? from a Mincer-Zarnowitz (MZ) type regressioaZ, = o + 7151%,m + ug. Or

the more robust logarithmic versiolg(c2,) = vo + 71 log(&,im) + u; as noted byPagan and Schweft1990 and
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Engle and Patto2001). However,Hansen and Lundé20058 note that theR? of MZ regressions is not an ideal
criterion for comparing volatility models because biaseefasts are not penalized.

Bollerslev et al.(1994), Diebold and LopeZ1996 and others, suggest the use of loss functions to determine
whether, say, modeW1,, outperformsM, in forecastingi2,, wherek # [ andk,l € K. We adopt the same choice of
loss functions as considered Kpopman et al(2005 and are given in Tabl8. Equal and similar loss functions are
also considered bBollerslev et al(1994), Andersen et al(1999, Martens(2002 andHansen and Lund@005h.

Following the work ofKoopman et al(2005 andHansen and Lund@005h, we adopt the robust superior pre-
dictive ability (SPA) test oHansen(20053 to investigate the relative performance of the proposdditiity models
in terms of the proposed loss functions. As mentioned eavlie split the volatility models into two model groups

Table 3:Loss function L; ., m represents the loss of forecasi';m of model M, based on loss type for : € {1,..., 4}.
Squared Error Ly jem = (ak m— ai )’
Absolute Error Lo gom = |o‘k m cr,C m|
Heteroskedasticity Adjusted Squared Error L3 g, = (1 — a;fnak )

Heteroskedasticity Adjusted Absolut Error Lyjm=]|1— &k’fn&,% ml

and perform the SPA test procedure for each group groupatebarFor each group we haveé + 1 different models
M,, forn = 0,1,..., N8 For each modeM,, we have)M volatility forecastss? mform=1,... M. Forevery
forecast we calculate the loss functidp,, ,, as given in Tabl&fori =1,...,4. A particular model/\/lo is taken as
the benchmark model. The loss function of some madeg).., relative to the benchmark model is defined as

Xn,m = Li,nL,O - Li,m,?u (37)

for some loss function. For\,, = E[X,, ,,,], modelM, outperforms all other models, we hakg < 0 for all models
n # 0. Hence, the base model is not outperformed when it accepisuthhypothesis

max

n#0\, <0. (38)
Hansen20053 proposed the associated SPA test statistic

maxr 4/ X
T=n#0

(39)

wﬂ ,1

where@? , is a consistent estimate of ,,, and whereX,, = M~' Y0 X, ., andw? , % Var[VMX,]. A
consistent estimator af. ,, and the so-called Hansen consistgatalue of the SPA test statistiE can be found

via a bootstrap procedure. Specifically, we apply the statip bootstrap procedure BPlitis and Roman§1994).

The procedure consists of constructing new samplesXiqr, of length B by concatenation of randomly chosen
subsamples of different lengths. The length of the subsesnate independent and are drawn from a geometric
distribution with meary. The subsample lengths are ideally small but sufficientiyddo reflect the serial correlation

in X, . After an extensive inspection of the autocorrelatioXip , we choose a subsample length of 5 trading days
which corresponds tg = 1/5. Since we perform the same bootstrap procedure as propgdddrisen2005g and
performed byHansen and Lund@005h andKoopman et al(2005 we refer to their work for the construction of the
Hansen consisteptvalue and other details about the SPA test.

6. Results

6.1. News sentiment index estimates

In Section2 we introduced the Local News Sentiment Level (LNSL) modgedfically, the LNSL model is the
Local Level model ofDurbin and Koopmar{2001) applied to the logit transformed probabilitiés;,””, 57, 57,“)

16Notice thatN 4+ 1 = G andN + 1 = H in case of the GARCH and HEAVY-r model type group respectively
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of news itemX, for all d = 1,...,D. We estimated the LNSL model by means of a quasi maximumiti@et
procedure which involves maximization of the log-likeldtbdescribed in Sectio?t’.

We estimated the total set consisting/df= 841, 536 news sentiment articleX; on the 5-minute time grid from
the beginning of 2003 to the end of 2010. The estimation tesuk presented in Tab#e The estimation results
show that the standardized prediction errayg/F; are clearly not normally distributed. However, the LjungxB
statistics show no memory in;/+/F,; which does meet th&ZD assumptions made for the LNSL model. We are

Table 4: Quasi maximum likelihood parameter estimates for the LNSL model based on th total set of news itemsX; from the beginning of 2003 to the
end of 2010. The asymptotic standard errors are given in parentheses whicheobtained by the delta method since several parameters were transformed for
estimation. The AIC represents the Akaike Information Criterion and is definedas —2(In L) + 2p where p is the number of coefficients estimated. Qf is the
Ljung-Box test statistic conducted on the standardized residuals for lag lengthand is asymptotically x? distributed with I degrees of freedom. JB represents
the Jarque-Bera normality test on the standardized residuals and is asymptotidy x? distributed with 2 degrees of freedom.

5505 sneu sneg

Observations 841536 841536 841536
ople? 6.071 0.85768 8.3968

(0.465) (0.133) (0.551)
oeled 1106.3 903.82 1037.8

(2.267) (1.803) (2.162)
InL -193535 -167199 -185813
AIC 387074 334402 371630
va/VFq
mean 0.003 -0.007 -0.004
Median 0.000 0.000 0.000
Std.Dev. 3.602 6.574 6.160
Skewness 8.93E+02 -9.14E+02 -9.11E+02
Ex.Kurtosis 8.12E+05 8.38E+09 8.34E+05
Q1) 0.426 0.005 0.029
Q(12) 0.905 0.009 0.063
Q(68) 2.099 0.016 0.404
Q(135) 4.193 0.297 0.879
JB Stat 2.31E+20 2.46E+20 2.44E+20

interested in the impact of news sentiment on the dynamiosfral gas futures prices. Moreover, we are interested
in the hypothesis that news sentiment causes natural gag$yprice dynamics. As mentioned in SectBour data
is based on 1,257 trading days from January 3 2006 to DeceBib2010. Therefore we construct news sentiment
levels at closing tim&' for each trading day. Specifically, we estimate the news sentiment level fronbginning
of 2003 to timed, whered is equal to closing tim&' of trading dayt. This means that we estimate the the news
sentiment levels 1,257 times with an increasing estimatiordow. Here we only estimate Kalman filtered news
sentiment levels since it is equal to the Kalman smoothetirsent level at timeC'.

The Kalman fiIterechl" p and Kalman smoothaﬂg| p news sentiment levels are based on the total estimation set

D8, The Kalman filterecgg +|c NEws sentiment levels are based on the increasing estimaitimow. Additionally,

ZE‘CW is the absolute news sentiment variable. The summary tatatere presented in Tab® The summary

statistics show that the low frequent Kalman filtered newdisent Ievelsgg e show similar statistics as their high

frequent equivalenﬁg‘ p- Also, theS?, ;" show very high autocorrelation which imply forecastingliibs.
Figure3 shows plots oﬁng and§5|D from January 3 2006 to December 31 2010. Figushows the same plots

but from October 18 2008 to 31 October 2008. Additionallgufes5 and5 show plots ofS, o andﬁ@cw together
with natural gas futures return and realized measures verekescribed in Sectidh

6.2. Events and Granger causality

In this section we perform two methods to analyze the impaoews sentiment on the dynamics of natural gas
futures prices. The first method is an event study to invastithe natural gas price evolution around extreme news

1"The procedure is implemented in the program environment oafnik (2001) and makes use of the SsfPack 2.Xobpman et al(1999.
18Note thatp € {pos, neu, neg}.
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Table 5: Summary statistics: the Kalman filtered SP _ and the Kalman smoothedS®, _ which are based on the total information setD and the Kalman

d|D d|D
filtered SZ, bl and AS¢ |, selected at closing timeC' and based on the information set untilt. Here p is in {pos, neu, neg}. The SACF (1) statistic
represent the sample autocorrelation function for lagi. Bold SAC F(1) statistics are significant at a 5% significance level based on heteroskedasty robust
standard errors described inWhite (1980. PP + drift statistic represents the Phillips Perron unit-root test statistic whele a drift term is assumed in the model,
seePhillips and Perron (1988 for details. ADF(I) + drift is the Augmented Dickey Fuller test statistic where wp to [ lags and a drift term are assumed in the
model, seeSaid et al.(1984) for details. Bold (and italic) Phillips Perron and Augmented Dickey Fuller test statistics represent rejection of an unit-root based

on a 5% (1%) significance level.

Saip_ Sip_ Sap Scue  Seile  Seuds  AScur
Mean 0400 0.166 0.359 Mean 0430 0187 0383  0.064
Median 0399 0167 0.355 Median 0431 0187  0.383  0.055
Std.Dev. 0.043 0011 0.046 Std.Dev. 0043 0010 0043  0.047
Skewness ~ -0.030 -0.332 0.535 Skewness -0.085  -0.123  0.194 .8570
Ex.Kurtosis ~ 0.121  0.592 0.604 Ex.Kurtosis 0.130 -0.069 48.0 0.570
Minimum 0230 0130 0.152
Maximum 0718 0194 0.582 SACF(1) 0700 0810 0665 0515

SACF(5) 0404 0541 0375  0.202

Sty Shew o S3S SACF(10) 0365 0420  0.328 0.180
Mean 0400 0166 0.357 SACF(20) 0308 0309  0.266  0.150
Median 0400 0.167 0.354
Std.Dev. 0.036 0010 0.037 PP+drift  -14.864 -11544 -15857  -20.037
Skewness ~ -0.095 -0.379 0.551 ADF(1) + drift -1213 ~ -961  -1286  -15.83
ExKurtosis ~ 0.185 0427 0.682 ADF(12) +drift -456  -520  -481 -5.89
Minimum 0249 0139 0.262 ADF(24) +drift  -3.08 ~ -430  -330  -379

Maximum 0.522 0.186 0.541
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Figure 3:Kalman filtered and smoothed news sentiment levels.
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Figure 4:Kalman filtered and smoothed news sentiment levels.

sentiment events. The second method involves Granger litgueats to determine causal relationships between
natural gas price dynamics and news sentiment measures.

6.3. Event study

We employ event studies as describedMacKinlay (1997 and used irTetlock et al.(200§. We define a day

in which the news sentiment meas@cﬁjft is higher than the quantile of the total sample cﬁ’f‘;ft as an extreme

positive news event. Analogously, a day in which the newsisemt measuré??‘;’; is higher than the quantile of

the total sample oﬁZfﬁ as an extreme negative news event. All days which are nattedl@s extreme positive or
negative news events are defined as extreme neutral newts.even

We analyze the return dynamics around the event by compthmgumulative return from 10 days before up
to 10 days after the event for all events of the same type. iffgaly, we use a threshold quantiteof 80% on the
set of 1,256 trading days and select 252 extreme postivexdrehee negative event days and a total of 753 extreme
neutral event days. This results in 252 extreme positiveesti@me negative event cumalative return paths and 753
extreme neutral event cumulative return paths. From thatdepve simulate the average cumulative return and 95%
bootstrapped confidence intervals as describ&hiidson and Mackinno(2004), for each time in the event window.
Simple plots of the average cumulative returns and the cemdiel intervals for each event type and for each time in
the event window present the differences between the eypast This corresponds with the suggested statistics
described ilMacKinlay (1997). Figure7 presents the event study with the natural gas futures pridetee monthly
event frequencies for each event type. The return evoligictearly different for the three event types. The extreme
positive events shows a mean reverting effect in the retustugon around the event day. For extreme negative news
the return evolution shows strong positive autocorrefatiocound the event day. As expected, the evolution of the
returns around the extreme neutral days are not different frerd®.

Interesting to see is that the frequency of extreme pogitayes decreases to a bottom at 2009 while the frequency
of extreme negative news increases from 2008

19For aq threshold of 80% extreme neutral events are actually mordaethan extreme and thus in probability equal to the sample roéan

rTCtC,t-
20Thjs can be related to the credit crunch of 2008 to 2009.
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Figure 5:Kalman filtered news sentiment measures and natural gas return measures.
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Event study: NG - first month NG - first month prices
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Figure 7:Cumulative return evolutions around extreme positive, extreme neutrakénetne negative event days are plotted based on a 10 day event window around
the event day and a threshajdf 80%. Also the natural gas futures prices are plotted from the beginningdéftdthe end of 2010. Furthermore, the monthly event
frequencies are are shown for all different event types.
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Another interesting result showed in Figutes the possibility to make a significant profit from selling thutures
contract at an extreme positive or negative eventtaynfortunately, the event type frequencies show that extre
events are clustered over time. This questions the rossiofethe suggested trading strategy. However, the event
study does show significant discriminating power of newgis®mnt. This is even more clear for the event studies
presented in Figur8. These event studies have the same setup as for the eventrsiigure7 but for ag threshold
of 50%, 70% and 90%. Clearly, the discriminating power iases for a higher threshold.

From this we can conclude that there is a significant relatignbetween news sentiment and the evolution of
natural gas futures returns. Specifically, we find that theepevolution shows a mean reverting effect around the
extreme positive events. Also, we find that the price evoluiround extreme negative events is negative and shows
positive autocorrelation. This means that negative prioenentum continues after extreme negative days, before we
observe a return to fundamentals.

50% quantile 70% quantile

90% quantile

-0 -5 0 5 10
Event window (days)

-10 -5 0 5 10
Event window (days)

-10 -5 0 5 10
Event window (days)

Cumulative average return (%)
Cumulative average return (%)
Cumulative average return (%)

Figure 8:Cumulative return evolutions around extreme positive (green), extreme n@reg) and extreme negative (red) event days are plotted based on a 10 days
event window around the event day and threshotd 50%, 90% and 90%.

6.4. Granger causality tests

Both the news sentiment measures and a majority of the majasaprice dynamic measures show significant
autocorrelation. This makes it more interesting to deteenwhether specific natural gas futures price dynamics are
caused by specific news sentiment measures and/or vice Verseder to test causality relationships between news
sentiment measures and natural gas price dynamic measeressform Granger causality tests as first suggested by
Grangen(1969. A similar investigation was performed by

For each sentiment measus®’:,, Snev, §"¢9 andAVSCﬂt we construct a bivariate Vector Autoregression (VAR)

. Ct[t) Pt Met|t ’ ; . - - -
of order P with each natural gas price dynamic measure described tio8&c A bivariate VAR(P) is defined as

P
Zi=®0+ > ®Z; ,+u, (40)

p=1

whereE[u,] = 0, E[u,uj] = Q, Z; is a(2 x 1) vector,®, and®,, are(2 x 2) coefficient matrices anft a (2 x 2)
covariance matrix. The order @f is determined by a selection procedure based on the Akafiteniation criterion
(AIC) described inLutkepohl (2005 andGonzalo and Pitaraki®002. For the bivariate VAR of ordeP case, the
AIC is defined as

2(22P +2)

AIC =log Q| + T ,

(41)

2IHere we assume no transaction costs and zero market impact.
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whereQ) is the heteroskedasticity and autocorrelation (HAC) rblosariance matrix, selewey and Wes{1987),
andT the sample size.

The summary statistics of the natural gas price dynamicstlamehews sentiment measures show that none of
the variables contain a unit-root up to a lag length of 24, id#es2 and5. Therefore, we are able to test the null
hypothesis of no Granger causality for each time series ¢h &ivariate VAR model. For details concerning the
Granger causality test we refer@anger(1969 andLutkepohl(2005.

The Granger causality test results show significant Grangesality relationships. First of all, absolute news
sentiment Granger caus&s.c + andRc:0,+. The same applies tBo.c, but only for a 10% significance level. If
we look at the squared returns we see an equal pattern favad sentiment measures. Specifically, highly significant
Granger causal relationships are shown for news sentimeasunes ori?,, ., and Rz, , but hardly any on the
Rotc -

Given that the CtC return measures are sums of the CtO andedi@imeasures, this implies that the arrival of
news during non-trading periods have a large effect on tleendgght CtO returns.

Second of all, if we look at the realized variation measuressee cross causality relationships between news
measures and the realized kerfdk; and the positive semivariand@SV,". Also, we see that the realized variance
RV, is significantly Granger caused by negative news sentintehhews sentiment by negative semivariafce/,~
Furthermore, we see that the jump variation robust Bipoweiaton B PV, is significantly Granger caused by news
sentiment.

Finally, if we look at the jump variation measurgsJV;, BPDV, and BPUV,, the Granger causality test show
significant Granger causality relationships between jurmation and news sentiment. Most statistics show cross
correlation relationships, but the jump variation meadsife/V; is only caused by all news sentiment measures and
it only Granger causes effects in the absolute news sentimeasure. The same appliesB@&UV; but it does only
shows Granger causal effects in the positive and negative sentiment measures.

This difference betwee® P.JV; and BPUV; shows that absolute news sentiment is caused by jumps and in
particular by negative jumps. This corresponds with theifitant Granger causal effect of the realized negative
semivarianc&? SV on the absolute news sentiment measure.

From this we can learn that volatility, and especially negatolatility, Granger causes news sentiment. Further-
more, news sentiment also Granger causes volatility. Tinidiés that news is caused by volatility in the market but
also that market participants trade as some function ofeggged news.

Also, the different Granger causality relations betweds@éute) news sentiment and the jump variation measures
show the importance of asymmetric returns and jumps on n8yscifically, news sentiment in an absolute sense is
more sensitive to negative jumps in the market than by jumgeneral. However, we can state that news sentiment
severely Granger causes jumps. That is, market particgzsarh to hard sell or hard buy natural gas futures contracts
when news sentiment is high.

6.5. Volatility forecasting results

6.5.1. Parameter estimation results

The estimation results from the GARCH type volatility madelescribed in Sectiod are presented in Table
7. Likewise, the estimation results from the HEAVY-r type netslare described in Tab®& These estimation
results are based on the total dataset from the beginnin@@® o the end of 2010, see Sectidror specifics.
All programs for estimating the parameters are written in @e programming environment @foornik (2002).
Implementation details are described in the workre&y (2005, Greene(2003 and Hansen(1994). The latter is
used for the implementation of the Hansen skewed-t loditiked. All volatility models indicate high persistency.
However, the HEAVY-r models are much stronger driven/bl(; than the GARCH models are driven ¥ ., .
This indicates that the expected variance®fc:c is stronger driven by lagge® K; than laggedr? cic» @s noted
by Shephard and Sheppaf2010. The time-to-maturity parameteris significant and indicates and confirms the
Samuelson hypothesis described in SectloriThe y estimates show the tremendous significance of the so-called
leverage effects in the GJRGARCH and LHEAVY type volatilitypdels.

If we look at different assumed distributions for the retarrors we see that the student-t distribution is preferred
over the normal distribution and the Hansen skewed-t bigtion preferred over the student-t distribution. That is,
in terms of a higher log-likelihood and of lower AIC and BIGterion values. Although the skewness parameter
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Table 6: Granger causality test results are presented based on bivariate vector autoregrésss of order P (VAR( P)) for each news sentiment measure with all individual natural gas return meaures. The
results can be divided into 4 subtables which correspond with Granger causaji tests based on bivariate VARP) of the news sentiment measures and return, squared return, realized variatioand realized jump
variation measures. Each subtable presents the LM test statistic of the null ipothesis that the measure of columnj does not Granger cause the measure in rod. The LM test statistic is x 2 distributed with P
degrees of freedom. Italic, bold and italic+bold LM test statistics represent rejectio of the null hypothesis at a 10%, 5% and 1% significance level, respectivel The value under the LM test statistic represents

the lag order P of the bivariate VAR( P).

re,ctC  Tt,CtO  Tt,0tC Sf;'lst SZift A~Sc,t|t T?,th TtQ,CtO T?,OtC Sf,otTt S:;]qt A~cht|t
Tr.ote - - - 21526 23.798 38.840 7 e - - - 38.374 35.704 42.787
24 24 24 23 23 23
re.Cto - - - 31.390 35.283  36.605 2 o - - - 46852 45607  39.262
24 24 24 22 22 22
e y - - 24.015 25136 34.513 72 o - - - 28.767 35.151  26.398
24 24 24 24 24 24
557‘;; 31.044 22561 48534 - - - §53Tt 23.995  24.280 29.329 -
24 24 24 23 22 24
§Zj|i 32501 22.734 47556 - - - §ijt 23.170  26.679 26.954 -
24 24 24 23 22 24
AS.,. | 16938 23285  30.015 - - | AS..: | 24522 39494  34.266 - - -
24 24 24 23 22 24
RV:  RK. RSV, RSV;" 809 SI%0  AS.. BPV, BPJV; BPDVi; BPUVi Sy, SIy%  AS.u
RV; N N - - 33.137 37.703 28.115 BPV; N N N - 36.019 39.379 30.695
24 24 24 24 24 24
RK; - - - - 38718 43132 250981 BPJV; - - - - 55806 58887  60.226
24 24 24 23 23 23
RSV,~ - - - - 31585 31.072 22349 | BPDV; - - - - 53357 55907 52710
23 23 23 23 23 23
RSV, . - - - 57500 61144  29.465 BPUV; - - - - 47164 51225  56.344
24 24 24 23 23 23
S 27.311 45243 32361 39.437 - - - SE 30.488  24.448 42076  39.350 - - -
24 24 23 24 24 23 23 23
§Zj|9t 27.570 46.060 34.874 37.528 - - - Sﬁjft 32423  29.170 47528  38.519 - - -
24 24 23 24 24 23 23 23
AS.4 | 27.019  21.807 41587 17.621 - - - AS.,: | 28.013  36.601 39.943  22.300 - - -
24 24 23 24 24 23 23 23
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Table 7: Quasi Maximum likelihood parameter estimation results for the GARCH type volatility models described in Section4. The asymptotic standard
errors are given in parentheses which are obtained by the delta method since sevepmarameters were transformed for estimation. The AIC represents the
Akaike Information Criterion and is defined as —2(In L) + 2p where p is the number of coefficients estimated. The BIC represents the Bayesian Informatio
Criterion and is defined as—2(In L) + pIn T where p is the number of coefficients estimated and” the sample size. The A-LM() and Q(!) statistics are
the ARCH-LM test statistic of Engle (1982 and the Ljung-Box test statistic conducted on the standardized residuals for length [. Both statistics are
asymptotically x2 distributed with [ degrees of freedom. JB represents the Jarque-Bera normality test on the standardized idsals and is asymptotically x>
distributed with 2 degrees of freedom.

Model GARCH GARCH-t GARCH-skewt GJRGARCH GJRGARCH-t GJIRBBH-skewt
Parameter
ap -0.324 -0.322 -0.367 -0.264 -0.245 -0.277
(0.062) (0.078) (0.060) (0.051) (0.058) (0.045)
(o %1 30.009 25.658 25.829 8.488 7.048 7.085
(0.005) (0.006) (0.004) (0.005) (0.006) (0.004)
B1 0.946 0.947 0.947 0.959 0.962 0.962
(0.009) (0.0112) (0.008) (0.008) (0.009) (0.006)
T -0.005 -0.004 -0.003 -0.003 -0.003 -0.003
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
v 10.853 24.652 12.348 27.970
(0.003) (0.004) (0.007) (0.008)
A -0.004 -0.003
(0.019) (0.019)
0% 46.417 40.531 40.852
(0.010) (0.010) (0.007)
InL 2488.082 2500.853 8177.584 2498.644 2507.068 8190.323
AIC -4968.163 -4991.705 -16343.168 -4987.287 -5002.136 6366.645
BIC -4947.617 -4966.023 -16312.349 -4961.605 -4971.317 6330.690
A-LM(1) 0.036 0.104 0.101 0.188 0.060 0.065
A-LM(12) 22.123 22.049 22.051 22.906 22.778 22.782
Q1) 0.372 0.343 0.344 0.107 0.102 0.101
Q(12) 13.235 13.460 13.452 13.144 13.244 13.239
JB 81.303 108.713 107.609 30.394 40.346 39.764
Model GARCHX  GARCHX-t GARCHX-skewt GJRGARCHX GJRGARCHX-t GJIRGARCHX-skewt
Parameter
ap -0.311 -0.310 -0.352 -0.267 -0.249 -0.282
(0.058) (0.074) (0.012) (0.051) (0.058) (0.045)
aq 28.304 24.172 24.327 8.977 7.639 7.675
(0.005) (0.005) (0.003) (0.005) (0.006) (0.004)
B1 0.948 0.950 0.950 0.959 0.962 0.962
(0.009) (0.0112) (0.006) (0.008) (0.009) (0.006)
T -0.005 -0.004 -0.004 -0.004 -0.003 -0.003
(0.001) (0.001) (0.002) (0.001) (0.001) (0.001)
v 11.020 24.979 12.509 28.291
(0.003) (0.004) (0.007) (0.008)
A -0.003 -0.003
(0.025) (0.019)
0% 45.063 38.909 39.230
(0.010) (0.011) (0.008)
o) 0.140 0.136 0.136 0.071 0.066 0.066
(0.091) (0.100) (0.086) (0.076) (0.079) (0.056)
InL 2491.231 2503.758 8185.962 2502.014 2509.409 8197.561
AIC -4972.462 -4995.515 -16357.925 -4992.028 -5004.818 6379.121
BIC -4946.779 -4964.697 -16321.969 -4961.209 -4968.862 6338.029
A-LM(2) 0.097 0.193 0.189 0.123 0.026 0.029
A-LM(12) 23.660 23.461 23.468 23.396 23.294 23.306
Q1) 0.357 0.334 0.335 0.115 0.112 0.111
Q(12) 12.736 12.991 12.982 12.860 12.979 12.971
JB 79.718 106.451 105.394 31.156 41.966 41.369
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Table 8: Quasi Maximum likelihood parameter estimation results for the HEAVY-r typ e volatility models described in Sectiord. The asymptotic standard
errors are given in parentheses which are obtained by the delta method since sevepmarameters were transformed for estimation. The AIC represents the
Akaike Information Criterion and is defined as —2(In L) + 2p where p is the number of coefficients estimated. The BIC represents the Bayesian Informatio
Criterion and is defined as—2(In L) + pIn T where p is the number of coefficients estimated and” the sample size. The A-LM() and Q(!) statistics are
the ARCH-LM test statistic of Engle (1982 and the Ljung-Box test statistic conducted on the standardized residuals for length [. Both statistics are
asymptotically x2 distributed with [ degrees of freedom. JB represents the Jarque-Bera normality test on the standardized idsals and is asymptotically x>
distributed with 2 degrees of freedom.

Model HEAVY-r HEAVY-r-t HEAVY-r-skewt LHEAVY-r LHEAVY-r- t LHEAVY-r-skewt
Parameter
QR0 -0.703 -0.654 -0.737 -0.709 -0.660 -0.758
(0.148) (0.299) (0.229) (0.224) (0.254) (0.228)
an1 200.620 170.960 172.200 184.630 162.430 166.080
(0.034) (0.069) (0.048) (0.054) (0.059) (0.047)
Bh,1 0.893 0.900 0.900 0.892 0.900 0.897
(0.020) (0.040) (0.028) (0.030) (0.035) (0.028)
T -0.006 -0.005 -0.005 -0.006 -0.005 -0.005
(0.001) (0.002) (0.001) (0.002) (0.002) (0.001)
v 12.269 27.952 12.605 28.605
(0.004) (0.006) (0.007) (0.009)
A -0.004 -0.005
(0.019) (0.019)
Yh 163.830 100.560 103.070
(0.029) (0.008) (0.002)
InL 2490.70 2497.94 8172.06 2491.51 2498.43 8172.60
AIC -4973.40 -4985.87 -16332.12 -4973.02 -4984.86 -16331.
BIC -4952.85 -4960.19 -16301.30 -4947.33 -4954.04 -16205.
A-LM(21) 1.02 0.71 0.73 0.85 0.59 0.65
A-LM(12) 24.68 23.94 23.97 23.76 22.17 23.53
Q1) 0.16 0.15 0.15 0.17 0.13 0.16
Q(12) 15.27 15.13 15.14 15.51 15.44 15.31
JB 28.33 36.74 36.16 24.08 33.66 31.96
Model HEAVY-rX  HEAVY-rX-t HEAVY-rX-skewt LHEAVY-rX LHEAV Y-rX-t LHEAVY-rX-skewt
Parameter
an0 -0.278 -0.266 -0.300 -0.234 -0.255 -0.288
(0.068) (0.070) (0.021) (0.052) (0.064) (0.050)
o1 108.980 97.657 98.433 82.477 87.610 88.142
(0.021) (0.021) (0.006) (0.017) (0.020) (0.014)
Bh,1 0.955 0.957 0.957 0.962 0.959 0.958
(0.010) (0.010) (0.001) (0.008) (0.009) (0.006)
T -0.006 -0.006 -0.006 -0.006 -0.006 -0.006
(0.001) (0.001) (0.002) (0.001) (0.001) (0.001)
v 16.684 37.274 17.653 39.372
(0.007) (0.012) (0.012) (0.015)
A -0.004
(0.000)
Yh 143.940 89.001 91.221
(0.003) (0.002) (0.001)
1) 0.506 0.463 0.465 0.534 0.464 0.467
(0.099) (0.103) (0.188) (0.087) (0.098) (0.069)
InL 2504.912 2508.787 8194.215 2506.012 2509.378 8195.467
AlC -4999.824 -5005.574 -16374.430 -5000.024 -5004.756 6374.934
BIC -4974.141 -4974.755 -16338.475 -4969.205 -4968.801 6333.842
A-LM(1) 0.272 0.248 0.257 0.258 0.181 0.187
A-LM(12) 24.453 25.749 25.797 25.651 25.101 25.129
Q1) 0.085 0.073 0.073 0.068 0.072 0.072
Q(12) 12.951 12.885 12.885 12.570 13.120 13.126
JB 14.218 20.917 20.549 15.588 17.039 16.648
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A is not significant for any model with Hansen skewed-t distiédol return errors, allowing for non-zero skewness
does increase the estimated degrees of freedom parameitirrespect to models employing a student-t distribution.
However, The Jarque-Bera test statistic increases foiGeaurssian distributions.

The Ljung-Box test statistics show no significant memonhia $tandardized residuals for each estimated model.
Unfortunately the ARCH-LM test statistics shows significamemory in the squared residuals for 12 lags. This
suggests that some of the autocorrelation in the squar&spf ; is not captured by any of the models. Since this
applies to all models it does not influence our researchastguer se. However it does give reason to add more
autoregressive terms to the models or to consider fradijoiméegrated volatility models, se€oopman et al(2005
andBaillie et al.(2007%). .

As described in Sectiod, the parametep is related to the absolute news sentiment variable. ,,. The
GARCHX type models show very low significant positive redaships between the volatility forecast and the news
sentiment variable. Moreover, the log-likelihood is orligistly increased when including news sentiment to GARCH
type model&.

The HEAVY-r type models show a much stronger and highly digaint positive relationship between the volatility
forecast and the news sentiment variable. Also, the newtgnsem augmented HEAVY-r type models show higher
log-likelihoods and lower values for both the AIC and BICterion functions than regular HEAVY-r type models.
From the Granger causality test results in Secéighwe learned that?, -, is less influenced by news thad,, ,.
Since HEAVY-r models ar&® K, driven, and thus virtually OtC driven, the significant addatlie of including news
sentiment to HEAVY-r models can be related to the strong Geacausal effect of news sentiment i, , and
Tzcto,t-

Interesting to see is that thg anday, ; estimates are lower for the models including the news semivariable.
This implies that news sentiment reduces the dependenag@édi?,, ., , andRK; in the forecasts of future volatility.
Hence, the news sentiment models give less weight to extpaisive or negative volatile days and are more robust
to outliers.

6.5.2. Preliminary forecasting results

The volatility forecasts are constructed as described ati@e5. Figure9 presents the logarithms of the volatility
forecasts versus the realized forecast tadgefor GARCH and HEAVY-r type models with and without news sen-
timeng3. For all model types the errors between the forecasts anfibtbeasting targets are clearly heteroskedastic.
This implies that the non-heteroskedasticity adjusted faactions do not reflect an unbiased measure of loss. The
GARCH type volatility models do not clearly improve in foesting performance when including news sentiment.
In case of the HEAVY-r type models we do see an improvementdiadasting performance. More specifically, the
HEAVY-r models including the news sentiment variable asslefluenced by extreme high or low volatile days.
This confirms the earlier mentioned implication that newstisgent augmented volatility models are more robust to
outliers.

Table 9 presents the means of all loss functiahs! fo:l Li km: L1km; the Mean Squared Error (MSE),
L 1..m; Mean Absolute Error (MAE)L3 i »; Mean Heteroskedasticity Adjusted Squared Error (MHASE);, 1.
Mean Heteroskedasticity Adjusted Absolut Error (MHAAE).

All news sentiment augmented models outperform their namsngentiment equivalents for all loss functions
excluding the MSE and MAE statistics. In case of the HEAVYpd models the lowest MSE is estimated for HEAVY-
r model with normally distributed return errors. Howevére tMSE and MAE values are very low and do not differ
that much. As mentioned earlier, the forecasting errorhiareroskedastic and because of that the MSE and MAE are
not the preferred loss statistics.

The R? of the Mincer-Zarnowitz regressions, as described in 8a&j show that news sentiment augmented
models do help to improve the forecasting performance. AachbyPagan and Schweft990 andEngle and Patton
(2001, R2 based on the more robust logarithmic regression is even demisive. Neverthelesslansen and Lunde

22The AIC criterion values are all slightly lower for news sement augmented models. The BIC criterion values are only |dareGARCH
models with skewed-t return errors.

23The plots shows a subset of the forecasts and the forecaatiets from the beginning of 2007 to the end of 2008. Thigtlogy with the
logarithmic transformations make the plots more clear.
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GARCH type 62, vs 62, HEAVY-r type 62, vs 62,

log o2

2007 2008 2009 ~“Soor 2008 2009
time (trading days) time (trading days)

GARCHX type 62, vs 52, HEAVY-X type 62, vs 62,

log o

2007 2008 2009 oo 2008 2009
time (trading days) time (trading days)

Figure 9: A subset of the forecasts and the forecasting targets are presented from the begfi20i0g to the end of 2008. The logarithms of the forecasting target
&fn are plotted as black dots. The logarithms of the foreca%;sare plotted as gray lines. Specifically, the forecasts are plotted for GARCH, GARBBAVY-r
and HEAVY-rX model types.

(20058 mentioned that thé? of Mincer-Zarnowitz regression is not ideal as an critefioncomparing volatility
models since it does not penalize for a biased forecast.

6.5.3. Superior predictive ability test results

The preliminary forecasting results showed that news semti augmented volatility models outperform volatility
without the news sentiment variable. However, these resuly apply to one selected sample. To obtain more robust
outcomes we want to have the same outcome for similar sampledbe same spirit oKoopman et al(2005 and
Hansen and Lund€0058, we perform superior predictive ability (SPA) testst@nsen(20053 as described in
Sectionb.

The SPA test results are presented in Talfle Specifically, the Hansen SP#wvalues ofHansen(20053 are
presented for each base model. Phealue can be interpreted as the intensity of base madglproducing superior
forecasts with respect to all other models. We do this inddeatly for the GARCH type and HEAVY-r type volatility
models. For example thevalues for the GARCH base model represent the intensityeo®ARCH model producing
superior forecasts with respect to all GARCH type models Jéme applies to HEAVY-r type volatility models. By
doing this we can analyze the forecasting performance df betvs sentiment augmented GARCH and HEAVY-r
type volatility models separately.

Overall, the same conclusions can be made as for the aveleggetunction and?? statistics presented earlier.
First of all it is interesting to see that, especially in tlese of HEAVY-r type models, thg-values for the SE and
AE loss functions are high. We see that the GJRGARCHX-t arRIGYRCHX models are not outperformed by any
other model GARCH type models in case of the SE and AE losdifume: The same applies to thevalues based on
the SE and AE loss functions for the HEAVY-r type models. Thisans that based on the SE and AE loss functions
the SPA test results are not decisive. This is related toe¢kerbskedastic forecasting errors as mentioned earhés. T
indecisiveness result of the SPA test strengthens the usinalmade in Sectio@.5.2that the MSE and MAE are not
the preferred loss statistics. Moreover, this indecisésresult implies that the SE and AE are not the preferred los
functions and therefore we base our conclusions on thedsitedasticity adjusted loss functions: HASE and HAAE.
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Table 9:The Mean Squared Error (MSE), Mean Absolute Error SVI\I/IAE), Mean

Heteroskedasticity Adjusted Squared Error (MHASE), Mean Heteroskedas-

ticity Adjusted Absolut Error (MHAAE) are defined as M ~* > m—1 Li,k,m Viand for each volatility model. A bold value represents the lowest average
loss for the specific loss type. Thd{f and RS represent the goodness-of-fit statistic of the Mincer-Zarnowitz regression&fn = v + 71&,2““ + u; and
log(52,) = vo + 71 log (63 ,,,) + w¢ respectively. A bold value represents the highesk? statistic.

Model M,

MSE MAE MHASE MHAAE R2 R2
GARCH 157E-06  6.60E-04 1.395 0.751 0.107 0.198
GARCH-t 1.12E-06  6.11E-04 1.217 0.719 0.120 0.206
GARCH-skewt 1.27E-06  6.41E-04 0.334 0.504 0.158 0.237
GJRGARCH 1.22E-06  6.09E-04 1.094 0.665 0.157 0.241
GJRGARCH-t 1.11E-06  5.94E-04 1.042 0.659 0.152 0.240
GJRGARCH-skewt ~ 1.26E-06  6.38E-04 0.340 0512 0.177 0.261
GARCHX 1.91E-06  6.57E-04 1.158 0.702 0.135 0.222
GARCHX-t 1.57E-06  6.05E-04 1.074 0.675 0.108 0.219
GARCHX-skewt 1.37E-06  6.47E-04 0.332 0495 0.115 0.229
GJRGARCHX 1.13E-06 5.65E-04 0.818 0.602 0.181 0.265
GJRGARCHX-t 1.07E-06 5.73E-04 0.879 0.624 0.193 0.259
GJRGARCHX-skewt  1.27E-06  6.29E-04  0.319 0.496 0.161 0.254

Model M,

MSE MAE MHASE MHAAE R? R2
HEAVY-r 9.31E-07 5.53E-04 1.210 0.693 0.232 0.267
HEAVY-r-t 9.52E-07  5.54E-04 1.227 0.698 0.184 0.254
HEAVY-r-skewt 1.24E-06  6.14E-04 0.329 0.485 0.195 0.265
LHEAVY-r 1.15E-06  6.02E-04 1.303 0.732 0.186 0.251
LHEAVY-r-t 1.05E-06  5.95E-04 1.317 0.735 0.184 0.228
LHEAVY-r-skewt 1.15E-06  6.01E-04 0.327 0.484 0.223 0.270
HEAVY-rX 1.03E-06 5.52E-04 0.879 0.628 0.198 0.322
HEAVY-rX-t 9.32E-07 5.41E-04 0.840 0.627 0.222 0.323
HEAVY-rX-skewt 1.17E-06 5.97E-04  0.272 0.455 0.237 0.354
LHEAVY-rX 1.07E-06  5.64E-04 0.797 0.620 0.167 0.308
LHEAVY-rX-t 1.02E-06  5.60E-04 0.789 0.620 0.152 0.276
LHEAVY-rX-skewt  1.26E-06  6.20E-04 0.281 0464 0.169 0.305
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If we look at the GARCH models we see that GIRGARCHX-skewt gnred GARCHX-skewt are not outper-
formed by any other model in terms of the HASE and HAAE, reipely. This includes the non-news sentiment
augmented model equivalents GJRGARCH-skewt and GARCMdskedels. However, the-values of these specific
GJRGARCH-skewt and GARCH-skewt models are not signifigamitperformed by any other model. Therefore we
can only conclude that news sentiment augmented GARCH tyquels areat leastnot outperformed by their non-
news sentiment equivalents. This means that the includitimeonews sentiment variable to a GARCH type model
at leastresults in an equal forecasting performance with respeaet @ARCH model without the news sentiment
variable.

The HEAVY-r models show a more dramatic result. Here the HEAX-skewt model is the absolute winner, both
in terms of the HASE and the HAAE. Also, thevalues show that all other models are significantly outpentd.
Thus we can state that news sentiment augmented HEAVY-r ima@dgperform their non-news sentiment equiva-
lents. This means that the inclusion of the news sentimeaidhia to a HEAVY-r type model results in a forecasting
performance with respect to a HEAVY-r model without the neestiment variable.

Table 10:The table presents the Hansen consistent SPAvalues ofHansen (20059 based on the Squared Error (SE), Absolute Error (AE), Heteroskedas-
ticity Adjusted Squared Error (HASE) and Heteroskedasticity Adjusted Absolut Err or (HAAE) loss function for each volatility model. The p-value can be
interpreted as the intensity of base modeJM , producing superior forecast. Ap-value of <0.001 denotes a number smaller than 0.001.

Base model N SE AE HASE HAAE Base model M SE AE HASE HAAE
GARCH 0.093 0.010 <0.001 0.001 HEAVY-r 1.000 0.553 <0.001 0.001
GARCH-t 0.848 0.153 <0.001 0.001 HEAVY-r-t 0.710 0.570 <0.001 <0.001
GARCH-skewt 0.110 0.084 0.398 0.302 HEAVY-r-skewt 0.022 052 0.013 0.008
GJRGARCH 0.099 0.031 0.001 0.006 LHEAVY-r 0.124 0.023<0.001 <0.001
GJIJRGARCH-t 0.602 0.281 <0.001 0.006 LHEAVY-r-t 0.114 0.015 <0.001 <0.001
GJRGARCH-skewt 0.269 0.121 0.105 0.038 LHEAVY-r-skewt 150 0.056 0.014 0.007
GARCHX 0.160 0.044 <0.001 <0.001 HEAVY-rX 0.218 0.346 <0.001 <0.001
GARCHX-t 0.326 0.145 <0.001 0.001 HEAVY-rX-t 0.951 1.000 <0.001 <0.001
GARCHX-skewt 0.016  0.050 0.383 1.000 HEAVY-rX-skewt 0.017 0.106  1.000 1.000
GIJRGARCHX 0.846 1.000 <0.001 0.012 LHEAVY-rX 0.204 0.272 <0.001 <0.001
GIJRGARCHX-t 1.000 0.730 <0.001 0.008 LHEAVY-rX-t 0.217 0.329 <0.001 <0.001
GJRGARCHX-skewt 0.250 0.176 1.000 0.592 LHEAVY-rX-skewt  0.013  0.045 0.036 0.045

7. Conclusion

7.1. summary

We investigated the impact of TRNAE derived news sentimarthe dynamics of daily natural gas futures prices
traded on the New York Mercantile Exchange (NYMEX). We immpénted the proposed LNSL model and constructed
autocorrelatednews sentiment probabilities (news sentiment) which cgsnaepositive, neutral or negative outlook
on natural gas prices, based on a 5-minute time grid fromelg@bing of 2003 to the end of 2010. Additionally, we
constructed several return and variation measures to gomtiie dynamics of first month natural gas futures prices.

To analyze the impact of news sentiment on the dynamics of datural gas futures prices, we employed event
studies and Granger causality tests.

We found that the price evolution of first month natural gaarfes contracts shows a mean reverting effect around
days which we refer to as extreme positive sentiment dayslitiddally, we found that the price evolution around
extreme negative sentiment days shows negative price ntamemhich strongly continues after the event day before
we observe a return to fundamentals. From this we conclualethiere is a significant relationship between news
sentiment and the evolution of natural gas futures returns.

From the Granger causality analysis we found that the drofvaews in non-trading periods causes effects in
overnight returns and that news sentiment is Granger camnsedlatility in the market. Also, we found that news
sentiment, in an absolute sense, is more sensitive to megathps in the market than by jumps in general, including
positive jumps. However, we found strong evidence that remmtiment severely Granger causes jumps. From this we
conclude that market participants trade as some functi@ggfegated news. More specifically, market participants
seem to hard sell or hard buy natural gas futures contracts wbws sentiment is high in an absolute sense.

30



Finally, we conducted an out-of-sample volatility foreag study in which we compared the one-step-ahead
forecasting performance of two types of volatility modefsso-called historical volatility models. The first is the
generalized autoregressive conditional heteroskedsstieARCH) of Engle (1982 and Bollerslev (1986 and the
second the high-frequency-based volatility (HEAVY) madef Shephard and Sheppai2010 andNoureldin et al.
(2011). By augmenting all models with a news sentiment variableegted the hypothesis if including news sen-
timent to volatility models results in superior volatilifgrecasts. Here we followed the forecasting study setup of
of Hansen and Lundé€005h and Koopman et al(2005 and conduct Superior Predictive Ability tests ldénsen
(20054 to test our hypothesis.

We found significant evidence that including news sentintentolatility models results in superior volatility
forecasts.

7.2. Final remarks

In this research we assumed a quasi Local level model for tiobserved news sentiment (that is, the Local
level model ofDurbin and Koopmar§2001) applied to all three news sentiment probabilities sepfrat As men-
tioned in Sectior? the news articles can be seen as draws from a trinomiallisioh. For further research, we
suggest to model the unobserved news sentiment by modakrigne varying trinomial distribution, for details see
Durbin and Koopmai2001).

Also, it might be interesting to analyze the impact of newstisgent on more individual futures contracts or
the whole forward curve. However, the latter is hard to aralgince natural gas is subject to seasonal effects, see
Borovkova and Gema(2006, and the forward curve is only liquid up to contracts whicatare longer than a year
from 2006.

Finally, it is of great interest to conduct an equal volgtiforecasting study based on a longer forecasting horizon
and for more volatility models, especially of the fractibimaegrated type.
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