

#### A Cointegrated Spot-Swap Model for Power Prices: A regime Switching Approach with Stochastic Volatility and Jumps

R. Green, Lund UniversityK. Larsson, Lund UniversityM. Nossman, Kyos Energy Consulting



Energy Finance Conference, Essen, Germany, 2013-10-10

www.kyos.com, +31 (0)23 5510221, Marcus Nossman, nossman@kyos.com

- Introduction of the model
- Estimation and Data
- > An application of the model: Option pricing
- Summary



## Introduction of the model

- The spot price and the swap prices are cointegrated.
- > The spot price follows a regime switching model with jumps.
- > The spot price dynamics consists of three regimes:
  - 1. A normal regime with no jumps in the spot price
  - 2. A regime with up jumps
  - 3. A regime with down jumps
- The swap dynamics has stochastic volatility to capture smiles/smirks in the swaption market.



The spot price dynamics in the normal regime is given by:

 $dS_N(t) = S_N(t) \left\{ -\kappa Z(t)dt + \sigma dB_1(t) \right\}$ 

 $Z(t) \equiv \xi(t) + \ln \left(S_N(t)\right) - \ln \left(F(t, t+\tau)\right)$ 

where B is an independent Brownian motion and  $\xi$  is a determinsic function. F is the price of a monthly swap with delivery starts at time t+ $\tau$ .



In the up-spike regime, U, the spot dynamics is given by

```
\ln S_U(t) = \ln F(t, t+\tau) + X_U(t)
```

and in the down-spike regime, D, the dynamics is

 $\ln S_D(t) = \ln F(t,t+\tau) + X_D(t)$ 

Jumps are induced via the compound Poission processes

$$X_U(t) = \sum_{i=1}^{1+P_U(t)} J_{i,U} \quad \text{and} \quad X_D(t) = \sum_{i=1}^{1+P_D(t)} J_{i,D}$$

where

$$P_k(t) \sim \operatorname{Po}(\lambda_k)$$
 and  $J_{i,k} \sim \operatorname{N}(\mu_k, \sigma_k)$  for  $k \in \{U, D\}$ 



The swap price is defined by

$$d\ln F(t,T) = \left(\mu(t,T) - \frac{1}{2} \left[\sigma(t,T)\right]^2 V(t)\right) dt + \sigma(t,T) \sqrt{V(t)} dB_2(t)$$

with the squared volatility process given by

$$dV(t) = \kappa_V \left(\theta_V - V(t)\right) dt + \sigma_V \sqrt{V(t)} dB_3(t)$$

The two Browian motions are allowed to be correlated and and  $\sigma$  is the deterministic function

$$\sigma(t,T) = \gamma + \frac{\alpha}{\beta \tau_M} \left( e^{-\beta(T-t)} - e^{-\beta(T+\tau_M-t)} \right)$$

T is the start of the delivery period and  $\tau$  is the length of the swapping period.

#### **Estimation and Data**

- > The model is estimated using Nordic electricity spot, swap and swaption prices.
- The spot mean reversion level (syntethic rolling swap price) is approximated with the front month swap price.
- The time-continous spot price process is discretized to daily time steps.
- The spot dynamics:

| Method:        | Maximum Likelihood   |
|----------------|----------------------|
| Data:          | Spot and swap prices |
| Sample period: | 2006 – 2011          |

The swap dynamics:

Method:Non linear least squaresData:Swap and swaption pricesSampe period:2010



## The risk neutral dynamics

- > The option prices are priced under the risk neutral measure.
- We need the risk neutral dynamics of the spot price.
- > The swap price dynamics under the risk neutral measure were calibrated with the swaption prices.
- > The spot price is unhedgeable and has no unique risk neutral spot price dynamics.
- > The spot price dynamics was estimated under the historical measure.
  - We need to make assumptions about the risk neutral dynamics of the spot price.
    - We assume that the only risk which is priced is the continous shocks in the normal regime i.e. the Brownian motion.

$$dS_N(t) = S_N(t) \left\{ \left( -\kappa Z(t) - \sigma \zeta_1(t) \right) dt + \sigma dB_1^{\mathbb{Q}}(t) \right\}$$

• The price of risk  $\zeta$  is assumed to be both time varying and stochastic such that

$$E_t^{\mathbb{Q}}\left[S^*(u)du\right] = F(t,T,T)$$

for all T.

#### **Pricing European styled spot options**

The log spot price is not of affine form and hence no Fourier based pricing methods can be used without any approximations (see Duffie et al 2001)

- Reason: The rolling swap price in combination with stochastic volatility
- Options are priced with Monte Carlo simulations
- Options can be priced with Fourier based methods by approximating the rolling swap contract with a fixed contract.
- The approximation error is very small because the mean reversion speed of the spot price is high.
- Choose the fixed contract which corresponds to the rolling contract at the "delivery" date of spot.



# Pricing European styled spot options (cont'd)

- Pricing method: Monte Carlo simulations
  - The risk premium  $\zeta$  needs to be defined which is difficult.
  - We approximate  $\zeta$  by scaling the simulated prices such that the average simulated spot price is equal its forward price
- Pricing method: Fourier based methods (approximation of the mean reversion level)
  - The risk premium can be backed out analytically.

#### The impact of the swaption smile on spot options:

- > The impact of the swaption smile on spot options is relative small.
- > The impact of the swaption smile is increasing by time to maturity.
- For strips of independent daily call options (virtual power plants (VPPs)) the impact is even smaller as the VPPs consist of many in-, atand out-of-the money options.

### The implied volatility of swaptions



KYOS

#### The implied volatility of spot options: 1 month to maturity



#### The implied volatility of spot options: 7 months to maturity



KYOS

#### The implied volatility of spot options: 13 month to maturity



#### Valuation of a VPP



### Summary

- The model features several important characteristics:
  - The volatility smile in the swaption market
  - Regime switching and jumps in the spot market
  - Cointegration between the spot and the swap prices
- The model parameters are easy to estimate as you can estimate the spot and swap parameters separately.
- European styled options on the spot price can succesfully be approximated and efficiently priced with Fourier based methods.
- Stochastic volatility in the swaption market has no significant effect on the valuation of VPPs.

### **Estimation results of the spot parameters**

| $\mathbf{Parameter}$ | Estimated value | Standard error |
|----------------------|-----------------|----------------|
| ξ                    | 0.0366          | 0.0040         |
| $\kappa$             | 67.1445         | 2.7850         |
| $\sigma$             | 0.8052          | 0.0144         |
| $\lambda_U$          | 0.2297          | 0.1077         |
| $\lambda_D$          | 0.6790          | 0.5884         |
| $\mu_U$              | 0.1510          | 0.0122         |
| $\mu_D$              | -0.1526         | 0.0596         |
| $\sigma_U$           | 0.0574          | 0.0069         |
| $\sigma_D$           | 0.1302          | 0.0374         |
| $\pi^{NU}$           | 0.0369          | 0.0089         |
| $\pi^{ND}$           | 0.0087          | 0.0065         |
| $\pi^{UN}$           | 0.3407          | 0.0464         |
| $\pi^{DN}$           | 0.1398          | 0.0366         |