Volatility modelling of log returns of EU CO₂ emission allowances with regime switching GARCH models

Thijs Benschop Brenda López Cabrera

Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de

Motivation (1)

- EU emission allowances (EUA) are a new class of assets with their own characteristics deserving their own approach
- ☑ market for EUAs is constantly growing
- risk in energy sector is mainly linked with high volatility of prices
- short-term modeling important for risk management and hedging strategies
- both traders and emitting companies need reliable price forecasts

Motivation (2)

- few publications on econometric modeling of logreturns and volatility of EUA prices due to lack of historical data
- existing studies focus on short time series with known break points and on long-term relationships (e.g. Chevallier, 2009; Hintermann, 2010)
- ⊡ focus on first trading period (2005-2007)
- ⊡ studies apply either GARCH or regime switching models

1 - 2

Motivation (3)

- Dealella and Taschini (2008) use mixed GARCH models
- imixed GARCH models do not fit the recent data
- Benz and Trück (2009) apply both GARCH models and regime switching models
- □ GARCH models have high volatility persistence
- regime switching models do not capture the conditional heteroskedastidity of the series
- several authors suggest the use of regime switching GARCH models (e.g. Paolella and Taschini, 2008)

1-3

Contribution

- I analysis of short-term spot price behaviour
- □ MS-ARCH models introduced by Hamilton and Susmel (1994)
- problem of path-dependence with MS-GARCH solved by Klaassen (2002)
- MS-GARCH captures both shifts in volatility and volatility clustering, as observed in data
- □ apply Benz and Trück's approach (2009) and extend by
 - 1. using MS-GARCH models
 - 2. using data from phase II instead of phase I
 - 3. using spot market prices instead of OTC data

2 - 1

Outline

- 1. Motivation \checkmark
- 2. Contribution \checkmark
- 3. EU ETS and CO_2 emission trading
- 4. Methodology
- 5. Empirical analysis
- 6. Estimation results
- 7. Forecasting
- 8. Conclusion

- 3-1

EU Emission Trading System

- cap-and-trade system to reduce greenhouse gas emissions and meet Kyoto Protocol emission targets
- EU Emissions Trading System (ETS) entered into force in January 2005
- \boxdot created a new market for CO₂ allowances
- three trading periods
 - (i) EU-ETS I, 2005-2007, trial period
 - (ii) EU-ETS II, 2008-2012, period under consideration
 - (iii) EU-ETS III, 2013-2020, auctioning replaces free allocation

EU carbon market

☑ EU ETS is the world's largest carbon market

 EU Emission Allowances (EUAs) are traded on several exchanges, amongst others on Bluenext, Climex, European Energy Exchange, Green Exchange, Intercontinental Exchange and Nord Pool

Year	Number of EUA	Traded value	Year	Number of EUA	Traded value
	(in bn.)	(in USD bn.)		(in bn.)	(in USD bn.)
2005	0.3	7.9	2009	6.3	118.5
2006	1.1	24.4	2010	6.8	133.6
2007	2.1	49.1	2011	7.9	147.8
2008	3.1	100.5			
-					

Table 1: Total trade volumes of EUAs on the aforementioned exchanges Source: World Bank, 2012 MS-GARCH

Characteristics of EU carbon market in Phase II

- \boxdot EUAs are allocated to installations free of charge
- \boxdot allowances can only be used during the commitment period
- ⊡ prices are determined by expected market supply and demand
- ightharpoonup firms can influence their demand by abatement
- \boxdot changes in policies influence short-term supply and demand
- \boxdot CO_2 production depends on the weather, fuel prices and economic growth
- ☑ EAU can be considered a commodity

Models

- several models considered in order to provide benchmarks for comparing performance of the regime switching GARCH models
- estimated models: Normal distribution, AR, GARCH, AR-GARCH with and without regime switching
- □ GARCH allows for conditional variance
- regime switching models allow for periods with different stochastic processes

Regime switching model (1)

Markov regime switching model (Hamilton, 1990)

- modeling breaks in time series (e.g. policy changes)
- ⊡ different model specifications for each regime or state
- current regime determined by latent variable
- we consider models with 2 states with state space

$$\mathcal{S} = \{1, 2\} \tag{1}$$

 \odot s_t, the state at time t, is a realization of two-state Markov chain with transition probability

$$p_{ij} = \mathsf{P}(s_t = j | s_{t-1} = i) \tag{2}$$

Regime switching model (2)

- current state depends only on most recent state due to Markov property
- inference on s_t can only be made through the observations of y_t , as s_t is not observable
- two sources of uncertainty: the latent state and the model specification in each state
- estimation of Markov Switching model as in Hamilton (1990)
 Appendix I Estimation of MS Model
- ⊡ use previous models for model specifications in regimes

MS-GARCH model

- ⊡ several specifications of MS-GARCH models in the literature
- MS-GARCH models solve problem of volatility persistence
- most specifications show the problem of path dependence in the variance equation, which makes estimation intractable
- we apply the model according to Klaassen (2002), which has several advantages:
 - (i) conditional variance specification is not path dependent
 - (ii) allows for recursive estimation algorithm using maximum
 - likelihood estimation
 Appendix II Estimation of MS-GARCH
 - (iii) allows for recursive forecasting

5-4

Data

- data from Bluenext from EU ETS II, as this is the exchange with the highest trading volume
- ⊡ retrieved from Bloomberg, ticker PNXCSPT2
- ⊡ time series from February 26, 2008 until November 28, 2012
- ☑ 2008 2010 for parameter estimation
- ☑ 2011 2012 for out-of-sample forecasting
- \boxdot analysis performed on the log returns

$$y_t = \ln\left(\frac{p_t}{p_{t-1}}\right) \tag{3}$$

6-1

where p_t is the spot price of EUA at time t

Summary statistics

- □ prices are skewed, log returns less skewed
- ⊡ both prices and log returns show excess kurtosis

period	Ν	Mean	Median	Min	Max	Std Dev	Skew	Kurt	
	Prices								
2008-2012	1182	14.016	13.940	6.040	28.730	5.071	0.76	3.32	
2008-2010	724	16.273	14.660	7.960	28.730	4.581	1.09	2.99	
2011-2012	458	10.433	8.565	6.040	16.930	3.505	0.61	8.44	
			Loį	g returns					
2008-2012	1182	-0.0009	0	-0.1081	0.2038	0.0276	0.03	8.03	
2008-2010	724	-0.0006	0	-0.1029	0.1055	0.0244	-0.20	5.02	
2011-2012	458	-0.0015	-0.0011	-0.1081	0.2038	0.0320	0.61	8.84	

Table 2: Summary statistics for daily prices and daily log returns

Prices and log returns

Figure 1: EUA spot prices (upper panel) and log returns (lower panel) from February 26, 2008 until November 28, 2012

Stationarity tests

period	test statistic	p-value	lags				
Augmented Dickey-Fuller test							
2008-2012	-7.437	< 0.01	22				
2008-2010	-5.321	< 0.01	20				
2011-2012	-4.879	< 0.01	17				
KPSS							
2008-2012	0.069	>0.1	7				
2008-2010	0.108	>0.1	6				
2011-2012	0.071	>0.1	4				

Table 3: Results of the Augmented Dickey-Fuller and KPSS tests for stationarity

i.i.d. Normal and AR

AR(4), optimal lag order according to AIC criteria (G)ARCH effects in residuals of AR model significant by LM test

Parameter	Coefficient	Coefficient
	i.i.d. Normal	AR(4)
μ	-0.0006	_
С	_	-0.0006
ϕ_1	-	0.0988
ϕ_2	-	-0.1391
ϕ_{3}	-	0.0795
$\phi_{ extsf{4}}$	-	0.0609
$E[y_t]$	-0.0006	-0.0006
σ	0.0244	0.0240

Table 4: Parameter estimates of i.i.d. Normal and AR models

GARCH and AR-GARCH

Parameter	Coefficient	Coefficient						
	GARCH(1,1)	AR(4)-GARCH(1,1)						
	Mean equation							
с	-0.0003	-0.0002						
ϕ_{1}	-	0.0031						
ϕ_2	-	-0.0696						
ϕ_{3}	-	0.0550						
ϕ_{4}	-	0.0199						
$E[y_t]$	-0.0003	-0.0002						
	Variance equation							
α_0	0.0000	0.0000						
α_1	0.0726	0.0697						
β_1	0.9199	0.9214						
$E[\sigma_t]$	0.0239	0.0247						

 Table 5: Parameter estimates of GARCH and AR-GARCH models

 MS-GARCH

MS-Normal and MS-AR (1)

	MS-G	aussian	MS-AR(4)				
Regime (i)	1 (low)	1 (low) 2 (high)		2 (high)			
μ_1	0.0014	-0.0037	-	-			
σ_i	0.0161	0.0336	0.0159	0.0324			
С	_	-	0.0017	-0.0033			
ϕ_1	-	-	-0.0597	0.1647			
ϕ_2	-	-	-0.0662	-0.1947			
ϕ_{3}	-	-	0.0086	0.1116			
$\phi_{ extsf{4}}$			-0.0870	0.1078			
	Markov estimates						
Pii	0.9864	0.9749	0.9818	0.9698			

 Table 6: Parameter estimates of Markov switching i.i.d. and AR models

 MS-GARCH

MS-Normal and MS-AR (2)

	MS-Gaussian		MS-	AR(4)		
Regime (i)	1 (low) 2 (high)		1 (low)	2 (high)		
Unconditional expectations						
$E[y_{t,i}]$	0.0014 -0.0037		0.0014	-0.0041		
$E[\sigma_{t,i}]$	0.0161	0.0336	0.0159	0.0324		
Markov estimates						
$P(s_t = i)$	0.6486	0.3514	0.6240	0.3760		

Table 7: Unconditional expectations of mean, standard deviation and state probabilities for Markov switching i.i.d. and AR models

MS-GARCH -

7-4

MS-AR

Figure 2: Estimated probabilities to be in the 'low' state for MS-AR(4) (upper panel) model and log returns (lower panel)
MS-GARCH

MS-GARCH and MS-AR-GARCH(1)

	MS-GARCH(1,1)		MS-AR(4)	-GARCH(1,1)	
Regime (i)	1 (low)	2 (high)	1 (low)	2 (high)	
		Mean equa	tion		
с	0.0009	-0.0042	0.0011	-0.0090	
ϕ_1	-	-	-0.0339	0.3013	
ϕ_2	-	-	-0.0637	-0.2108	
ϕ_{3}	-	-	0.0261	0.1965	
ϕ_{4}	_	-	-0.0315	0.2512	
	V	ariance equ	ation		
α_0	0.0001	0.0003	0.0000	0.0002	
α_1	0.0013	0.1038	0.0078	0.1952	
β	0.7166	0.7233	0.8645	0.7510	
Markov estimates					
pii	0.9923	0.9821	0.9740	0.8818	

MS-GARCH and MS-AR-GARCH(2)

	MS-GARCH(1,1)		MS-AR(4)-GARCH(1,1		
Regime (i)	1 (low)	2 (high)	1 (low)	2 (high)	
Unconditional expectations					
$E[y_{t,i}]$	0.0009	-0.0042	0.0010	-0.0218	
$E[\sigma_{t,i}]$	0.0136	0.0409	0.0101	0.0707	
Markov estimates					
$P(s_t = i)$	0.6988	0.3012	0.8198	0.1802	

Table 9: Unconditional expectations of mean, standard deviation and state probabilities for Markov switching GARCH(1,1) and AR(4)-GARCH(1,1) model

MS-GARCH

Figure 3: Estimated probabilities to be in the 'low' state for MS-AR(4)-GARCH(1,1) model (upper panel) and log returns (lower panel) MS-GARCH

Comparison of in-sample estimation results

model	number of	log likelihood	AIC
	parameters		
i.i.d. Normal	2	1651.06	-3298.11
AR(4)	6	1673.85	-3335.69
GARCH(1,1)	4	1732.45	-3456.89
AR(4)-GARCH (1,1)	8	1735.33	-3454.67
MS i.i.d.	6	1720.00	-3408.99
MS-AR(4)	14	1732.92	-3437.84
MS-GARCH(1,1)	10	1739.21	-3458.43
MS-AR(4)-GARCH(1,1)	18	1750.94	-3465.87

Table 10: Number of parameters, maximum log likelihood value and Akaike Information Criteria (AIC) for the estimated models

Forecasting log returns and volatility

Point forecasts

- out-of-sample 1-day-ahead forecast with recursive window estimation
- comparison of performance by mean absolute error (MAE) and mean squared error (MSE)

Density forecasts

- out-of-sample 1-day-ahead forecast with recursive window estimation
- ⊡ allows to construct forecasted confidence intervals

Comparison of out-of-sample results

Small differences in MAE and MSE

model	MAE	MSE	KS	p-value KS
i.i.d. Normal	0.02226	0.0010263	0.4737	<2.2e-16
AR(4)	0.02244	0.0010583	0.0469	0.2657
GARCH(1,1)	0.02230	0.0010282	0.0536	0.1446
AR(4)-GARCH (1,1)	0.02231	0.0010391	0.0501	0.2005
MS i.i.d.	0.02234	0.0010266	0.0367	0.5695
MS-AR(4)	0.02260	0.0010407	0.0346	0.6419
MS-GARCH(1,1)	0.02232	0.0010254	0.0321	0.7314
MS-AR(4)-GARCH(1,1)	0.02229	0.0010268	0.0370	0.5592

Table 11: Mean absolute error (MAE) and mean squared error (MSE) for point forecasts and Kolmogorov-Smirnov (KS) test for density forecasts

Density forecasts (1)

Figure 4: Forecasted confidence intervals, point forecasts and true values

Density forecasts (2)

Figure 5: Forecasted confidence intervals, point forecasts and true values

8-4

Kernel density plots (1)

Figure 6: Kernel density plots of standardised forecast errors and Normal densities

Kernel density plots (2)

Figure 7: Kernel density plots of standardised forecast errors and Normal densities

8-6

Conclusion

- □ data justify use of MS-GARCH models
- □ best in-sample fit by MS-AR(4)-GARCH(1,1) model
- □ MS-GARCH models have best out-of-sample density forecasts
- MS models distinguish well between states
- □ changes in regime and volatility structure capture series well
- MS-GARCH models solve the problem of variance persistence faced by the GARCH models
- MS-GARCH performs best for volatility forecasting and risk management

9_1

References (1)

Benz, Eva and Trück, Stefan

 CO_2 emission allowances trading in Europe - specifying a new class of assets

Problems and Perspectives in Management, vol. 3(3), 2006

Benz, Eva and Trück, Stefan Modeling the price dynamics of CO₂ emission allowances Energy Economics 31, 4-15, 2009

🔋 Bollerslev, Tim

Generalized Autoregressive Conditional Heteroskedasticity Journal of Econometrics 31, 307-327, 1986

References (2)

Chevallier, J.

Carbon futures and macroeconomic risk factors: A view from the EU ETS Energy Economics 31, 614-625, 2009

Diebold, Francis X., Gunther, Todd A. and Tay, Anthony S. Evaluating density forecast, with applications to financial risk management

International Economic Review 39, 863-883, 1998

European Commission

The EU Emisions Trading System (EU ETS) available on ec.europa.eu, 2013

References (3)

Hamilton, James D. Analysis of time series subject to changes in regime Econometrica 45, 39-70, 1990

Hamilton, James D. and Susmel, Raul Autoregressive Conditional Heteroskedasticity and Changes in Regime Journal of Econometrics 64, 307-333, 1994

📔 Hintermann, B.

Allowance price drivers in the first phase of EU ETS Journal of Environmental Economics and Management 59, 43-56, 2010

References (4)

Klaassen, Franc

Improving GARCH volatility forecasts with regime-switching GARCH Empirical Economics 27, 363-394, 2002

Paolella, Marc S. and Taschini, Luca An econometric analysis of emission trading allowances Journal of Banking and Finance 32, No. 10, 2008

World Bank Carbon Market Report 2012 available on worldbank.org, 2012

10 - 4

Appendix I - Estimation of MS Model (1)

 \Box probability of being in state j at time t is

$$\xi_{jt} = \mathsf{P}(s_t = j | \Omega_t; \theta) \tag{4}$$

11 - 1

where $\Omega_t = \{y_t, y_{t-1}, \dots, y_1\}$ and heta is the parameter vector

inference on the state probailites ξ_{jt} is performed iteratively by evaluating the density η_{jt} under both regimes

$$\eta_{jt} = g_j(y_t|s_t = j, \Omega_{t-1}; \theta)$$
(5)

where g_j is the density function of the process in state j

Markov Switching Model

MS-GARCH ·

Appendix I - Estimation of MS Model (2)

Knowing $\xi_{i,t-1}$ the conditional density of the observation y_t is

$$f(y_t|\Omega_{t-1};\theta) = \sum_{i=1}^2 \sum_{j=1}^2 \rho_{ij}\xi_{i,t-1}\eta_{jt}$$
(6)

and the probability to be in state j at time t is

$$\xi_{jt} = \frac{\sum_{i=1}^{2} p_{ij}\xi_{i,t-1}\eta_{jt}}{f(y_t|\Omega_{t-1};\theta)}$$
(7)

This yields the conditonal log likelihood of the observed data

$$\ell(y_1, y_2, \dots, y_T | y_0; \theta) = \sum_{t=1}^T \ln f(y_t | \Omega_{t-1}; \theta)$$
(8)

Markov Switching Model

MS-GARCH _____

Appendix II - Estimation of MS-GARCH model

The variance specification for the MS-GARCH model according to Klaassen (2002) integrates out the path dependence by using the law of iterated expectations.

The variance of y_t evaluated at time t-1 is described by

$$\begin{aligned} \mathsf{Var}_{t-1}(y_t|s_t = j) &= & \mathsf{Var}_{t-1}(\varepsilon_t|s_t = j) \\ &= & \alpha_{0j} + \alpha_{1j}\varepsilon_{t-1} + \beta_{1j}\,\mathsf{E}_{t-1}\,[\mathsf{Var}_{t-2}(\varepsilon_{t-1}|s_{t-1})] \end{aligned}$$

Appendix III - Distributional test to evaluate density forecasts

 \boxdot forecast of the distribution of y_{t+1} is

$$y_{t+1} \sim \mathsf{N}\left(\widehat{\mu}, \widehat{\sigma^2}\right)$$
 (9)

where μ̂ is the point forecast and σ² the forecasted variance.
if this is the correct distribution with forecasted density function f(y_{t-1}) and distribution function F(y_{t-1}), then F(y_{t-1}) is normally distributed (Diebold et al., 1998)
when density forecast can be evaluated by testing u = for

 the density forecast can be evaluated by testing u_{t+1} for uniformity by using for example the Kolmogorov-Smirnov test

• Forecasting log returns and volatility

Appendix VI - Normal distribution, AR

Normal distribution

$$y_t = \mu + \varepsilon_t \tag{10}$$

where $\varepsilon_t \stackrel{\text{iid}}{\sim} N\left(0, \sigma^2\right)$

AR(k)

$$y_t = c + \sum_{h=1}^k \phi_h y_{t-k} + \varepsilon_t \tag{11}$$

where $\varepsilon_t \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

Appendix V - GARCH and AR-GARCH

GARCH(p,q) (Bollerslev, 1986)

$$y_t = c + \varepsilon_t \sigma_t \tag{12}$$

where $\varepsilon_t \stackrel{\text{iid}}{\sim} N(0,1)$ and $\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i y_{t-i}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2$

AR(k)-GARCH(p,q)

$$y_t = c + \sum_{h=1}^k \phi_h y_{t-k} + \varepsilon_t \sigma_t$$
(13)

where $\varepsilon_t \stackrel{\text{iid}}{\sim} N(0,1)$ and $\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i y_{t-i}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2$

Appendix VI - Q-Q plots of residuals (1)

Figure 8: Q-Q plots of the standardised forecast errors

Appendix VII - Q-Q plots of residuals (2)

Figure 9: Q-Q plots of the standardised forecast errors