Volatility modelling of log returns of EU CO_{2} emission allowances with regime switching GARCH models

Thijs Benschop
Brenda López Cabrera

Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

Motivation (1)

\square EU emission allowances (EUA) are a new class of assets with their own characteristics deserving their own approach
\square market for EUAs is constantly growing
\square risk in energy sector is mainly linked with high volatility of prices
\checkmark short-term modeling important for risk management and hedging strategies
\square both traders and emitting companies need reliable price forecasts

Motivation (2)

\square few publications on econometric modeling of logreturns and volatility of EUA prices due to lack of historical data
\square existing studies focus on short time series with known break points and on long-term relationships (e.g. Chevallier, 2009; Hintermann, 2010)
\square focus on first trading period (2005-2007)
\square studies apply either GARCH or regime switching models

Motivation (3)

\square Paolella and Taschini (2008) use mixed GARCH models
\square mixed GARCH models do not fit the recent data
\square Benz and Trück (2009) apply both GARCH models and regime switching models
\square GARCH models have high volatility persistence
\square regime switching models do not capture the conditional heteroskedastidity of the series
\square several authors suggest the use of regime switching GARCH models (e.g. Paolella and Taschini, 2008)

Contribution

\square analysis of short-term spot price behaviour
\square MS-ARCH models introduced by Hamilton and Susmel (1994)
\square problem of path-dependence with MS-GARCH solved by Klaassen (2002)
\square MS-GARCH captures both shifts in volatility and volatility clustering, as observed in data
\square apply Benz and Trück's approach (2009) and extend by

1. using MS-GARCH models
2. using data from phase II instead of phase I
3. using spot market prices instead of OTC data

Outline

1. Motivation \checkmark
2. Contribution \checkmark
3. EU ETS and CO_{2} emission trading
4. Methodology
5. Empirical analysis
6. Estimation results
7. Forecasting
8. Conclusion

EU Emission Trading System

\square cap-and-trade system to reduce greenhouse gas emissions and meet Kyoto Protocol emission targets
\square EU Emissions Trading System (ETS) entered into force in January 2005
\square created a new market for CO_{2} allowances
\square three trading periods
(i) EU-ETS I, 2005-2007, trial period
(ii) EU-ETS II, 2008-2012, period under consideration
(iii) EU-ETS III, 2013-2020, auctioning replaces free allocation

EU carbon market

\square EU ETS is the world's largest carbon market
\square EU Emission Allowances (EUAs) are traded on several exchanges, amongst others on Bluenext, Climex, European Energy Exchange, Green Exchange, Intercontinental Exchange and Nord Pool

Year	Number of EUA (in bn.)	Traded value (in USD bn.)	Year	Number of EUA (in bn.)	Traded value (in USD bn.)
2005	0.3	7.9	2009	6.3	118.5
2006	1.1	24.4	2010	6.8	133.6
2007	2.1	49.1	2011	7.9	147.8
2008	3.1	100.5			

Table 1: Total trade volumes of EUAs on the aforementioned exchanges Source: World Bank, 2012

Characteristics of EU carbon market in Phase II

\checkmark EUAs are allocated to installations free of charge
\square allowances can only be used during the commitment period
\square prices are determined by expected market supply and demand
\square firms can influence their demand by abatement
\square changes in policies influence short-term supply and demand
$\square \mathrm{CO}_{2}$ production depends on the weather, fuel prices and economic growth
\square EAU can be considered a commodity

Models

\square several models considered in order to provide benchmarks for comparing performance of the regime switching GARCH models
\square estimated models: Normal distribution, AR, GARCH, AR-GARCH with and without regime switching
\square GARCH allows for conditional variance
\square regime switching models allow for periods with different stochastic processes

Regime switching model (1)

Markov regime switching model (Hamilton, 1990)
\square modeling breaks in time series (e.g. policy changes)
\square different model specifications for each regime or state
\square current regime determined by latent variable
\square we consider models with 2 states with state space

$$
\begin{equation*}
\mathcal{S}=\{1,2\} \tag{1}
\end{equation*}
$$

$\square s_{t}$, the state at time t, is a realization of two-state Markov chain with transition probability

$$
\begin{equation*}
p_{i j}=\mathrm{P}\left(s_{t}=j \mid s_{t-1}=i\right) \tag{2}
\end{equation*}
$$

Regime switching model (2)

\square current state depends only on most recent state due to Markov property
\square inference on s_{t} can only be made through the observations of y_{t}, as s_{t} is not observable
\square two sources of uncertainty: the latent state and the model specification in each state
\square estimation of Markov Switching model as in Hamilton (1990)

- Appendix I - Estimation of MS Model

\square use previous models for model specifications in regimes

MS-GARCH model

\square several specifications of MS-GARCH models in the literature
\square MS-GARCH models solve problem of volatility persistence
\square most specifications show the problem of path dependence in the variance equation, which makes estimation intractable
\square we apply the model according to Klaassen (2002), which has several advantages:
(i) conditional variance specification is not path dependent
(ii) allows for recursive estimation alghorithm using maximum
likelihood estimation ©Appendix II - Estimation of MS-GARCH
(iii) allows for recursive forecasting

Data

\square data from Bluenext from EU ETS II, as this is the exchange with the highest trading volume
\square retrieved from Bloomberg, ticker PNXCSPT2
\square time series from February 26, 2008 until November 28, 2012
\square 2008-2010 for parameter estimation

- 2011-2012 for out-of-sample forecasting
\square analysis performed on the log returns

$$
\begin{equation*}
y_{t}=\ln \left(\frac{p_{t}}{p_{t-1}}\right) \tag{3}
\end{equation*}
$$

where p_{t} is the spot price of EUA at time t

Summary statistics

\square prices are skewed, log returns less skewed
\square both prices and log returns show excess kurtosis

period	N	Mean	Median	Min	Max	Std Dev	Skew	Kurt
	Prices							
$2008-2012$	1182	14.016	13.940	6.040	28.730	5.071	0.76	3.32
$2008-2010$	724	16.273	14.660	7.960	28.730	4.581	1.09	2.99
$2011-2012$	458	10.433	8.565	6.040	16.930	3.505	0.61	8.44
Log returns								
$2008-2012$	1182	-0.0009	0	-0.1081	0.2038	0.0276	0.03	8.03
$2008-2010$	724	-0.0006	0	-0.1029	0.1055	0.0244	-0.20	5.02
$2011-2012$	458	-0.0015	-0.0011	-0.1081	0.2038	0.0320	0.61	8.84

Table 2: Summary statistics for daily prices and daily log returns

Prices and log returns

Figure 1: EUA spot prices (upper panel) and log returns (lower panel) from February 26, 2008 until November 28, 2012

Stationarity tests

period	test statistic	p-value	lags
Augmented Dickey-Fuller test			
$2008-2012$	-7.437	<0.01	22
$2008-2010$	-5.321	<0.01	20
$2011-2012$	-4.879	<0.01	17
KPSS			
$2008-2012$	0.069	>0.1	7
$2008-2010$	0.108	>0.1	6
$2011-2012$	0.071	>0.1	4

Table 3: Results of the Augmented Dickey-Fuller and KPSS tests for stationarity

i.i.d. Normal and AR

AR(4), optimal lag order according to AIC criteria
(G)ARCH effects in residuals of AR model significant by LM test

Parameter	Coefficient	Coefficient
	i.i.d. Normal	AR(4)
μ	-0.0006	-
c	-	-0.0006
ϕ_{1}	-	0.0988
ϕ_{2}	-	-0.1391
ϕ_{3}	-	0.0795
ϕ_{4}	-	0.0609
$\mathrm{E}\left[y_{t}\right]$	-0.0006	-0.0006
σ	0.0244	0.0240

Table 4: Parameter estimates of i.i.d. Normal and AR models

GARCH and AR-GARCH

Parameter	Coefficient	Coefficient
GARCH(1,1)		

Table 5: Parameter estimates of GARCH and AR-GARCH models

MS-Normal and MS-AR (1)

	MS-Gaussian		MS-AR(4)	
Regime (i)	1 (low)	2 (high)	1 (low)	2 (high)
μ_{1}	0.0014	-0.0037	-	-
σ_{i}	0.0161	0.0336	0.0159	0.0324
c	-	-	0.0017	-0.0033
ϕ_{1}	-	-	-0.0597	0.1647
ϕ_{2}	-	-	-0.0662	-0.1947
ϕ_{3}	-	-	0.0086	0.1116
ϕ_{4}	-	-	-0.0870	0.1078

Markov estimates

$p_{i i}$	0.9864	0.9749	0.9818	0.9698

Table 6: Parameter estimates of Markov switching i.i.d. and AR models MS-GARCH

MS-Normal and MS-AR (2)

	MS-Gaussian		MS-AR(4)	
Regime (i)	1 (low)	2 (high)	1 (low)	2 (high)
Unconditional expectations				
$\mathrm{E}\left[y_{t, i}\right]$	0.0014	-0.0037	0.0014	-0.0041
$\mathrm{E}\left[\sigma_{t, i}\right]$	0.0161	0.0336	0.0159	0.0324
Markov estimates				
$\mathrm{P}\left(s_{t}=i\right)$	0.6486	0.3514	0.6240	0.3760

Table 7: Unconditional expectations of mean, standard deviation and state probabilities for Markov switching i.i.d. and AR models

Estimation results

MS-AR

Figure 2: Estimated probabilities to be in the 'low' state for MS-AR(4) (upper panel) model and log returns (lower panel) MS-GARCH

MS-GARCH and MS-AR-GARCH(1)

MS-GARCH(1,1)				
Regime (i)	1 (low)	2 (high)	1 (low)	2 (high)
Mean equation				
c	0.0009	-0.0042	0.0011	-0.0090
ϕ_{1}	-	-	-0.0339	0.3013
ϕ_{2}	-	-	-0.0637	-0.2108
ϕ_{3}	-	-	0.0261	0.1965
ϕ_{4}	-	-	-0.0315	0.2512
Variance equation				
α_{0}	0.0001	0.0003	0.0000	
α_{1}	0.0013	0.1038	0.0078	0.0002
β	0.7166	0.7233	0.8645	0.1952
Markov estimates				
$p_{i i}$	0.9923	0.9821	0.9740	

Table 8: Estimates of Markov switching GARCH and AR-GARCH models MS-GARCH

MS-GARCH and MS-AR-GARCH(2)

	MS-GARCH(1,1)		MS-AR(4)-GARCH(1,1)	
Regime (i)	1 (low)	2 (high)	1 (low)	2 (high)
Unconditional expectations				
$\mathrm{E}\left[y_{t, i}\right]$	0.0009	-0.0042	0.0010	-0.0218
$\mathrm{E}\left[\sigma_{t, i}\right]$	0.0136	0.0409	0.0101	0.0707
Markov estimates				
$\mathrm{P}\left(s_{t}=i\right)$	0.6988	0.3012	0.8198	0.1802

Table 9: Unconditional expectations of mean, standard deviation and state probabilities for Markov switching $\operatorname{GARCH}(1,1)$ and $\operatorname{AR}(4)-\operatorname{GARCH}(1,1)$ model

MS-GARCH

Figure 3: Estimated probabilities to be in the 'low' state for MS-AR(4)GARCH(1,1) model (upper panel) and log returns (lower panel)

Comparison of in-sample estimation results

model	number of parameters	log likelihood	AIC
i.i.d. Normal	2	1651.06	-3298.11
AR(4)	6	1673.85	-3335.69
GARCH(1,1)	4	1732.45	-3456.89
AR(4)-GARCH (1,1)	8	1735.33	-3454.67
MS i.i.d.	6	1720.00	-3408.99
MS-AR(4)	14	1732.92	-3437.84
MS-GARCH(1,1)	10	1739.21	-3458.43
MS-AR(4)-GARCH(1,1)	18	1750.94	-3465.87

Table 10: Number of parameters, maximum log likelihood value and Akaike Information Criteria (AIC) for the estimated models

Forecasting log returns and volatility

Point forecasts
\checkmark out-of-sample 1-day-ahead forecast with recursive window estimation
\checkmark comparison of performance by mean absolute error (MAE) and mean squared error (MSE)
Density forecasts
\square out-of-sample 1-day-ahead forecast with recursive window estimation
\square allows to construct forecasted confidence intervals
\square comparison of performance by performing a distributional test (Diebold et al., 1998) Appendix III - Distributional test

Comparison of out-of-sample results

Small differences in MAE and MSE

model	MAE	MSE	KS	p-value KS
i.i.d. Normal	0.02226	0.0010263	0.4737	$<2.2 \mathrm{e}-16$
AR(4)	0.02244	0.0010583	0.0469	0.2657
GARCH(1,1)	0.02230	0.0010282	0.0536	0.1446
AR(4)-GARCH (1,1)	0.02231	0.0010391	0.0501	0.2005
MS i.i.d.	0.02234	0.0010266	0.0367	0.5695
MS-AR(4)	0.02260	0.0010407	0.0346	0.6419
MS-GARCH(1,1)	0.02232	0.0010254	0.0321	0.7314
MS-AR(4)-GARCH(1,1)	0.02229	0.0010268	0.0370	0.5592

Table 11: Mean absolute error (MAE) and mean squared error (MSE) for point forecasts and Kolmogorov-Smirnov (KS) test for density forecasts

Density forecasts (1)

Figure 4: Forecasted confidence intervals, point forecasts and true values

Density forecasts (2)

Figure 5: Forecasted confidence intervals, point forecasts and true values

Kernel density plots (1)

Figure 6: Kernel density plots of standardised forecast errors and Normal densities

Kernel density plots (2)

Figure 7: Kernel density plots of standardised forecast errors and Normal densities

Conclusion

\square data justify use of MS-GARCH models
\square best in-sample fit by MS-AR(4)-GARCH(1,1) model
\square MS-GARCH models have best out-of-sample density forecasts
\square MS models distinguish well between states
\square changes in regime and volatility structure capture series well
\square MS-GARCH models solve the problem of variance persistence faced by the GARCH models
\square MS-GARCH performs best for volatility forecasting and risk management
\square

References (1)

䡒 Benz, Eva and Trück, Stefan
CO_{2} emission allowances trading in Europe - specifying a new class of assets
Problems and Perspectives in Management, vol. 3(3), 2006
Benz, Eva and Trück, Stefan
Modeling the price dynamics of CO_{2} emission allowances Energy Economics 31, 4-15, 2009
围 Bollerslev, Tim
Generalized Autoregressive Conditional Heteroskedasticity Journal of Econometrics 31, 307-327, 1986

References (2)

圊 Chevallier, J.
Carbon futures and macroeconomic risk factors: A view from the EU ETS
Energy Economics 31, 614-625, 2009
囦 Diebold, Francis X., Gunther, Todd A. and Tay, Anthony S. Evaluating density forecast, with applications to financial risk management
International Economic Review 39, 863-883, 1998
European Commission
The EU Emisions Trading System (EU ETS)
available on ec.europa.eu, 2013
MS-GARCH

References (3)

目 Hamilton, James D.
Analysis of time series subject to changes in regime
Econometrica 45, 39-70, 1990
E Hamilton, James D. and Susmel, Raul
Autoregressive Conditional Heteroskedasticity and Changes in Regime
Journal of Econometrics 64, 307-333, 1994
E Hintermann, B.
Allowance price drivers in the first phase of EU ETS
Journal of Environmental Economics and Management 59, 43-56, 2010

MS-GARCH

References (4)

E Klaassen, Franc
Improving GARCH volatility forecasts with regime-switching GARCH
Empirical Economics 27, 363-394, 2002
Paolella, Marc S. and Taschini, Luca
An econometric analysis of emission trading allowances Journal of Banking and Finance 32, No. 10, 2008

嗇 World Bank
Carbon Market Report 2012
available on worldbank.org, 2012

Appendix I - Estimation of MS Model (1)

\square probability of being in state j at time t is

$$
\begin{equation*}
\xi_{j t}=\mathrm{P}\left(s_{t}=j \mid \Omega_{t} ; \theta\right) \tag{4}
\end{equation*}
$$

where $\Omega_{t}=\left\{y_{t}, y_{t-1}, \ldots, y_{1}\right\}$ and θ is the parameter vector
\square inference on the state probailites $\xi_{j t}$ is performed iteratively by evaluating the density $\eta_{j t}$ under both regimes

$$
\begin{equation*}
\eta_{j t}=g_{j}\left(y_{t} \mid s_{t}=j, \Omega_{t-1} ; \theta\right) \tag{5}
\end{equation*}
$$

where g_{j} is the density function of the process in state j

Appendix I - Estimation of MS Model (2)

Knowing $\xi_{i, t-1}$ the conditional density of the observation y_{t} is

$$
\begin{equation*}
f\left(y_{t} \mid \Omega_{t-1} ; \theta\right)=\sum_{i=1}^{2} \sum_{j=1}^{2} p_{i j} \xi_{i, t-1} \eta_{j t} \tag{6}
\end{equation*}
$$

and the probability to be in state j at time t is

$$
\begin{equation*}
\xi_{j t}=\frac{\sum_{i=1}^{2} p_{i j} \xi_{i, t-1} \eta_{j t}}{f\left(y_{t} \mid \Omega_{t-1} ; \theta\right)} \tag{7}
\end{equation*}
$$

This yields the conditonal log likelihood of the observed data

$$
\begin{equation*}
\ell\left(y_{1}, y_{2}, \ldots, y_{T} \mid y_{0} ; \theta\right)=\sum_{t=1}^{T} \ln f\left(y_{t} \mid \Omega_{t-1} ; \theta\right) \tag{8}
\end{equation*}
$$

Appendix II - Estimation of MS-GARCH model

The variance specification for the MS-GARCH model according to Klaassen (2002) integrates out the path dependence by using the law of iterated expectations.

The variance of y_{t} evaluated at time $t-1$ is described by

$$
\begin{array}{rlr}
\operatorname{Var}_{t-1}\left(y_{t} \mid s_{t}=j\right) & = & \operatorname{Var}_{t-1}\left(\varepsilon_{t} \mid s_{t}=j\right) \\
& =\alpha_{0 j}+\alpha_{1 j} \varepsilon_{t-1}+\beta_{1 j} \mathrm{E}_{t-1}\left[\operatorname{Var}_{t-2}\left(\varepsilon_{t-1} \mid s_{t-1}\right)\right]
\end{array}
$$

The model is estimated by a differential evolution algorithm.

Appendix III - Distributional test to evaluate density forecasts

\square forecast of the distribution of y_{t+1} is

$$
\begin{equation*}
y_{t+1} \sim \mathrm{~N}\left(\widehat{\mu}, \widehat{\sigma^{2}}\right) \tag{9}
\end{equation*}
$$

where $\widehat{\mu}$ is the point forecast and $\widehat{\sigma^{2}}$ the forecasted variance.
\square if this is the correct distribution with forecasted density function $\hat{f}\left(y_{t-1}\right)$ and distribution function $\hat{F}\left(y_{t-1}\right)$, then $\hat{F}\left(y_{t-1}\right)$ is normally distributed (Diebold et al., 1998)
\square the density forecast can be evaluated by testing u_{t+1} for uniformity by using for example the Kolmogorov-Smirnov test

Appendix VI - Normal distribution, AR

Normal distribution

$$
\begin{equation*}
y_{t}=\mu+\varepsilon_{t} \tag{10}
\end{equation*}
$$

where $\varepsilon_{t} \stackrel{\text { iid }}{\sim} N\left(0, \sigma^{2}\right)$
$A R(k)$

$$
\begin{equation*}
y_{t}=c+\sum_{h=1}^{k} \phi_{h} y_{t-k}+\varepsilon_{t} \tag{11}
\end{equation*}
$$

where $\varepsilon_{t} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)$

Appendix V - GARCH and AR-GARCH

GARCH(p,q) (Bollerslev, 1986)

$$
\begin{equation*}
y_{t}=c+\varepsilon_{t} \sigma_{t} \tag{12}
\end{equation*}
$$

where $\varepsilon_{t} \stackrel{\text { iid }}{\sim} \mathrm{N}(0,1)$ and $\sigma_{t}^{2}=\alpha_{0}+\sum_{i=1}^{p} \alpha_{i} y_{t-i}^{2}+\sum_{j=1}^{q} \beta_{j} \sigma_{t-j}^{2}$
AR(k)-GARCH(p,q)

$$
\begin{equation*}
y_{t}=c+\sum_{h=1}^{k} \phi_{h} y_{t-k}+\varepsilon_{t} \sigma_{t} \tag{13}
\end{equation*}
$$

where $\varepsilon_{t} \stackrel{\text { iid }}{\sim} \mathrm{N}(0,1)$ and $\sigma_{t}^{2}=\alpha_{0}+\sum_{i=1}^{p} \alpha_{i} y_{t-i}^{2}+\sum_{j=1}^{q} \beta_{j} \sigma_{t-j}^{2}$

Appendix VI - Q-Q plots of residuals (1)

Figure 8: Q-Q plots of the standardised forecast errors

Appendix VII - Q-Q plots of residuals (2)

Figure 9: Q-Q plots of the standardised forecast errors

