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Abstract

We investigate the impact of Thompson Reuters News Analytics (TRNA) news sentiment on the
price dynamics of natural gas futures traded on the New York Mercantile Exchange (NYMEX). We
propose a Local News Sentiment Level (LNSL) model, based on the Local Level model of Durbin and
Koopman (2001), to construct a running series of news sentiment on the basis of the 5-minute time
grid. Additionally, we construct several return and variation measures to proxy for the fine dynamics
of the front month natural gas futures prices. We employ event studies and Granger causality tests to
assess the effect of news on the returns, price jumps and the volatility.

We find significant relationships between news sentiment and the dynamic characteristics of natural
gas futures returns. For example, we find that the arrival of news in non-trading periods causes
overnight returns, that news sentiment is Granger caused by volatility and that strength of news
sentiment is more sensitive to negative than to positive jumps. In addition to that, we find strong
evidence that news sentiment severely Granger causes jumps and conclude that market participants
trade as some function of aggregated news.

We apply several state-of-the-art volatility models augumented with news sentiment and conduct
an out-of-sample volatility forecasting study. The first class of models is the generalized autoregressive
conditional heteroskedasticity models (GARCH) of Engle (1982) and Bollerslev (1986) and the second
class is the high-frequency-based volatility (HEAVY) models of Shephard and Sheppard (2010) and
Noureldin et al. (2011). We adapt both models to account for asymmetric volatility, leverage and time
to maturity effects. By augmenting all models with a news sentiment variable, we test the hypothesis
whether including news sentiment in volatility models results in superior volatility forecasts. We find
significant evidence that this hypothesis holds.

Keywords: news sentiment, natural gas futures, state space modelling, Kalman filter, realized vari-
ance, bipower variation, Granger causality, volatility modelling.

1 Introduction

Over the last decade, the rise of algorithmic trading catalyzed the IT revolution in global financial mar-
kets. Algorithmic trading, and more specifically high frequency trading, has urged the need for more
refined data to analyze security price dynamics. Traditionally, the analysis of security price dynamics
was concentrated on responses of quantitative or hard measures, such as price derived data, corporate
fundamentals, macro economic statistics or other variables intended to proxy for qualitative characteris-
tics. Nowadays, rapid IT developments unable to process huge bulks of digitalized text to quantify soft
qualitative information such as sentiment. Recently, the business data provider Thompson Reuters has
introduced the Thompson Reuters News Analytics Engine (TRNAE). This engine is based on powerful
linguistic analysis techniques and conducts a computerized analysis on millions of news articles to deter-
mine whether the news articles reflect a positive, negative or neutral sentiment and the relevance for a
specific security.
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Behavioral economics and behavioral finance literature tell us that sentiment can affect the behavior and decision
making of individuals, seeSmith(2003) andNofsinger(2005). However, the amount of research on news sentiment
and security price dynamics is small. The article ofTetlock(2007) studies the relationship between daily Dow Jones
Industrial Average (DJIA) returns and sentiment measured by Harvard IV-4 Psychology Dictionary (HPSD) in the
Wall Street Journal. The same author studied the relationship between Standard & Poors 500 (S&P 500) companies
and HPSD based news sentiment, seeTetlock et al.(2008). In both articles he finds that news sentiment helps to
predict price dynamics. The more recent study byBollen et al.(2011) employs Granger causality analysis and Self-
Organizing Fuzzy Neural Networks to investigate the predictability of DJIA returns by sentiment derived from daily
text content of microblog Twitter. They find 86.7% accurate predictions of daily up and down changes in daily DJIA
returns.

The aim of our research is to investigate the impact of TRNAE derived news sentiment on the dynamics of daily
natural gas futures prices traded on the New York MercantileExchange (NYMEX). After crude oil, natural gas is the
largest and most liquid energy commodity traded. Like other(energy) commodities, natural gas is traded in the form
of futures contracts with monthly maturities that stretch several years into the future. Therefore, most research based
on (energy) commodities investigates the forward curve of futures prices, see for exampleBorovkova(2004) and
Borovkova and Geman(2006). However,Samuelson(1965) states that futures contracts with shorter time-to-maturity
should be more volatile. Because of that, the first month futures contract is the most liquid and thus sensitive contract.
Therefore, we only consider first month futures prices.

The TRNAE data contains news articles with measures of positive, neutral and negative sentiment, which are
intended to be interpreted as probabilities that the article conveys a positive, neutral or negative outlook on a specific
security price. We map the natural gas tagged TRNAE data intoan aggregated news sentiment on a 5-minute time
grid from the beginning of 2003 to the end of 2010.

Literature on behavioral processes states that animals1 virtually discount future payoffs as a function of their
seemingly exponential or hyperbolic decay, see for exampleBrannon et al.(2001), Nickerson(2009), Uttal (2008)
andReilly et al. (2011). Given that economic agents are in fact animals and assumedto be at least as intelligent as
the animals used in these studies we can state that economic agents aggregate news sentiment as a function of some
time decay. This gives reason to assume that the real unobserved sentiment can be modeled as an autoregressive time
series model.

Therefore, we utilize the state space modeling framework ofDurbin and Koopman(2001) to model the real un-
observed autoregressive news sentiment. Specifically, we apply their Local Level (LL) model specification to the
5-minute time grid news article probabilities. We name thisthe Local News Sentiment Level (LNSL) model. By
means of the Kalman filter we are able to filter-out the unobserved states of all probabilities for each day. By doing
this, we constructautocorrelatednews sentiment probabilities (news sentiment) which conveys positive, neutral or
negative outlook on natural gas prices, based on a 5-minute time grid from the beginning of 2003 to the end of 2010.

We construct several return and variation measures based ondifferent time frequencies to proxy for the dynamics
of natural gas futures prices. Specifically, we construct daily (squared) returns based on close-to-close (CtC), close-to-
open (CtO) and open-to-close (OtC) prices. Additionally, we make several daily realized measures based on intradaily
data on a 1- and 5-minute time grid. Specifically, we construct the realized variance, the more robust realized kernel
of Barndorff-Nielsen et al.(2008a) andBarndorff-Nielsen et al.(2008b), and the jump robust bipower variation of
Barndorff-Nielsen and Shephard(2004), to estimate the daily quadratic variance. The work ofBlack (1976), Nelson
(1991), Engle and Ng(1993) andGlosten et al.(1993) indicated the importance of asymmetric returns as a driverof
conditional variance, also known as aleverage effect. Therefore, we also construct realized semivariance and several
jump variation variables to proxy for (asymmetric) jumps based on the work ofBarndorff-Nielsen and Shephard
(2004) andBarndorff-Nielsen et al.(2008-42).

To analyze the impact of news sentiment on the dynamics of daily natural gas futures prices, we employ event
studies. Specifically, we setup event studies as described in MacKinlay (1997) and used inTetlock et al.(2008).

We find that the price evolution of first month natural gas futures contracts shows a mean reverting effect around
days which we refer to as extreme positive sentiment days. Also, we find that the price evolution around extreme neg-
ative sentiment days shows negative price momentum which strongly continues after the event day before we observe

1Most of these studies are based on experiments with animals like pigeons, rats and mice.
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a return to fundamentals. From this we conclude that there isa significant relationship between news sentiment and
the evolution of natural gas futures returns.

We find no unit roots in the constructed news sentiment and natural gas futures price dynamic measures. Therefore,
we are able to employ Granger causality test as first suggested by Granger(1969) and used byTetlock (2007) and
Bollen et al.(2011). We construct bivariate vector autoregression models which for all news sentiment measures with
all constructed price dynamic measures. We perform Grangercausality tests on these models to investigate whether
news sentiment measures Granger cause the price dynamic measures and vice versa.

We find that the arrival of news in non-trading periods causeseffects in overnight returns and that news sentiment
is Granger caused by volatility in the market. Also, we find that news sentiment, in an absolute sense, is more sensitive
to negative jumps in the market than by jumps in general, including positive jumps. However, we find strong evidence
that news sentiment severely Granger causes jumps.

From this we conclude that market participants trade as somefunction of aggregated news. More specifically,
market participants seem to hard sell or hard buy natural gasfutures contracts when news sentiment is high in an
absolute sense.

We conduct an out-of-sample volatility forecasting study in which we compare the one-step-ahead forecasting
performance of two types of volatility models of so-called historical volatility models. The first is the generalized
autoregressive conditional heteroskedasticity (GARCH) of Engle (1982) andBollerslev (1986) and the second the
high-frequency-based volatility (HEAVY) models ofShephard and Sheppard(2010) andNoureldin et al.(2011). The
main difference between both models is that GARCH models aresquared daily return driven and HEAVY models are
driven by daily estimates of the quadratic variance such as the realized variance or the realized kernel. Put differently,
GARCH models are daily return (low frequency) driven and HEAVY models are intraday (high frequency) driven.

Specifically, we model GARCH and HEAVY-r type models for several error return distributions, including models
that allow for asymmetric returns based on the work ofGlosten et al.(1993) (GARCH type) andBarndorff-Nielsen et al.
(2008-42) (HEAVY-r type). We extend all volatility models with a time-to-maturity variable to account for the Samuel-
son effect, as suggested byBorovkova and Geman(2006) andBaillie et al.(2007).

The setup of our forecasting study is similar to the work ofAndersen et al.(1999), Martens(2002), Hansen and Lunde
(2005b) andKoopman et al.(2005). The essential difference is that we are not interested in the forecasting perfor-
mance of a particular model. Instead, we are interested in the hypothesis if including news sentiment to volatility
models results in superior volatility forecasts. Specifically, we follow the work ofHansen and Lunde(2005b) and
Koopman et al.(2005) and conduct Superior Predictive Ability tests ofHansen(2005a) to test our hypothesis.

We find significant evidence that including news sentiment tovolatility models results in superior volatility fore-
casts.

This writing is organized as follows. Section2 describes the construction of the LNSL model. The natural gas
futures price data and constructed low and high frequency measures are described in Section3. Section4 considers
the details on several volatility models and the methodology concerning the forecasting of the volatility models are
described in Section5. All results, including the event studies and Granger causality tests are presented in Section6.
Section7 contains a summary and suggestions for further research.

2. Modeling news sentiment

2.1. Average news sentiment

We define the news sentiment of a news itemXn as a triple(sposX,n, s
neu
X,n, s

neg
X,n) for all n = 1, 2, . . . , N . Here

sposX,n, sneuX,n andsnegX,n represent the probability that news itemXn conveys a positive, neutral or negative outlook on
the news item, respectively. Given that the sum of these three probabilities adds up to 1 andsneuX,n = 1− sposX,n − snegX,n,
the news sentiment of a news item can be seen as a draw from a, most most likely time-varying, trinomial distribution
with parameterssposX,n, snegX,n andN .

News items may arrive non-equispaced and non-sequential over time. To gauge news sentiment with respect to
time we propose a functionf which maps the news sentiment of all theNd news itemsXnd

observed at(d− 1, d] to
d, such that

∑D
d=1

∑Nd

nd=1 nd = N , which implies
∑T

d=1 Nd = N . This results in an aggregated news item̄Xd given
by

X̄d := f (wd, X, d) , for d = 1, 2, . . . , D, (1)
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wherewd is aNd-dimensional vector of weights andX theN -dimensional vector of news items. In this research we
use a simple weighted average forf (wd, X, d), such that the aggregated news sentiment(sposX,n, s

neu
X,n, s

neg
X,n) is given

by

s̄pd := N−1
d

Nd∑

nd=1

wnd
spX,nd

, ∀p ∈ {pos, neu, neg} , (2)

where0 ≤ Nd, Nd 6= Ns andNd = Nr whered 6= s, d 6= r ∀d, s, r ∈ {1, 2, . . . , D}. The averaged probabilities̄spd
are normalized by

spd =
s̄pd

s̄posd + s̄neud + s̄negd

. (3)

When nothing is observed at(d− 1, d], Nd is equal to zero. In this case, we defines̄pd and thusspd as missing.

2.2. Absolute news sentiment
As mentioned earlier the news sentiment of a news itemX̄d consist three probabilities.(s̄posd , s̄neud , s̄negd ). By

definition this is a relative measure2. We introduce a new variable which we define as the absolute news sentiment.
This variable is given by

¯ASd := |s̄posd − s̄negd |(1− s̄neud ). (4)

The absolute news sentiment variable can be interpreted as ameasure of news sentiment regardless of whether the
news sentiment is positive or negative. This reduces the information about the news sentiment but it does indicate the
news sentiment in an absolute positive or absolute negativesense.

2.3. Local news sentiment level model
We defineSp

d as the real unobserved probability on news sentiment at timed. Literature on behavioral processes
states that animals3 virtually discount future payoffs as a function of their seemingly exponential or hyperbolic decay,
see for exampleBrannon et al.(2001), Nickerson(2009), Uttal (2008) andReilly et al.(2011). Given that economic
agents are in fact animals and assumed to be at least as intelligent as the animals used in these studies we can state that
economic agents aggregate news sentiment as a function of some time decay. This gives reason to assume that the real
probabilitySp

t contains information on future probabilities and implies thatSp
t can be modeled as an autoregressive

time series model.
Unfortunately,Sp

d is unobserved. As a proxy forSp
d we use the observed probabilityspd as defined in (3). A

simple but effective way of modeling an unobserved autoregressive time series is the Local Level (LL) described in
Durbin and Koopman(2001)4. Applied to the observed and unobserved probabilitiesspd andSp

d we define the Local
News Sentiment Level (LNSL) model as follows

S∗p
d+1 = S∗p

d + ηpd ηpd
d→ IID(0, σ2

ηp),

s∗pd+1 = S∗p
d + ǫpd ǫpd

d→ IID(0, σ2
ǫp),

(5)

wheres∗pd+1 andS∗p
d+1 are the logit transformed equivalents ofspd andSp

d
5. The first equation in (5) is the state

equation which describes the evolution of the unobserved state ofS∗p
d . The second equation represents the signal

equation. Obviously, the signal equation describes the evolution of the observeds∗pd . Both equations are modeled as
random walks, such that the LNSL model is equivalent to the LLmodel6. Modifications and extensions of the LL,
and thus the LNSL model, such as an Autoregressive Moving Average (ARMA) model for the state equation, can be
found in the work ofDurbin and Koopman(2001).

2If for exampleX̄d is defined as(s̄posd = 0.5, s̄neu
d = 0.4, s̄neg

d = 0.1) andX̄e as(s̄pose = 0.5, s̄neu
e = 0.1, s̄neg

e = 0.4) the values of
s̄posd ands̄pose are equal in value but are different in interpretation.

3Most of these studies are based on experiments with animals like pigeons, rats and mice.
4As mentioned earlier, the news sentiment can also be seen as a time-varying trinomial distribution with parametersSpos

d , sneg
d andN . For

such distributionsDurbin and Koopman(2001) propose a non-Gaussian state space model instead of the LL. Therefore we actually propose a
quasi-LL model.

5Forx ∈ [0, 1], the logit transformation ofx is given byx∗ = ln (x) − ln (1− x) such thatx∗ is a real value. The logit transformations of
the probabilitiesspd andSp

d are required by the LNSL model because both equations are defined onR.
6The LNS model is a model representation for the Exponential Weighted Moving Average (EWMA) model, seeDurbin and Koopman(2001).
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2.3.1. The Kalman filter
We are interested in the unobserved state ofS∗p

d for all d. Because the states cannot be observed the LNSL model
represents a system of many unknowns. However, by assuming stochastic processes for the evolution of both the
unobserved state and the signal, the dimensionality of thissystem is reduced to the characteristic parameters of these
stochastic processes. Because of that, these parameters are also calledhyperparameters.

One way to filter the LNS model in (5) is by means of a Kalman Filter7. Applied to the LNSL model it updates
our knowledge of the unobserved state when a new observations∗pd becomes available. That is, it updates the mean
S̃∗p
d = E[S∗p

d |Fd−1] and variancePd = Var[S∗p
d |Fd−1], whereFd−1 contains{s∗p1 , s∗p2 , . . . , s∗pd−1}. The state

momentsS̃∗p
d = E[S∗p

d |Fd−1] andPd = Var[S∗p
d |Fd−1] can be computed by recursively solving the following

equations

vd = s∗pd − S∗p
1 Fd = Pd + σ2

ǫ ,
Kd = PdF

−1
d ,

S̃∗p
d+1 = S̃∗p

d +Kdvd Pd+1 = Pd (1−K) + σ2
η,

S̃∗p
1 = s∗p1 P1 = 1e7,

wherevd is the prediction error,Fd the prediction error variance,Kd the Kalman gain andd = 1, 3, . . . , D. The
Kalman filter estimates the state at timed by exponentially weighting previous states. More details and generalizations
can be found inDurbin and Koopman(2001).

2.3.2. The Kalman smoother
The Kalman Smoother considers the estimation of the stateS∗p

d+1 conditional onFD. HereFD contains{s∗p1 , s∗p2 , . . . , s∗pD }.

The conditional density of(S∗p
d |FD) is N (Ŝ∗p

d , Vd), whereŜ∗p
d = E[S∗p

d |FD] andVd = Var[S∗p
d |FD]. These quan-

tities can be computed by solving the following backward recursion equations

rd−1 = vd

Fd
+ Ldrd Nd−1 = F−1

d Zd + L2
dNd,

Ld = 1−Kd,
Ŝ∗p
d = S̃∗p

d + Pdrd−1 Vd = Pd − P 2
dNd−1,

whererD = 0 andd = 1, 2, . . . , D. Since the Kalman smoother makes use of both forward (Kalmanfilter) and
backward recursions it effectively estimates the state at timed by exponentially weighting the states around it. More
details and generalizations can be found inDurbin and Koopman(2001).

2.3.3. Missing observations and forecasting
As mentioned beforespd can be missing in case of no observed news. An advantage of applying the Kalman filter

and smoother to the LNSL model is that it handles such missingobservations with great ease.
In casespd is missing,S̃∗p

d+1 can be computed by settingvd andKd to zero in the Kalman filter equations. This

yields to S̃∗p
d+1 = S̃∗p

d andPd+1 = Pd + σ2
η. Effectively, the expectation of the state at timed + 1 is equal to the

expectation of the state at timed. The state variance grows since the uncertainty about the state in case of a missing
observation becomes bigger.

Likewise,Ŝ∗p
d+1 can be computed by also settingLd = 1 in casespd is missing. The difference is that the uncertainty

about the state might be growing slower since future observations can be inFD, hence, provide information about
future states and hence, provide information about the uncertainty of the state at timed.

Theh−step ahead forecastE[S∗p
D+h|FD] can be found by simply handlingd = (D + 1, D + 2, . . . , D + h) as a

missing observations. Notice that, sincerD = 0, bothŜ∗p
D+h andS̃∗p

D+h are equal.

7The Kalman Filter was first derived byKalman(1960).
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2.4. Parameter estimation

Let Ψ be the vector of parameters representing the unknowns in theLNSL model specified in Equation (5). The
Kalman filter recursions construct prediction errorsvt and prediction error variancesFd subject toΨ. We assume
that the prediction errors are independent and identicallydistributed with mean zero and finite variance. If we assume
normality for the prediction errors we can use the Gaussian likelihood functionL (y, θ) for the LNSL model. The
Gaussian for the LNSL model log-likelihood is specified as follows

L (s,Ψ) := log L (y, θ) = −D

2
log 2π − 1

2

D∑

t=1

|Fd| −
1

2

D∑

d=1

v′dF
−1
d vd, (6)

wheres represents the news sentiment data. Maximum likelihood (ML) estimation can be used to estimateΨ. The
ML estimation procedure involves maximization of the log-likelihood function in (6) subject toΨ. The ML estimate
Ψ̂ maximizes the log-likelihood function in (6). Since we assume normality for the prediction errors the MLestimate
Ψ̂ is actually a Quasi maximum likelihood estimate (QML).

2.5. News sentiment data

The news items we use in this research are provided by the Thomson Reuters NewsScope Sentiment Engine
(RNSE) for historical commodities data. The dataset contains news items from the beginning of 2003 until the end
of 2010, and are time-flagged to the millisecond. Each news item is provided with a positive, neutral and negative
sentiment measurement intended to be interpreted as a probability of a positive, neutral and negative outlook on the
news item. Since all items are tagged by product name, the probabilities can also be interpreted as a positive, neutral
and negative outlook on the commodity price of the tagged product. Additionally, the RNSE news items also provide
a relevance indicator, item-type and several other variables we will not use in this work. The relevance indicator is a
measure represented by the probability that the news item isrelevant for the tagged product. The item type variable
shows if the news item represents an ’ALERT’, ’ARTICLE’ or other types of news items.

We are interested in the impact of news sentiment on the pricedynamics of natural gas futures prices. Therefore
we filter the RNSE dataset for news items tagged as ’NGS’, which are natural gas related. We consider the resulting
310614 news items asX∗

n for n = 1, . . . , 310, 614. From this dataset we only consider the ’ALERT’ and ’ARTICLE’
item types because they convey actual news. Also we remove news items for which the relevance indicator is smaller
than 0.3 and items for which|sposX,n − snegX,n| ≤ 0.05. This cleaning procedure resulted in 185982 news items suchthat
Xn for n = 1, . . . , 185, 982.

We aggregate the cleaned news item dataset on a 5-minute timegrid by applying equations (2) and (3) to every
probability inXn. From the beginning of 2003 to the end of 2010 this results in 841,536 5-minute intervals of which
126,789 are estimated as̄Xd.

In Table 1 some descriptive statistics are presented forX∗
n, Xn and X̄d. Interesting are the time difference

statistics for the retained datasetXn. Here we see that new news arrives within 23 minutes on average and according
to a median of less than 6 minutes, most of the times even faster. This is due to less news item arrivals in weekends
and after trading hours. The time distribution of the estimated intervals or aggregated news itemsX̄t are equal by
definition. The weekday frequencies in Figure1 clearly show the weekday dependent news item arrival rate. The
month frequencies show a small decreasing peak from September to November. This can be related to the beginning
of the natural gas season8.

Finally, Figure2 shows the sample autocorrelation functions (SACF) based for the probabilities inX̄d. The SACFs
are constructed with 95% confidence intervals based on heteroskedasticity robust standard errors ofWhite(1980). The
SACFs show clear autocorrelation for the probabilities. This strengthens the statement that economic agents aggregate
news sentiment as a function of some time decay and hence the use of the LNSL model.

8The natural gas season starts around September-October and more news items can arrive due to projected supply and demand related news for
the winter months.
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Table 1:Descriptive statistics - RawXn and 5-minute aggregatedX̂t news sentiment.
Total dataset Retained dataset

sposX∗,n sneu
X∗,n sneg

X∗,n sposX,n sneu
X,n sneg

X,n

Observations 310614 310614 310614 Observations 185982 185982 185982
Mean 0.402 0.236 0.362 Mean 0.421 0.209 0.370
Median 0.357 0.156 0.320 Median 0.390 0.152 0.324
Std.Dev. 0.245 0.205 0.228 Std.Dev. 0.251 0.164 0.234
Skewness 0.280 1.481 0.617 Skewness 0.171 1.440 0.557
Kurtosis 1.636 4.373 2.157 Kurtosis 1.529 4.421 1.974
Minimum 0.030 0.014 0.038 Minimum 0.030 0.014 0.038
Maximum 0.786 0.880 0.830 Maximum 0.786 0.824 0.830
Time differences Time differences

minutes days minutes days
Mean 13.540 0.009 Mean 22.614 0.016
Median 3.800 0.003 Median 5.967 0.004
Std.Dev. 59.515 0.041 Std.Dev. 93.909 0.065
Skewness1/3 31.177 2.761 Skewness1/3 29.073 2.575
Kurtosis1/4 31.556 5.123 Kurtosis1/4 27.908 4.530
Minimum 0.000 0.000 Minimum 0.000 0.000
Maximum 4457.367 3.095 Maximum 4865.350 3.379

Aggregated news sentiment - 5-minute
s̄post s̄neu

t s̄neg
t

Intervals 841536 841536 841536
Estimated intervals 126789 126789 126789
Mean 0.423 0.199 0.377
Median 0.412 0.152 0.346
Std.Dev. 0.231 0.146 0.219
Skewness 0.145 1.533 0.580
Ex.Kurtosis -1.305 2.133 -0.840
Minimum 0.030 0.014 0.038
Maximum 0.030 0.014 0.038
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Figure 1:Aggregated interval frequencies.
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Figure 2:Aggregated interval autocorrelation functions with 95% confidence intervals based on heteroskedasticity robust standard errors ofWhite (1980).

3. Natural gas futures returns, volatility and jumps

We investigate the price dynamics of first month natural gas futures contracts traded on New York Mercantile
Exchange (NYMEX). Since the first-month-ahead contract is more liquid than futures contracts with higher time-to-
maturity we do not consider multi-month-ahead futures contracts. Thompson Reuters provided us a sample of 415,371
last quotes from January 3 2006 to December 31 2010 on a 1-minute time-frame, based on 1,257 trading days. After
cleaning the sample9, we constructed a 1-minute and a 5-minute time grid from 9:00to 14:30 EST, corresponding to
331 and 67 quotes per trading day. Finding the closest quotesbefore or equal to each grid point in time resulted in a
total of 416,067 and 84,219 quotes for the 1-minute and 5-minute time grid respectively.

From the 5-minute time grid quotes we constructed mid-quotepricesPt,i, wherei = 1, . . . , 331 in trading day
t. From these mid-quote prices we constructed 5-minutert,i, close-to-close (CtC)rt,CtC , close-to-open (CtO)rt,CtO

and open-to-close (OtC)rt,OtC continuously compounded returns10. Wherert,CtC , rt,CtO andrt,OtC are daily return
measures denoting the log returns on(Pt−1,331, Pt,331), (Pt−1,331, Pt,1) and(Pt,1, Pt,331), respectively. Obviously,
this results in 1257rt,OtC and only 1,256rt,CtC andrt,CtO returns.

Following Barndorff-Nielsen et al.(2008-42), we assume the log price process to be represented by a Brownian
semimartingale (BSM)

Yt =

∫ t

0

asds+

∫ t

0

σsdWs, t ≥ 0, (7)

wherea is a locally bounded predictable drift process andσ is acàdlàg volatility process, adapted to some common
filtrationFt, allowing for leverage effects. The quadratic variance (QV) is given by

[Y ]t =

∫ t

0

σ2
sds, (8)

and thus
d [Y ]t = σ2

sdt, (9)

tell us everything we can know about theex-postvariation ofY . In case ofrt,i for i = 1, . . . , I, the squared realized
volatility or realized variance estimator is a consistent estimator for QV and is given by

RVt =
I∑

i=1

r2t,i. (10)

9We cleaned the quote data according to the cleaning procedure described inBarndorff-Nielsen et al.(2008b).
10A continuously compounded or log return for pricePi is defined aslog

(
Pi

Pi−1

)
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An econometric formalization can be found inAndersen et al.(2001) andBarndorff-Nielsen and Shephard(2002).
However, as pointed out byHansen and Lunde(2006), the impact of microstructure noise severly influencesRVt.
More microstructure noise robust estimators are: pre-averagingJacod et al.(2009), multiscaleZhang(2006) and the
realized kernelBarndorff-Nielsen et al.(2008a). In this research we use the realized kernel with a Parzen weight
function which is given by

RKt =

H∑

i=−H

k

(
h

H + 1

)
γh, γh =

I∑

j=|h|+1

rj,trj−|h|,t, (11)

wherek (x) is the Parzen kernel function

k (x) =





1− 6x2 + 6x2 if 0 ≤ x ≤ 1/2

2 (1− x)
3 if 1/2 < x ≤ 1

0 otherwise

To consistently estimate the quadratic variance it is necessary forH to increase with the sample size. Since the degree
of microstructure noise, and thus the size ofH, can differ for differentt, we used the 1-minute time grid futures
prices to allow for higherH in case of more noisy days. We refer to the work ofBarndorff-Nielsen et al.(2008a)
and Barndorff-Nielsen et al.(2008b) for the details of the bandwidth choice ofH, since we used the exact same
implementation.

In case of jumps in the log-price process the assumption of aBSM is not sufficient. Now we assume a Brownian
semimartingale plus jump process (BSMJ ) given by

Yt =

∫ t

0

asds+

∫ t

0

σsdWs + Jt, t ≥ 0, (12)

whereJ is a jump process. If we write jumps inY as∆Yt = Yt − Yt−1, then

[Y ]t =

∫ t

0

σ2
sds+

∑

s≤t

(∆Ys)
2
, (13)

and
d [Y ]t = σ2

sdt+∆Yt. (14)

The work of Barndorff-Nielsen and Shephard(2004) and Barndorff-Nielsen and Shephard(2008) introduced the
[1, 1]-order Bipower variation process, defined as

{Y }[1,1]t =

[t/δ]∑

i=3

|Yt,i − Yt,i−1| |Yt,i−1 − Yt,i−2| , (15)

for δ → 0. They also showed that ifY is aBSMJ , with zero drift andσ independent ofW then

{Y }[1,1]t = µ2
1

∫ t

0

σ2
sds, (16)

whereµ1 = E|u| =
√

2/π ≃ 0.79788 andu
d→ N (0, 1). Henceµ−2

1 {Y }[1,1]t =
∫ t

0
σ2
sds. They found that this

estimator for
∫ t

0
σ2
sds is quite robust to jumps. This implies the following equality

[Y ]t − µ−2
1 {Y }[1,1]t =

∑

s≤t

(∆Ys)
2
. (17)

Thus, Bipower variation allows us to robustly estimate the jump variance
∑

s≤t (∆Ys)
2.
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Table 2:Summary statistics for daily NG first month trade data based on 1257 trading days from the beginning of 2006 to the end of 2010. The realized kernelRKt is based on 1-minute price data time-grid. All
other realized measuresRVt, RSV +

t , RSV −
t , BPVt, BPJVt, BPUVt and BPDVt are based on the 5-minute price data time-grid. TheSACF (l) statistic represent the sample autocorrelation function

for lag l. Bold SACF (l) statistics are significant at a 5% significance level based on heteroskedasticity robust standard errors described in White (1980). PP + drift statistic represents the Phillips Perron
unit-root test statistic where a drift term is assumed in the model, seePhillips and Perron (1988) for details. ADF(l) + drift is the Augmented Dickey Fuller test statistic where up to l lags and a drift term are
assumed in the model, seeSaid et al.(1984) for details. Bold (and italic) Phillips Perron and Augmented Dickey Fuller test statistics represent rejection of an unit-root based on a 5% (1%) significancelevel. The
lowertriangle matrix represents the correlation matrix.

rCtC,t rCtO,t rOtC,t r2CtC,t r2CtO,t r2OtC,t RVt RKt RSV −
t RSV +

t BPVt BPJVt BPDVt BPUVt

mean1e3 -0.71 0.65 -1.36 1.23 0.93 0.32 0.35 0.32 0.18 0.17 0.28 0.06 0.04 0.03
median1e3 0.03 -0.33 -1.15 0.44 0.28 0.13 0.24 0.24 0.12 0.11 0.20 0.02 0.01 0.01
std.dev.1e3 35.05 30.44 17.93 2.94 3.10 0.55 0.36 0.31 0.21 0.21 0.28 0.18 0.16 0.14
skewness 0.63 1.15 -0.06 12.31 15.99 3.86 4.08 4.42 5.40 5.184.46 7.95 9.42 7.51
ex.kurtosis 3.79 9.11 0.85 220.61 323.53 21.00 25.33 32.21 51.79 36.97 34.60 89.56 149.56 83.32

SACF(1) -0.02 -0.05 0.02 0.02 0.02 0.13 0.57 0.60 0.37 0.45 0.64 0.03 0.01 0.06
SACF(5) -0.03 -0.04 0.01 0.08 0.04 0.12 0.48 0.46 0.29 0.31 0.51 0.32 0.03 0.04
SACF(10) -0.03 -0.02 0.03 0.08 0.04 0.09 0.41 0.39 0.35 0.21 0.44 0.21 0.11 -0.02
SACF(20) 0.01 0.05 0.02 0.05 0.05 0.05 0.27 0.27 0.20 0.17 0.32 0.06 0.02 0.02

PP + drift -36.09 -37.23 -34.76 -34.57 -34.59 -31.04 -18.59 -17.72 -23.89 -21.81 -16.65 -34.29 -34.91 -33.21
ADF(1) + drift -24.75 -25.21 -23.87 -24.10 -24.28 -20.94 -13.25 -13.49 -16.39 -14.68 -12.75 -22.36 -24.22 -21.53
ADF(12) + drift -8.80 -9.06 -9.32 -6.26 -6.91 -6.26 -4.90 -4.70 -4.60 -5.72 -4.69 -7.27 -8.40 -9.36
ADF(24) + drift -7.67 -6.57 -6.37 -4.26 -4.49 -4.01 -3.31 -3.29 -3.36 -3.83 -3.42 -4.55 -5.90 -5.76

rCtC,t -
rCtO,t 0.86 -
rOtC,t 0.50 -0.02 -
r2CtC,t 0.24 0.31 -0.05 -
r2CtO,t 0.30 0.36 -0.03 0.92 -
r2OtC,t -0.08 -0.02 -0.13 0.16 0.04 -
RVt 0.05 0.05 0.02 0.22 0.16 0.56 -
RKt 0.07 0.05 0.06 0.25 0.20 0.50 0.90 -
RSV −

t -0.14 0.05 -0.36 0.20 0.13 0.56 0.84 0.72 -
RSV +

t 0.22 0.02 0.40 0.17 0.14 0.37 0.84 0.80 0.41 -
BPVt 0.09 0.05 0.08 0.24 0.20 0.44 0.86 0.93 0.68 0.77 -
BPJVt -0.04 0.01 -0.09 0.08 0.01 0.42 0.64 0.36 0.61 0.47 0.16 -
BPDVt -0.27 0.02 -0.57 0.07 0.00 0.38 0.37 0.16 0.76 -0.13 0.03 0.68 -
BPUVt 0.26 -0.02 0.53 0.03 0.02 0.14 0.43 0.30 -0.05 0.77 0.18 0.56 -0.22 -
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Applied to our 5-minute returnsrt,i we estimate the Bipower variationBPVt process as

BPVt = µ−2
1

i≤t∑

i=3

|rt,i − rt,i−1| |rt,i−1 − rt,i−2| . (18)

For simplicity we already multiplied the estimator for (15) by µ−2
1 . We estimate the Bipower jump variationBPJVt

for rt,i by
BPJVt = RVt −BPVt, (19)

whereRVt is the simple QV estimator given in (10) andBPVt the scaled Bipower variation estimator given in
(18). Notice that sinceBPVt is a jump robust estimator for QV,BPJVt is asymptotically equal to zero in case of
Yt ∈ BSM, which means that the log-price process does not contain a jump process. In the case of nonzeroBPJVt

we haveYt ∈ BSMJ implying a jump process in the log-price evolution. Therefore, theBPJVt is a neat proxy for
jump variation and jumps over time.

The research ofBlack (1976), Nelson(1991), Engle and Ng(1993) andGlosten et al.(1993) indicated the impor-
tance of asymmetric returns as a driver of conditional variance, also known as aleverage effect. Barndorff-Nielsen et al.
(2008-42) introduce the Realized semivariance (RSV) which allows usto estimate the negative and positive part of
the QV and hence the negative and positive part of jump variation. The downside realized semivariance applied tort,i
is estimated by

RSV −
t =

I∑

i=1

r2t,i1rt,i≤0, (20)

where1(·) is the indicator function. Equivalently, the upside realized semivariance is given by

RSV +
t =

I∑

i=1

r2t,i1rt,i≥≤0. (21)

This implies
RV = RSV − +RSV +. (22)

Barndorff-Nielsen et al.(2008-42) show that in probability theRSV − andRSV + are both half theRV . Following
this result allows us to estimate negative and positive equivalents ofBPJVt, see (19). Specifically, the Bipower
downward varianceBPDVt is given by

BPDVt
∼= RSV −

t − 1

2
BPVt. (23)

Equivalently, the Bipower upward varianceBPUVt is given by

BPUVt
∼= RSV +

t − 1

2
BPVt. (24)

These variables are proxies for negative and positive jump variation. Also theBPDVt andBPUVt can be negative
for small samples, since23and24hold asymptotically, seeBarndorff-Nielsen et al.(2008-42).

For our dataset Table2 reports the basic summary statistics. It is interesting to note that the realized measure
estimatesRKt andRVt are much smaller than the variance of squared daily returnsr2t,CtC . Notice thatrt,CtC is the
sum ofrt,CtO andrt,OtC . Given thatrt,OtC is constructed by the first and last price of dayt used by the realized
measures, it is not strange thatr2t,OtC is of the same order asRKt andRVt. This implies that the more noisy11 r2t,CtO

severely influences the size ofr2t,CtC . The summary statistics clearly show strong autocorrelation for most realized
measures. The squared returns show much less significant autocorrelation. The correlation between the realized
measures are high. Interesting are the correlations between the jump variation measures and the returns. This implies
evidence of leverage effects. Also,RKt shows a higher correlation with the jump robustBPVt thenRVt. This
implies thatRKt is more robust to jumps thanRVt and hence superior representation ofex-postvariance.

11The CtO measures are more noisy because markets are not open 24 hours a day and 7 days a week. Additionally, extra noise is related to
roll-effects, since the first month futures contract is rolled over into the second month contract at the end of every month.
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4. Volatility models

In this section we discuss modeling of time-varying volatility. Specifically, we discuss extensions of two classes
of so-called historical volatility models. The first is the generalized autoregressive conditional heteroskedasticity
(GARCH) ofEngle(1982) andBollerslev(1986) and the second the high-frequency-based (HEAVY) volatility models
of Shephard and Sheppard(2010) and Noureldin et al.(2011). The main difference between both models is that
GARCH models are squared daily return driven and HEAVY models are driven by daily estimates of the quadratic
variance such as the realized variance or the realized kernel. Put differently, GARCH models are daily return (low
frequency) driven and HEAVY models are intraday (high frequency) driven.

For both model classes we assume the following model for the daily returns

rt,CtC = e
1
2
htǫt, t = 1, . . . , T, (25)

whereǫt is either:ǫt
d→ N (0, 1) (Normal) orǫt

d→ ⊔ (ν) (Student-t) orǫt
d→ S‖⌉⊒ − ⊔ (λ, ν) (Hansen Skewed-t12).

Hereλ is related to the skewness andν to the degrees of freedom, where we requireν > 2. The Student-t and Hansen
Skewed-t distributions allow for fatter tails and, in the case of the Hansen Skewed-t distribution, positive or negative
skewness, which are both very common in commodity return distributions.

The work ofBorovkova and Geman(2006) implies a strong relationship between time-to-maturityTM and the
variance of natural gas futures returns. Specifically, the returns of futures contract with shorter time-to-maturity
showed a higher variance. This time-to-maturity effect canbe related to the Samuelson hypothesis which states that
futures prices should exhibit higher volatility for shorter time-to-maturity, seeSamuelson(1965). Baillie et al.(2007)
acknowledge the same relationship with other commodity futures returns and estimate time-to-maturity augmented
volatility models. For that reason we augment all our volatility models with a time-to-maturity variableTMt to
adjust for the time-to-maturity effect. HereTMt represents the number of days left at timet until the futures contract
matures.

4.1. GARCH models

The GARCH(P,Q) model for (35) is given by

Var[rCtC,t+1|Ft] = exp (ht+1) = exp

(
α0 +

P∑

p=1

αpr
2
CtC,t−p+1 +

Q∑

q=1

βqht

)
(26)

whereβq ∈ (0, 1) for all q andFt contains the set of returns up to timet. In this research we only considerQ = 1
andP = 1. Including the time-to-maturity termTMt, we define our GARCH model as

ht+1 = α0 + α1r
2
CtC,t + βht + τTMt. (27)

For the GARCH model we assumeǫt in (35) to be normally distributed. We name the GARCH model with Student-t
and Skewed-t distributions forǫt as GARCH-t and GARCH-skewt respectively. Notice that the model in (33) allows
to forecast the volatility for timet + 1 at timet. For all GARCH models we useh1 = (α0 + σ̂2(r2CtC,t))/1 − β as
initial value, wherêσ2(r2CtC,t) is the sample variance ofr2CtC,t.

4.2. HEAVY models

Given (35), the HEAVY model ofShephard and Sheppard(2010) is defined as a system of two equations

Var[rCtC,t+1|FHF
t ] = exp(ht+1) = exp(αh,0 + αh,1RMt + βhht) (28)

E[RMt+1|FHF
t ] = µt+1 = αµ,0 + αµ,1r

2
t + βµht(29)

whereβh,βµ ∈ [0, 1) andFHF
t contains the set of high frequency returns up to timet. The second equation can

be used to estimate h-step-ahead forecastsVar[rt+h|FHF
t ] for h > 1. In this research we are only interested in

12Details on the Hansen Skewed-t distribution can be found inHansen(1994).
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1-step-ahead forecasts. Therefore we only consider the first equation whichShephard and Sheppard(2010) define as
the HEAVY-r model. ForRMt we use the more robust realized kernelRKt. Including the time-to-maturity termT
we define the HEAVY-r model as

ht+1 = αh,0 + αh,1RKt + βhht + τTMt, (30)

under the restrictionβh ∈ (0, 1). For the HEAVY-r model we assumeǫt in (35) to be normal distributed. We name
the HEAVY-r model with Student-t and Skewed-t distributions for ǫt as HEAVY-rt and HEAVY-rskewt respectively.
For all HEAVY-r models we useh1 = (αh,0 + R̄K)/1− βh as initial value, whereR̄K is the sample mean ofRKt.
Notice that the (distribution homogeneous) HEAVY-r modelsare equal to the GARCH models ifr2t,CtC is substituted
for RKt. Comparable to the GARCH model, notice that the model allowsto compute the expected volatility for time
t+ 1 at timet.

4.3. Leverage effects

As noted earlier, literature suggests the importance of asymmetric returns as a driver of conditional variance also
known as aleverage effect, seeBlack (1976), Nelson(1991), Engle and Ng(1993) andGlosten et al.(1993). We
extend our GARCH model in the spirit ofGlosten et al.(1993). Doing so, (33) becomes

ht+1 = α0 + α1r
2
CtC,t + βht + τTMt + γr2CtC,t1(rCtC,t<0), (31)

where1(·) is the indicator function. We name this model the GJRGARCH13 model. Analogously to the GARCH case,
for the GJRGARCH model we assumeǫt in (35) to be normally distributed. We name the GJRGARCH model with
Student-t and Skewed-t distributions forǫt as GJRGARCH-t and GJRGARCH-skewt, respectively.

The class of HEAVY models can be extended in the same way as theGARCH models concerning the leverage ef-
fect. Shephard and Sheppard(2010) suggest including a realized semivariance measure to (30). Barndorff-Nielsen et al.
(2008-42) found log-likelihood improvements by also including the Bipower variation estimateBPVt. Therefore, we
propose to extend (30) with the Bipower downward variation estimateBPDVt which includes both the realised
semivariance estimateRSV −

t and the Bipower variation estimateBPVt. The model is given by

ht+1 = αh,0 + αh,1RKt + βhht + τTMt + γhBPDVt, (32)

We name this the LHEAVY-r model. Analogously to the HEAVY case, for the LHEAVY-r model we assumeǫt in
(35) to be normal distributed. We name the LHEAVY-r model with Student-t and Skewed-t distributions forǫt as
LHEAVY-rt and LHEAVY-rskewt, respectively.

4.4. News sentiment augmented volatility models

We are interested in the effect of news sentiment on the conditional varianceVar[rt+1,CtC |FHF
t ]. For simplicity

reasons and to reduce the number of parameters, we augment both the GARCH and HEAVY-r model classes with only
the Kalman filtered absolute sentiment variablẽASt|t

14. In the spirit of naming cross-sectional variable augmented
GARCH models, seeEngle(2002), we name the news sentiment augmented model a GARCHX model15. We define
it as follows

ht+1 = α0 + α1r
2
CtC,t + βht + τTMt + φÃSt|t. (33)

Analogously the HEAVYX-r is the news sentiment augmented HEAVY equivalent of the GARCH model. This model
is defined as

ht+1 = αh,0 + αh,1RKt + βhht + τTMt + φÃSt|t. (34)

For both the GARCHX and the HEAVYX-r models we assumeǫt in (35) to be normally distributed. The GARCHX
and HEAVYX-r models with Student-t and Skewed-t distributions forǫt are denoted as GARCHX-t, HEAVYX-rt,

13The abbreviation GJR stands for Glosten Jagannathan Runkle, the authors ofGlosten et al.(1993).
14See Sections2 and6.1for the exact definition of̃ASt|t
15Notice that the inclusion of the (cross-sectional) time-to-maturity termTMt in the standard GARCH model already is a GARCHX model.

But since the inclusion ofTMt is essential when working with commodity futures prices, we donot name our GARCH models GARCHX models.
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GARCHX-skewt and HEAVYX-rskewt respectively. In the same way the GJRGARCHX and LHEAVYX models
represent the news sentiment augmented equivalents of the GJRGARCH (31) and LHEAVY (32) models. Obvi-
ously, the GJRGARCHX-t, LHEAVYX-t models assume a Student-t distribution for ǫt and GJRGARCHX-skewt,
LHEAVYX-skewt a Skewed-t distribution. Based on the modelsdefined in this section, the functional forms of these
models are trivial to derive. For that we reason we do not write them down explicitly.

5. Volatility forecasting methodology

In this section we present the methodology concerning an out-of-sample volatility forecasting study in which we
compare the one-step-ahead forecasting performance of thevolatility models described in section4. The setup of
our forecasting study is similar to the work ofAndersen et al.(1999), Martens(2002), Hansen and Lunde(2005b)
andKoopman et al.(2005). The essential difference is that we are not interested in the forecasting performance of a
particular model. Instead, we are interested in the hypothesis if including news sentiment to volatility models results
in superior volatility forecasts.

As mentioned in section4, GARCH models are driven by low frequent daily returns and HEAVY-r models driven
by high frequent intraday returns. For that reason, allK = 24 volatility models can be divided into two groups. The
first group considers the class of GARCH models and the secondthe class of HEAVY-r models. Additionally, both the
GARCH and HEAVY-r volatility model classes can be divided into subgroups of base and news sentiment augmented
models. For example, in the case of GARCH models we have GARCH, GARCH-t, GARCH-skewt et cetera in the
base model group and GARCHX, GARCHX-t, GARCHX-skewt et cetera in the news sentiment augmented model
group. All the GARCH-type models are denoted asMg and all HEAVY-r models are denoted asMh for g = 1, . . . , G
andh = 1, . . . , H where obviouslyG = H = 12 andG+H = K.

We estimate allK = 24 volatility models 1007 times based on 1007 samples of 250 daily observations, where
the first sample is based on an estimation window which startsat January 2 2006 and ends at January 2 2007. A
one-step-ahead volatility forecastσ̂2

k is computed for January 3 2007 based on the estimation windowfor each model
Mk wherek ∈ K. By rolling the estimation window forward by one trading daywe have a second sample of the
same size which starts at January 3 2006 and ends at January 3 2007. Again, a one-step-ahead volatility forecastσ̂2

k is
computed for January 4 2007 based on the estimation window for each modelk ∈ K. More specifically, we estimate
M = 1007 one-day-ahead forecastsσ̂2

k,m wherem ∈ M , such that

σ̂2
k,m = E

[
σ2
m|Fm−250,m−1, Ψ̂

]
, (35)

whereFm−250,m−1 contains all information on interval[m− 250,m− 1] andΨ̂ is the maximum likelihood estimate
of the parameter vectorΨ.

The volatilityσ2
m is not observable. In section4 was shown that realized volatilityRVm is a consistent estimator

for the latentσ2
m. However, we will make use of the realized kernelRKm since it is a more robust estimator ofex-post

variation. Notice that the latentσ2
m represents the variation of close-to-close returnsRCtC,t and the realized kernel

RKm is a measure based on open-to-close returns. For that reasonwe, in some way, have to add the much more
noisy variation of close-to-open (overnight) returnsRCtO,t to RKm. Martens(2002), Koopman et al.(2005) and
Hansen and Lunde(2005b) propose similar scaling methods. We follow the method ofHansen and Lunde(2005b)
who introducẽσ2

m as an estimator forσ2
m. SubstitutingRKm for RVm in their estimator,̃σ2

m is defined as

σ̃2
m ≡ ĉRKm, where ĉ ≡

(
T−1

∑T
t=1 (rCtC,t − µ̂)

2

T−1
∑T

t=1 RKt

)
, (36)

and whereµ̂ = T−1
∑T

t=1 rCtC,t. As mentioned earlier the less noisyrCtC,t contains the noisy overnight return
rCtO,t. Hence, by scaling the realized kernel by the variance ofrCtC,t we implicitly scale it by the variance ofrCtO,t

and hencẽσ2
m is an approximately unbiased estimator forσ2

m.
Of interest are the volatility forecastŝσ2

k,m for all k ∈ K models and̃σ2
m. One way to evaluate out-of-sample

volatility forecast is in terms ofR2 from a Mincer-Zarnowitz (MZ) type regression,σ̃2
m = γ0 + γ1σ̂

2
k,m + ut. Or

the more robust logarithmic version,log(σ̃2
m) = γ0 + γ1 log(σ̂

2
k,m) + ut as noted byPagan and Schwert(1990) and
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Engle and Patton(2001). However,Hansen and Lunde(2005b) note that theR2 of MZ regressions is not an ideal
criterion for comparing volatility models because biased forecasts are not penalized.

Bollerslev et al.(1994), Diebold and Lopez(1996) and others, suggest the use of loss functions to determine
whether, say, modelMk outperformsMl in forecasting̃σ2

m, wherek 6= l andk, l ∈ K. We adopt the same choice of
loss functions as considered byKoopman et al.(2005) and are given in Table3. Equal and similar loss functions are
also considered byBollerslev et al.(1994), Andersen et al.(1999), Martens(2002) andHansen and Lunde(2005b).

Following the work ofKoopman et al.(2005) andHansen and Lunde(2005b), we adopt the robust superior pre-
dictive ability (SPA) test ofHansen(2005a) to investigate the relative performance of the proposed volatility models
in terms of the proposed loss functions. As mentioned earlier, we split the volatility models into two model groups

Table 3:Loss functionLi,k,m represents the loss of forecast̂σ2
k,m of modelMk based on loss typei for i ∈ {1, . . . , 4}.

Squared Error L1,k,m = (σ̃2
k,m − σ̂2

k,m)2

Absolute Error L2,k,m = |σ̃2
k,m − σ̂2

k,m|
Heteroskedasticity Adjusted Squared Error L3,k,m = (1− σ̃−2

k,mσ̂2
k,m)2

Heteroskedasticity Adjusted Absolut Error L4,k,m = |1− σ̃−2

k,mσ̂2
k,m|

and perform the SPA test procedure for each group group separately. For each group we haveN + 1 different models
Mn for n = 0, 1, . . . , N16. For each modelMn we haveM volatility forecastŝσ2

n,m for m = 1, . . . ,M . For every
forecast we calculate the loss functionLi,m,n as given in Table3 for i = 1, . . . , 4. A particular modelM0 is taken as
the benchmark model. The loss function of some modelMn6=0 relative to the benchmark model is defined as

Xn,m ≡ Li,m,0 − Li,m,n, (37)

for some loss functioni. Forλn ≡ E[Xn,m], modelM0 outperforms all other models, we haveλn < 0 for all models
n 6= 0. Hence, the base model is not outperformed when it accepts the null hypothesis

max

n 6= 0 λn ≤ 0. (38)

Hansen(2005a) proposed the associated SPA test statistic

T =
max

n 6= 0

√
MXn

ω̂n,n
, (39)

whereω̂2
n,n is a consistent estimate ofω2

n,n, and whereXn = M−1
∑M

m=1 Xn,m andω2
n,n

a→ Var[
√
MXn]. A

consistent estimator ofω2
n,n and the so-called Hansen consistentp-value of the SPA test statisticT can be found

via a bootstrap procedure. Specifically, we apply the stationary bootstrap procedure ofPolitis and Romano(1994).
The procedure consists of constructing new samples forXm,k of lengthB by concatenation of randomly chosen
subsamples of different lengths. The length of the subsamples are independent and are drawn from a geometric
distribution with meanq. The subsample lengths are ideally small but sufficiently large to reflect the serial correlation
in Xm,k. After an extensive inspection of the autocorrelation inXm,k we choose a subsample length of 5 trading days
which corresponds toq = 1/5. Since we perform the same bootstrap procedure as proposed by Hansen(2005a) and
performed byHansen and Lunde(2005b) andKoopman et al.(2005) we refer to their work for the construction of the
Hansen consistentp-value and other details about the SPA test.

6. Results

6.1. News sentiment index estimates

In Section2 we introduced the Local News Sentiment Level (LNSL) model. Specifically, the LNSL model is the
Local Level model ofDurbin and Koopman(2001) applied to the logit transformed probabilities(s̄posd , s̄neud , s̄negd )

16Notice thatN + 1 = G andN + 1 = H in case of the GARCH and HEAVY-r model type group respectively.
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of news itemX̄d for all d = 1, . . . , D. We estimated the LNSL model by means of a quasi maximum likelihood
procedure which involves maximization of the log-likelihood described in Section217.

We estimated the total set consisting ofD = 841, 536 news sentiment articles̄Xd on the 5-minute time grid from
the beginning of 2003 to the end of 2010. The estimation results are presented in Table4. The estimation results
show that the standardized prediction errorsvd/

√
Fd are clearly not normally distributed. However, the Ljung-Box

statistics show no memory invd/
√
Fd which does meet theIID assumptions made for the LNSL model. We are

Table 4: Quasi maximum likelihood parameter estimates for the LNSL model based on the total set of news itemsX̄d from the beginning of 2003 to the
end of 2010. The asymptotic standard errors are given in parentheses which are obtained by the delta method since several parameters were transformed for
estimation. The AIC represents the Akaike Information Criterion and is definedas−2(lnL)+2p wherep is the number of coefficients estimated. Q(l) is the
Ljung-Box test statistic conducted on the standardized residuals for lag lengthl and is asymptoticallyχ2 distributed with l degrees of freedom. JB represents
the Jarque-Bera normality test on the standardized residuals and is asymptotically χ2 distributed with 2 degrees of freedom.

s̄posd s̄neu s̄neg

Observations 841536 841536 841536
ση1e3 6.071 0.85768 8.3968

(0.465) (0.133) (0.551)
σǫ1e3 1106.3 903.82 1037.8

(2.267) (1.803) (2.162)
ln L -193535 -167199 -185813
AIC 387074 334402 371630
vd/

√
Fd

mean 0.003 -0.007 -0.004
Median 0.000 0.000 0.000
Std.Dev. 3.602 6.574 6.160
Skewness 8.93E+02 -9.14E+02 -9.11E+02
Ex.Kurtosis 8.12E+05 8.38E+09 8.34E+05
Q(1) 0.426 0.005 0.029
Q(12) 0.905 0.009 0.063
Q(68) 2.099 0.016 0.404
Q(135) 4.193 0.297 0.879
JB Stat 2.31E+20 2.46E+20 2.44E+20

interested in the impact of news sentiment on the dynamics ofnatural gas futures prices. Moreover, we are interested
in the hypothesis that news sentiment causes natural gas futures price dynamics. As mentioned in Section3 our data
is based on 1,257 trading days from January 3 2006 to December31 2010. Therefore we construct news sentiment
levels at closing timeC for each trading dayt. Specifically, we estimate the news sentiment level from thebeginning
of 2003 to timed, whered is equal to closing timeC of trading dayt. This means that we estimate the the news
sentiment levels 1,257 times with an increasing estimationwindow. Here we only estimate Kalman filtered news
sentiment levels since it is equal to the Kalman smoothed sentiment level at timeC.

The Kalman filtered̃Sp
d|D and Kalman smoothed̂Sp

d|D news sentiment levels are based on the total estimation set

D18. The Kalman filtered̃Sp
C,t|t news sentiment levels are based on the increasing estimation window. Additionally,

ÃSC,t|t is the absolute news sentiment variable. The summary statistics are presented in Table5. The summary

statistics show that the low frequent Kalman filtered news sentiment levelsS̃p
C,t|t show similar statistics as their high

frequent equivalentŝSp
d|D. Also, theS̃p

C,t|t show very high autocorrelation which imply forecasting abilities.

Figure3 shows plots of̃Sp
d|D andŜp

d|D from January 3 2006 to December 31 2010. Figure4 shows the same plots

but from October 18 2008 to 31 October 2008. Additionally, Figures5 and5 show plots ofS̃p
C,t|t andÃSC,t|t together

with natural gas futures return and realized measures whichare described in Section3.

6.2. Events and Granger causality

In this section we perform two methods to analyze the impact of news sentiment on the dynamics of natural gas
futures prices. The first method is an event study to investigate the natural gas price evolution around extreme news

17The procedure is implemented in the program environment Ox ofDoornik (2001) and makes use of the SsfPack 2.2 ofKoopman et al.(1999).
18Note thatp ∈ {pos, neu, neg}.
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Table 5: Summary statistics: the Kalman filtered S̃p

d|D
and the Kalman smoothedŜp

d|D
which are based on the total information setD and the Kalman

filtered S̃p

C,t|t
and ÃSC,t|t selected at closing timeC and based on the information set untilt. Here p is in {pos, neu, neg}. The SACF (l) statistic

represent the sample autocorrelation function for lagl. Bold SACF (l) statistics are significant at a 5% significance level based on heteroskedasticity robust
standard errors described inWhite (1980). PP + drift statistic represents the Phillips Perron unit-root test statistic where a drift term is assumed in the model,
seePhillips and Perron (1988) for details. ADF(l) + drift is the Augmented Dickey Fuller test statistic where up to l lags and a drift term are assumed in the
model, seeSaid et al.(1984) for details. Bold (and italic) Phillips Perron and Augmented Dickey Fuller test statistics represent rejection of an unit-root based
on a 5% (1%) significance level.

S̃pos
d|D

S̃neu
d|D

S̃neg
d|D

S̃pos
C,t|t

S̃neu
C,t|t

S̃neg
C,t|t

ÃSC,t|t

Mean 0.400 0.166 0.359 Mean 0.430 0.187 0.383 0.064
Median 0.399 0.167 0.355 Median 0.431 0.187 0.383 0.055
Std.Dev. 0.043 0.011 0.046 Std.Dev. 0.043 0.010 0.043 0.047
Skewness -0.030 -0.332 0.535 Skewness -0.085 -0.123 0.194 0.857
Ex.Kurtosis 0.121 0.592 0.604 Ex.Kurtosis 0.130 -0.069 0.043 0.570
Minimum 0.230 0.130 0.152
Maximum 0.718 0.194 0.582 SACF(1) 0.700 0.810 0.665 0.515

SACF(5) 0.404 0.541 0.375 0.202
Ŝpos
d|D

Ŝneu
d|D

Ŝneg
d|D

SACF(10) 0.365 0.420 0.328 0.180
Mean 0.400 0.166 0.357 SACF(20) 0.308 0.309 0.266 0.150
Median 0.400 0.167 0.354
Std.Dev. 0.036 0.010 0.037 PP + drift -14.864 -11.544 -15.857 -20.037
Skewness -0.095 -0.379 0.551 ADF(1) + drift -12.13 -9.61 -12.86 -15.83
Ex.Kurtosis 0.185 0.427 0.682 ADF(12) + drift -4.56 -5.20 -4.81 -5.89
Minimum 0.249 0.139 0.262 ADF(24) + drift -3.08 -4.30 -3.30 -3.79
Maximum 0.522 0.186 0.541
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Figure 3:Kalman filtered and smoothed news sentiment levels.
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Figure 4:Kalman filtered and smoothed news sentiment levels.

sentiment events. The second method involves Granger causality tests to determine causal relationships between
natural gas price dynamics and news sentiment measures.

6.3. Event study

We employ event studies as described inMacKinlay (1997) and used inTetlock et al.(2008). We define a day
in which the news sentiment measureS̃pos

c,t|t is higher than theq quantile of the total sample of̃Spos
c,t|t as an extreme

positive news event. Analogously, a day in which the news sentiment measurẽSneg
c,t|t is higher than theq quantile of

the total sample of̃Sneg
c,t|t as an extreme negative news event. All days which are not selected as extreme positive or

negative news events are defined as extreme neutral news events.
We analyze the return dynamics around the event by computingthe cumulative return from 10 days before up

to 10 days after the event for all events of the same type. Specifically, we use a threshold quantileq of 80% on the
set of 1,256 trading days and select 252 extreme postive and extreme negative event days and a total of 753 extreme
neutral event days. This results in 252 extreme positive andextreme negative event cumalative return paths and 753
extreme neutral event cumulative return paths. From these paths we simulate the average cumulative return and 95%
bootstrapped confidence intervals as described inDavidson and Mackinnon(2004), for each time in the event window.
Simple plots of the average cumulative returns and the confidence intervals for each event type and for each time in
the event window present the differences between the event types. This corresponds with the suggested statistics
described inMacKinlay (1997). Figure7 presents the event study with the natural gas futures price and the monthly
event frequencies for each event type. The return evolutionis clearly different for the three event types. The extreme
positive events shows a mean reverting effect in the return evolution around the event day. For extreme negative news
the return evolution shows strong positive autocorrelation around the event day. As expected, the evolution of the
returns around the extreme neutral days are not different from zero19.

Interesting to see is that the frequency of extreme positivedays decreases to a bottom at 2009 while the frequency
of extreme negative news increases from 200820.

19For aq threshold of 80% extreme neutral events are actually more regular than extreme and thus in probability equal to the sample meanof
rCtC,t.

20This can be related to the credit crunch of 2008 to 2009.
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Figure 5:Kalman filtered news sentiment measures and natural gas return measures.
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Figure 7:Cumulative return evolutions around extreme positive, extreme neutral and extreme negative event days are plotted based on a 10 day event window around
the event day and a thresholdq of 80%. Also the natural gas futures prices are plotted from the beginning of 2006 to the end of 2010. Furthermore, the monthly event
frequencies are are shown for all different event types.
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Another interesting result showed in Figure7 is the possibility to make a significant profit from selling the futures
contract at an extreme positive or negative event day21. Unfortunately, the event type frequencies show that extreme
events are clustered over time. This questions the robustness of the suggested trading strategy. However, the event
study does show significant discriminating power of news sentiment. This is even more clear for the event studies
presented in Figure8. These event studies have the same setup as for the event study in Figure7 but for aq threshold
of 50%, 70% and 90%. Clearly, the discriminating power increases for a higher threshold.

From this we can conclude that there is a significant relationship between news sentiment and the evolution of
natural gas futures returns. Specifically, we find that the price evolution shows a mean reverting effect around the
extreme positive events. Also, we find that the price evolution around extreme negative events is negative and shows
positive autocorrelation. This means that negative price momentum continues after extreme negative days, before we
observe a return to fundamentals.
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Figure 8:Cumulative return evolutions around extreme positive (green), extreme neutral(grey) and extreme negative (red) event days are plotted based on a 10 days
event window around the event day and thresholdq of 50%, 90% and 90%.

6.4. Granger causality tests
Both the news sentiment measures and a majority of the natural gas price dynamic measures show significant

autocorrelation. This makes it more interesting to determine whether specific natural gas futures price dynamics are
caused by specific news sentiment measures and/or vice versa. In order to test causality relationships between news
sentiment measures and natural gas price dynamic measures,we perform Granger causality tests as first suggested by
Granger(1969). A similar investigation was performed by

For each sentiment measureS̃pos
c,t|t, S̃

neu
c,t|t, S̃

neg
c,t|t andÃSc,t|t we construct a bivariate Vector Autoregression (VAR)

of orderP with each natural gas price dynamic measure described in Section 3. A bivariate VAR(P ) is defined as

Zt = Φ0 +
P∑

p=1

ΦpZt−p + ut, (40)

whereE[ut] = 0, E[utu
′
t] = Ω, Zt is a(2 × 1) vector,Φ0 andΦp are(2 × 2) coefficient matrices andΩ a (2 × 2)

covariance matrix. The order ofP is determined by a selection procedure based on the Akaike information criterion
(AIC) described inLutkepohl(2005) andGonzalo and Pitarakis(2002). For the bivariate VAR of orderP case, the
AIC is defined as

AIC = log |Ω̂|+ 2(22P + 2)

T
, (41)

21Here we assume no transaction costs and zero market impact.
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whereΩ̂ is the heteroskedasticity and autocorrelation (HAC) robust covariance matrix, seeNewey and West(1987),
andT the sample size.

The summary statistics of the natural gas price dynamics andthe news sentiment measures show that none of
the variables contain a unit-root up to a lag length of 24, seeTables2 and5. Therefore, we are able to test the null
hypothesis of no Granger causality for each time series in each bivariate VAR model. For details concerning the
Granger causality test we refer toGranger(1969) andLutkepohl(2005).

The Granger causality test results show significant Grangercausality relationships. First of all, absolute news
sentiment Granger causesRCtC,t andRCtO,t. The same applies toROtC,t but only for a 10% significance level. If
we look at the squared returns we see an equal pattern for all news sentiment measures. Specifically, highly significant
Granger causal relationships are shown for news sentiment measures onR2

CtC,t andR2
CtO,t but hardly any on the

ROtC,t.
Given that the CtC return measures are sums of the CtO and OtC return measures, this implies that the arrival of

news during non-trading periods have a large effect on the overnight CtO returns.
Second of all, if we look at the realized variation measures we see cross causality relationships between news

measures and the realized kernelRKt and the positive semivarianceRSV +
t . Also, we see that the realized variance

RVt is significantly Granger caused by negative news sentiment and news sentiment by negative semivarianceRSV −
t .

Furthermore, we see that the jump variation robust Bipower variatonBPVt is significantly Granger caused by news
sentiment.

Finally, if we look at the jump variation measuresBPJVt, BPDVt andBPUVt, the Granger causality test show
significant Granger causality relationships between jump variation and news sentiment. Most statistics show cross
correlation relationships, but the jump variation measureBPJVt is only caused by all news sentiment measures and
it only Granger causes effects in the absolute news sentiment measure. The same applies toBPUVt but it does only
shows Granger causal effects in the positive and negative news sentiment measures.

This difference betweenBPJVt andBPUVt shows that absolute news sentiment is caused by jumps and in
particular by negative jumps. This corresponds with the significant Granger causal effect of the realized negative
semivarianceRSV on the absolute news sentiment measure.

From this we can learn that volatility, and especially negative volatility, Granger causes news sentiment. Further-
more, news sentiment also Granger causes volatility. This implies that news is caused by volatility in the market but
also that market participants trade as some function of aggregated news.

Also, the different Granger causality relations between (absolute) news sentiment and the jump variation measures
show the importance of asymmetric returns and jumps on news.Specifically, news sentiment in an absolute sense is
more sensitive to negative jumps in the market than by jumps in general. However, we can state that news sentiment
severely Granger causes jumps. That is, market participantseem to hard sell or hard buy natural gas futures contracts
when news sentiment is high.

6.5. Volatility forecasting results

6.5.1. Parameter estimation results
The estimation results from the GARCH type volatility models described in Section4 are presented in Table

7. Likewise, the estimation results from the HEAVY-r type models are described in Table8. These estimation
results are based on the total dataset from the beginning of 2006 to the end of 2010, see Section3 for specifics.
All programs for estimating the parameters are written in Ox, the programming environment ofDoornik (2001).
Implementation details are described in the work ofTsay(2005), Greene(2003) andHansen(1994). The latter is
used for the implementation of the Hansen skewed-t log-likelihood. All volatility models indicate high persistency.
However, the HEAVY-r models are much stronger driven byRKt than the GARCH models are driven byR2

t,CtC .
This indicates that the expected variance ofRt,CtC is stronger driven by laggedRKt than laggedR2

t,CtC , as noted
by Shephard and Sheppard(2010). The time-to-maturity parameterτ is significant and indicates and confirms the
Samuelson hypothesis described in Section4. Theγ estimates show the tremendous significance of the so-called
leverage effects in the GJRGARCH and LHEAVY type volatilitymodels.

If we look at different assumed distributions for the returnerrors we see that the student-t distribution is preferred
over the normal distribution and the Hansen skewed-t distribution preferred over the student-t distribution. That is,
in terms of a higher log-likelihood and of lower AIC and BIC criterion values. Although the skewness parameter
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Table 6: Granger causality test results are presented based on bivariate vector autoregressions of order P (VAR(P )) for each news sentiment measure with all individual natural gas return measures. The
results can be divided into 4 subtables which correspond with Granger causality tests based on bivariate VAR(P ) of the news sentiment measures and return, squared return, realized variationand realized jump
variation measures. Each subtable presents the LM test statistic of the null hypothesis that the measure of columnj does not Granger cause the measure in rowi. The LM test statistic isχ2 distributed with P
degrees of freedom. Italic, bold and italic+bold LM test statistics represent rejection of the null hypothesis at a 10%, 5% and 1% significance level, respectively. The value under the LM test statistic represents
the lag orderP of the bivariate VAR(P ).

rt,CtC rt,CtO rt,OtC S̃pos
c,t|t

S̃neg
c,t|t

ÃSc,t|t r2t,CtC r2t,CtO r2t,OtC S̃pos
c,t|t

S̃neg
c,t|t

ÃSc,t|t

rt,CtC - - - 21.526 23.798 38.840 r2t,CtC - - - 38.374 35.704 42.787
24 24 24 23 23 23

rt,CtO - - - 31.390 35.283 36.605 r2t,CtO - - - 46.852 45.607 39.262
24 24 24 22 22 22

rt,OtC - - - 24.015 25.136 34.513 r2t,OtC - - - 28.767 35.151 26.398
24 24 24 24 24 24

S̃pos
c,t|t

31.044 22.561 48.534 - - - S̃pos
c,t|t

23.995 24.280 29.329 - - -

24 24 24 23 22 24
S̃neg
c,t|t

32.501 22.734 47.556 - - - S̃neg
c,t|t

23.170 26.679 26.954 - - -

24 24 24 23 22 24
ÃSc,t|t 16.938 23.285 30.015 - - - ÃSc,t|t 24.522 39.494 34.266 - - -

24 24 24 23 22 24

RVt RKt RSV −
t RSV +

t S̃pos
c,t|t

S̃neg
c,t|t

ÃSc,t|t BPVt BPJVt BPDVt BPUVt S̃pos
c,t|t

S̃neg
c,t|t

ÃSc,t|t

RVt - - - - 33.137 37.703 28.115 BPVt - - - - 36.019 39.379 30.695
24 24 24 24 24 24

RKt - - - - 38.718 43.132 25.981 BPJVt - - - - 55.806 58.887 60.226
24 24 24 23 23 23

RSV −
t - - - - 31.585 31.072 22.349 BPDVt - - - - 53.357 55.907 52.710

23 23 23 23 23 23
RSV +

t - - - - 57.590 61.144 29.465 BPUVt - - - - 47.164 51.225 56.344
24 24 24 23 23 23

S̃pos
c,t|t

27.311 45.243 32.361 39.437 - - - S̃pos
c,t|t

30.488 24.448 42.076 39.350 - - -

24 24 23 24 24 23 23 23
S̃neg
c,t|t

27.570 46.060 34.874 37.528 - - - S̃neg
c,t|t

32.423 29.170 47.528 38.519 - - -

24 24 23 24 24 23 23 23
ÃSc,t|t 27.019 21.807 41.587 17.621 - - - ÃSc,t|t 28.013 36.601 39.943 22.300 - - -

24 24 23 24 24 23 23 23
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Table 7: Quasi Maximum likelihood parameter estimation results for the GARCH type volatility models described in Section4. The asymptotic standard
errors are given in parentheses which are obtained by the delta method since several parameters were transformed for estimation. The AIC represents the
Akaike Information Criterion and is defined as −2(lnL)+2p wherep is the number of coefficients estimated. The BIC represents the Bayesian Information
Criterion and is defined as−2(lnL) + p lnT where p is the number of coefficients estimated andT the sample size. The A-LM(l) and Q(l) statistics are
the ARCH-LM test statistic of Engle (1982) and the Ljung-Box test statistic conducted on the standardized residuals for lag length l. Both statistics are
asymptoticallyχ2 distributed with l degrees of freedom. JB represents the Jarque-Bera normality test on the standardized residuals and is asymptoticallyχ2

distributed with 2 degrees of freedom.
Model GARCH GARCH-t GARCH-skewt GJRGARCH GJRGARCH-t GJRGARCH-skewt
Parameter
α0 -0.324 -0.322 -0.367 -0.264 -0.245 -0.277

(0.062) (0.078) (0.060) (0.051) (0.058) (0.045)
α1 30.009 25.658 25.829 8.488 7.048 7.085

(0.005) (0.006) (0.004) (0.005) (0.006) (0.004)
β1 0.946 0.947 0.947 0.959 0.962 0.962

(0.009) (0.011) (0.008) (0.008) (0.009) (0.006)
τ -0.005 -0.004 -0.003 -0.003 -0.003 -0.003

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
ν 10.853 24.652 12.348 27.970

(0.003) (0.004) (0.007) (0.008)
λ -0.004 -0.003

(0.019) (0.019)
γ 46.417 40.531 40.852

(0.010) (0.010) (0.007)
lnL 2488.082 2500.853 8177.584 2498.644 2507.068 8190.323
AIC -4968.163 -4991.705 -16343.168 -4987.287 -5002.136 -16366.645
BIC -4947.617 -4966.023 -16312.349 -4961.605 -4971.317 -16330.690
A-LM(1) 0.036 0.104 0.101 0.188 0.060 0.065
A-LM(12) 22.123 22.049 22.051 22.906 22.778 22.782
Q(1) 0.372 0.343 0.344 0.107 0.102 0.101
Q(12) 13.235 13.460 13.452 13.144 13.244 13.239
JB 81.303 108.713 107.609 30.394 40.346 39.764

Model GARCHX GARCHX-t GARCHX-skewt GJRGARCHX GJRGARCHX-t GJRGARCHX-skewt
Parameter
α0 -0.311 -0.310 -0.352 -0.267 -0.249 -0.282

(0.058) (0.074) (0.012) (0.051) (0.058) (0.045)
α1 28.304 24.172 24.327 8.977 7.639 7.675

(0.005) (0.005) (0.003) (0.005) (0.006) (0.004)
β1 0.948 0.950 0.950 0.959 0.962 0.962

(0.009) (0.011) (0.006) (0.008) (0.009) (0.006)
τ -0.005 -0.004 -0.004 -0.004 -0.003 -0.003

(0.001) (0.001) (0.002) (0.001) (0.001) (0.001)
ν 11.020 24.979 12.509 28.291

(0.003) (0.004) (0.007) (0.008)
λ -0.003 -0.003

(0.025) (0.019)
γ 45.063 38.909 39.230

(0.010) (0.011) (0.008)
φ 0.140 0.136 0.136 0.071 0.066 0.066

(0.091) (0.100) (0.086) (0.076) (0.079) (0.056)
lnL 2491.231 2503.758 8185.962 2502.014 2509.409 8197.561
AIC -4972.462 -4995.515 -16357.925 -4992.028 -5004.818 -16379.121
BIC -4946.779 -4964.697 -16321.969 -4961.209 -4968.862 -16338.029
A-LM(1) 0.097 0.193 0.189 0.123 0.026 0.029
A-LM(12) 23.660 23.461 23.468 23.396 23.294 23.306
Q(1) 0.357 0.334 0.335 0.115 0.112 0.111
Q(12) 12.736 12.991 12.982 12.860 12.979 12.971
JB 79.718 106.451 105.394 31.156 41.966 41.369
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Table 8:Quasi Maximum likelihood parameter estimation results for the HEAVY-r typ e volatility models described in Section4. The asymptotic standard
errors are given in parentheses which are obtained by the delta method since several parameters were transformed for estimation. The AIC represents the
Akaike Information Criterion and is defined as −2(lnL)+2p wherep is the number of coefficients estimated. The BIC represents the Bayesian Information
Criterion and is defined as−2(lnL) + p lnT where p is the number of coefficients estimated andT the sample size. The A-LM(l) and Q(l) statistics are
the ARCH-LM test statistic of Engle (1982) and the Ljung-Box test statistic conducted on the standardized residuals for lag length l. Both statistics are
asymptoticallyχ2 distributed with l degrees of freedom. JB represents the Jarque-Bera normality test on the standardized residuals and is asymptoticallyχ2

distributed with 2 degrees of freedom.
Model HEAVY-r HEAVY-r-t HEAVY-r-skewt LHEAVY-r LHEAVY-r- t LHEAVY-r-skewt
Parameter
αh,0 -0.703 -0.654 -0.737 -0.709 -0.660 -0.758

(0.148) (0.299) (0.229) (0.224) (0.254) (0.228)
αh,1 200.620 170.960 172.200 184.630 162.430 166.080

(0.034) (0.069) (0.048) (0.054) (0.059) (0.047)
βh,1 0.893 0.900 0.900 0.892 0.900 0.897

(0.020) (0.040) (0.028) (0.030) (0.035) (0.028)
τ -0.006 -0.005 -0.005 -0.006 -0.005 -0.005

(0.001) (0.002) (0.001) (0.002) (0.002) (0.001)
ν 12.269 27.952 12.605 28.605

(0.004) (0.006) (0.007) (0.009)
λ -0.004 -0.005

(0.019) (0.019)
γh 163.830 100.560 103.070

(0.029) (0.008) (0.002)
lnL 2490.70 2497.94 8172.06 2491.51 2498.43 8172.60
AIC -4973.40 -4985.87 -16332.12 -4973.02 -4984.86 -16331.20
BIC -4952.85 -4960.19 -16301.30 -4947.33 -4954.04 -16295.24
A-LM(1) 1.02 0.71 0.73 0.85 0.59 0.65
A-LM(12) 24.68 23.94 23.97 23.76 22.17 23.53
Q(1) 0.16 0.15 0.15 0.17 0.13 0.16
Q(12) 15.27 15.13 15.14 15.51 15.44 15.31
JB 28.33 36.74 36.16 24.08 33.66 31.96

Model HEAVY-rX HEAVY-rX-t HEAVY-rX-skewt LHEAVY-rX LHEAV Y-rX-t LHEAVY-rX-skewt
Parameter
αh,0 -0.278 -0.266 -0.300 -0.234 -0.255 -0.288

(0.068) (0.070) (0.021) (0.052) (0.064) (0.050)
αh,1 108.980 97.657 98.433 82.477 87.610 88.142

(0.021) (0.021) (0.006) (0.017) (0.020) (0.014)
βh,1 0.955 0.957 0.957 0.962 0.959 0.958

(0.010) (0.010) (0.001) (0.008) (0.009) (0.006)
τ -0.006 -0.006 -0.006 -0.006 -0.006 -0.006

(0.001) (0.001) (0.002) (0.001) (0.001) (0.001)
ν 16.684 37.274 17.653 39.372

(0.007) (0.012) (0.012) (0.015)
λ -0.004

(0.000)
γh 143.940 89.001 91.221

(0.003) (0.002) (0.001)
φ 0.506 0.463 0.465 0.534 0.464 0.467

(0.099) (0.103) (0.188) (0.087) (0.098) (0.069)
lnL 2504.912 2508.787 8194.215 2506.012 2509.378 8195.467
AIC -4999.824 -5005.574 -16374.430 -5000.024 -5004.756 -16374.934
BIC -4974.141 -4974.755 -16338.475 -4969.205 -4968.801 -16333.842
A-LM(1) 0.272 0.248 0.257 0.258 0.181 0.187
A-LM(12) 24.453 25.749 25.797 25.651 25.101 25.129
Q(1) 0.085 0.073 0.073 0.068 0.072 0.072
Q(12) 12.951 12.885 12.885 12.570 13.120 13.126
JB 14.218 20.917 20.549 15.588 17.039 16.648
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λ is not significant for any model with Hansen skewed-t distributed return errors, allowing for non-zero skewness
does increase the estimated degrees of freedom parameterν with respect to models employing a student-t distribution.
However, The Jarque-Bera test statistic increases for non-Gaussian distributions.

The Ljung-Box test statistics show no significant memory in the standardized residuals for each estimated model.
Unfortunately the ARCH-LM test statistics shows significant memory in the squared residuals for 12 lags. This
suggests that some of the autocorrelation in the squares ofRCtC,t is not captured by any of the models. Since this
applies to all models it does not influence our research interest per se. However it does give reason to add more
autoregressive terms to the models or to consider fractionally integrated volatility models, seeKoopman et al.(2005)
andBaillie et al.(2007).

As described in Section4, the parameterφ is related to the absolute news sentiment variablẽASc,t|t. The
GARCHX type models show very low significant positive relationships between the volatility forecast and the news
sentiment variable. Moreover, the log-likelihood is only slightly increased when including news sentiment to GARCH
type models22.

The HEAVY-r type models show a much stronger and highly significant positive relationship between the volatility
forecast and the news sentiment variable. Also, the news sentiment augmented HEAVY-r type models show higher
log-likelihoods and lower values for both the AIC and BIC criterion functions than regular HEAVY-r type models.
From the Granger causality test results in Section6.4 we learned thatr2OtC,t is less influenced by news thanr2CtO,t.
Since HEAVY-r models areRKt driven, and thus virtually OtC driven, the significant addedvalue of including news
sentiment to HEAVY-r models can be related to the strong Granger causal effect of news sentiment onr2CtC,t and
r2CtO,t.

Interesting to see is that theα1 andαh,1 estimates are lower for the models including the news sentiment variable.
This implies that news sentiment reduces the dependence of laggedr2CtC,t andRKt in the forecasts of future volatility.
Hence, the news sentiment models give less weight to extremepositive or negative volatile days and are more robust
to outliers.

6.5.2. Preliminary forecasting results
The volatility forecasts are constructed as described in Section5. Figure9 presents the logarithms of the volatility

forecasts versus the realized forecast targetσ̃2
m for GARCH and HEAVY-r type models with and without news sen-

timent23. For all model types the errors between the forecasts and theforecasting targets are clearly heteroskedastic.
This implies that the non-heteroskedasticity adjusted loss functions do not reflect an unbiased measure of loss. The
GARCH type volatility models do not clearly improve in forecasting performance when including news sentiment.
In case of the HEAVY-r type models we do see an improvement in forecasting performance. More specifically, the
HEAVY-r models including the news sentiment variable are less influenced by extreme high or low volatile days.
This confirms the earlier mentioned implication that news sentiment augmented volatility models are more robust to
outliers.

Table9 presents the means of all loss functionsM−1
∑M

m=1 Li,k,m: L1,k,m; the Mean Squared Error (MSE),
L2,k,m; Mean Absolute Error (MAE),L3,k,m; Mean Heteroskedasticity Adjusted Squared Error (MHASE),L3,k,m;
Mean Heteroskedasticity Adjusted Absolut Error (MHAAE).

All news sentiment augmented models outperform their non news sentiment equivalents for all loss functions
excluding the MSE and MAE statistics. In case of the HEAVY-r type models the lowest MSE is estimated for HEAVY-
r model with normally distributed return errors. However, the MSE and MAE values are very low and do not differ
that much. As mentioned earlier, the forecasting errors areheteroskedastic and because of that the MSE and MAE are
not the preferred loss statistics.

TheR2 of the Mincer-Zarnowitz regressions, as described in Section 5, show that news sentiment augmented
models do help to improve the forecasting performance. As noted byPagan and Schwert(1990) andEngle and Patton
(2001), R2

2 based on the more robust logarithmic regression is even moredecisive. Nevertheless,Hansen and Lunde

22The AIC criterion values are all slightly lower for news sentiment augmented models. The BIC criterion values are only lowerfor GARCH
models with skewed-t return errors.

23The plots shows a subset of the forecasts and the forecastingtargets from the beginning of 2007 to the end of 2008. This together with the
logarithmic transformations make the plots more clear.
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Figure 9:A subset of the forecasts and the forecasting targets are presented from the beginningof 2007 to the end of 2008. The logarithms of the forecasting target
σ̃2
m are plotted as black dots. The logarithms of the forecastsσ̂2

m are plotted as gray lines. Specifically, the forecasts are plotted for GARCH, GARCHX, HEAVY-r
and HEAVY-rX model types.

(2005b) mentioned that theR2 of Mincer-Zarnowitz regression is not ideal as an criterionfor comparing volatility
models since it does not penalize for a biased forecast.

6.5.3. Superior predictive ability test results
The preliminary forecasting results showed that news sentiment augmented volatility models outperform volatility

without the news sentiment variable. However, these results only apply to one selected sample. To obtain more robust
outcomes we want to have the same outcome for similar samples. In the same spirit ofKoopman et al.(2005) and
Hansen and Lunde(2005b), we perform superior predictive ability (SPA) tests ofHansen(2005a) as described in
Section5.

The SPA test results are presented in Table10. Specifically, the Hansen SPAp-values ofHansen(2005a) are
presented for each base model. Thep-value can be interpreted as the intensity of base modelMk producing superior
forecasts with respect to all other models. We do this independently for the GARCH type and HEAVY-r type volatility
models. For example thep-values for the GARCH base model represent the intensity of the GARCH model producing
superior forecasts with respect to all GARCH type models. The same applies to HEAVY-r type volatility models. By
doing this we can analyze the forecasting performance of both news sentiment augmented GARCH and HEAVY-r
type volatility models separately.

Overall, the same conclusions can be made as for the averagedloss function andR2 statistics presented earlier.
First of all it is interesting to see that, especially in the case of HEAVY-r type models, thep-values for the SE and
AE loss functions are high. We see that the GJRGARCHX-t and GJRGARCHX models are not outperformed by any
other model GARCH type models in case of the SE and AE loss functions. The same applies to thep-values based on
the SE and AE loss functions for the HEAVY-r type models. Thismeans that based on the SE and AE loss functions
the SPA test results are not decisive. This is related to the heteroskedastic forecasting errors as mentioned earlier. This
indecisiveness result of the SPA test strengthens the conclusion made in Section6.5.2that the MSE and MAE are not
the preferred loss statistics. Moreover, this indecisiveness result implies that the SE and AE are not the preferred loss
functions and therefore we base our conclusions on the hetereskedasticity adjusted loss functions: HASE and HAAE.
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Table 9:The Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean Heteroskedasticity Adjusted Squared Error (MHASE), Mean Heteroskedas-
ticity Adjusted Absolut Error (MHAAE) are defined as M−1

∑M
m=1

Li,k,m ∀i and for each volatility model. A bold value represents the lowest average
loss for the specific loss type. TheR2

1 and R2
2 represent the goodness-of-fit statistic of the Mincer-Zarnowitz regressions̃σ2

m = γ0 + γ1σ̂
2
k,m + ut and

log(σ̃2
m) = γ0 + γ1 log(σ̂2

k,m) + ut respectively. A bold value represents the highestR2 statistic.

ModelMg

MSE MAE MHASE MHAAE R2
1

R2
2

GARCH 1.57E-06 6.60E-04 1.395 0.751 0.107 0.198
GARCH-t 1.12E-06 6.11E-04 1.217 0.719 0.120 0.206
GARCH-skewt 1.27E-06 6.41E-04 0.334 0.504 0.158 0.237
GJRGARCH 1.22E-06 6.09E-04 1.094 0.665 0.157 0.241
GJRGARCH-t 1.11E-06 5.94E-04 1.042 0.659 0.152 0.240
GJRGARCH-skewt 1.26E-06 6.38E-04 0.340 0.512 0.177 0.261

GARCHX 1.91E-06 6.57E-04 1.158 0.702 0.135 0.222
GARCHX-t 1.57E-06 6.05E-04 1.074 0.675 0.108 0.219
GARCHX-skewt 1.37E-06 6.47E-04 0.332 0.495 0.115 0.229
GJRGARCHX 1.13E-06 5.65E-04 0.818 0.602 0.181 0.265
GJRGARCHX-t 1.07E-06 5.73E-04 0.879 0.624 0.193 0.259
GJRGARCHX-skewt 1.27E-06 6.29E-04 0.319 0.496 0.161 0.254

ModelMh

MSE MAE MHASE MHAAE R2
1

R2
2

HEAVY-r 9.31E-07 5.53E-04 1.210 0.693 0.232 0.267
HEAVY-r-t 9.52E-07 5.54E-04 1.227 0.698 0.184 0.254
HEAVY-r-skewt 1.24E-06 6.14E-04 0.329 0.485 0.195 0.265
LHEAVY-r 1.15E-06 6.02E-04 1.303 0.732 0.186 0.251
LHEAVY-r-t 1.05E-06 5.95E-04 1.317 0.735 0.184 0.228
LHEAVY-r-skewt 1.15E-06 6.01E-04 0.327 0.484 0.223 0.270

HEAVY-rX 1.03E-06 5.52E-04 0.879 0.628 0.198 0.322
HEAVY-rX-t 9.32E-07 5.41E-04 0.840 0.627 0.222 0.323
HEAVY-rX-skewt 1.17E-06 5.97E-04 0.272 0.455 0.237 0.354
LHEAVY-rX 1.07E-06 5.64E-04 0.797 0.620 0.167 0.308
LHEAVY-rX-t 1.02E-06 5.60E-04 0.789 0.620 0.152 0.276
LHEAVY-rX-skewt 1.26E-06 6.20E-04 0.281 0.464 0.169 0.305
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If we look at the GARCH models we see that GJRGARCHX-skewt andthe GARCHX-skewt are not outper-
formed by any other model in terms of the HASE and HAAE, respectively. This includes the non-news sentiment
augmented model equivalents GJRGARCH-skewt and GARCH-skewt models. However, thep-values of these specific
GJRGARCH-skewt and GARCH-skewt models are not significantly outperformed by any other model. Therefore we
can only conclude that news sentiment augmented GARCH type models areat leastnot outperformed by their non-
news sentiment equivalents. This means that the inclusion of the news sentiment variable to a GARCH type model
at leastresults in an equal forecasting performance with respect toa GARCH model without the news sentiment
variable.

The HEAVY-r models show a more dramatic result. Here the HEAVY-rX-skewt model is the absolute winner, both
in terms of the HASE and the HAAE. Also, thep-values show that all other models are significantly outperformed.
Thus we can state that news sentiment augmented HEAVY-r models outperform their non-news sentiment equiva-
lents. This means that the inclusion of the news sentiment variable to a HEAVY-r type model results in a forecasting
performance with respect to a HEAVY-r model without the newssentiment variable.

Table 10:The table presents the Hansen consistent SPAp-values ofHansen(2005a) based on the Squared Error (SE), Absolute Error (AE), Heteroskedas-
ticity Adjusted Squared Error (HASE) and Heteroskedasticity Adjusted Absolut Err or (HAAE) loss function for each volatility model. The p-value can be
interpreted as the intensity of base modelMk producing superior forecast. Ap-value of<0.001 denotes a number smaller than 0.001.

Base model Mg SE AE HASE HAAE Base model Mh SE AE HASE HAAE
GARCH 0.093 0.010 <0.001 0.001 HEAVY-r 1.000 0.553 <0.001 0.001
GARCH-t 0.848 0.153 <0.001 0.001 HEAVY-r-t 0.710 0.570 <0.001 <0.001
GARCH-skewt 0.110 0.084 0.398 0.302 HEAVY-r-skewt 0.022 0.054 0.013 0.008
GJRGARCH 0.099 0.031 0.001 0.006 LHEAVY-r 0.124 0.023<0.001 <0.001
GJRGARCH-t 0.602 0.281 <0.001 0.006 LHEAVY-r-t 0.114 0.015 <0.001 <0.001
GJRGARCH-skewt 0.269 0.121 0.105 0.038 LHEAVY-r-skewt 0.015 0.056 0.014 0.007

GARCHX 0.160 0.044 <0.001 <0.001 HEAVY-rX 0.218 0.346 <0.001 <0.001
GARCHX-t 0.326 0.145 <0.001 0.001 HEAVY-rX-t 0.951 1.000 <0.001 <0.001
GARCHX-skewt 0.016 0.050 0.383 1.000 HEAVY-rX-skewt 0.017 0.106 1.000 1.000
GJRGARCHX 0.846 1.000 <0.001 0.012 LHEAVY-rX 0.204 0.272 <0.001 <0.001
GJRGARCHX-t 1.000 0.730 <0.001 0.008 LHEAVY-rX-t 0.217 0.329 <0.001 <0.001
GJRGARCHX-skewt 0.250 0.176 1.000 0.592 LHEAVY-rX-skewt 0.013 0.045 0.036 0.045

7. Conclusion

7.1. summary

We investigated the impact of TRNAE derived news sentiment on the dynamics of daily natural gas futures prices
traded on the New York Mercantile Exchange (NYMEX). We implemented the proposed LNSL model and constructed
autocorrelatednews sentiment probabilities (news sentiment) which conveys a positive, neutral or negative outlook
on natural gas prices, based on a 5-minute time grid from the beginning of 2003 to the end of 2010. Additionally, we
constructed several return and variation measures to proxyfor the dynamics of first month natural gas futures prices.

To analyze the impact of news sentiment on the dynamics of daily natural gas futures prices, we employed event
studies and Granger causality tests.

We found that the price evolution of first month natural gas futures contracts shows a mean reverting effect around
days which we refer to as extreme positive sentiment days. Additionally, we found that the price evolution around
extreme negative sentiment days shows negative price momentum which strongly continues after the event day before
we observe a return to fundamentals. From this we conclude that there is a significant relationship between news
sentiment and the evolution of natural gas futures returns.

From the Granger causality analysis we found that the arrival of news in non-trading periods causes effects in
overnight returns and that news sentiment is Granger causedby volatility in the market. Also, we found that news
sentiment, in an absolute sense, is more sensitive to negative jumps in the market than by jumps in general, including
positive jumps. However, we found strong evidence that newssentiment severely Granger causes jumps. From this we
conclude that market participants trade as some function ofaggregated news. More specifically, market participants
seem to hard sell or hard buy natural gas futures contracts when news sentiment is high in an absolute sense.
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Finally, we conducted an out-of-sample volatility forecasting study in which we compared the one-step-ahead
forecasting performance of two types of volatility models of so-called historical volatility models. The first is the
generalized autoregressive conditional heteroskedasticity (GARCH) of Engle(1982) andBollerslev(1986) and the
second the high-frequency-based volatility (HEAVY) models of Shephard and Sheppard(2010) andNoureldin et al.
(2011). By augmenting all models with a news sentiment variable wetested the hypothesis if including news sen-
timent to volatility models results in superior volatilityforecasts. Here we followed the forecasting study setup of
of Hansen and Lunde(2005b) andKoopman et al.(2005) and conduct Superior Predictive Ability tests ofHansen
(2005a) to test our hypothesis.

We found significant evidence that including news sentimentto volatility models results in superior volatility
forecasts.

7.2. Final remarks

In this research we assumed a quasi Local level model for the unobserved news sentiment (that is, the Local
level model ofDurbin and Koopman(2001) applied to all three news sentiment probabilities separately). As men-
tioned in Section2 the news articles can be seen as draws from a trinomial distribution. For further research, we
suggest to model the unobserved news sentiment by modeling the time varying trinomial distribution, for details see
Durbin and Koopman(2001).

Also, it might be interesting to analyze the impact of news sentiment on more individual futures contracts or
the whole forward curve. However, the latter is hard to analyze since natural gas is subject to seasonal effects, see
Borovkova and Geman(2006), and the forward curve is only liquid up to contracts which mature longer than a year
from 2006.

Finally, it is of great interest to conduct an equal volatility forecasting study based on a longer forecasting horizon
and for more volatility models, especially of the fractional integrated type.
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