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Swing contracts in continuous time

The paper of Benth-Lempa-Nilssen (2012) was a real breakthrough
in the evaluation of swing contracts in continuous time (also Best
Paper Award of E&F 2010 Essen).
It characterized the value of a swing contract with final constraint
Z (T ) ∈ [m,M], with m = 0, as the value function of a stochastic
control problem, linked to a suitable Hamilton-Jacobi-Bellman
equation  nice numerics. . .
. . . but two questions were still unanswered:

1 from the mathematical side: HJB equations seldom (and not
in this case) have explicit solutions to be checked to be
smooth: if not, in which sense the value function can be a
solution? Is it in our case?

2 from the applied side: ”true” contracts have m > 0 (often
m > 0.5M). Is it still possible, for this situation, to write
down a HJB equation? With which boundary conditions?

Our aim is to fill these gaps.
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More in details. . .

Following Benth-Lempa-Nilssen (2012), for a given contract with
maturity T the buyer can choose, at each time s ∈ [0,T ], a
marginal amount of energy u(s) ∈ [0, ū] at a prespecified strike
price K .

Marginal profit & loss: (P(s)− K )u(s), where P(s) is the
spot price of ”energy”.

Cumulative P&L:∫ T

0
e−rs(P(s)− K )u(s) ds,

with r > 0 risk-free interest rate.

However, the seller usually wants the total amount of energy
Z (T ) =

∫ T
0 u(s) ds to lie between a minimum and a maximum

quantity, i.e. Z (T ) ∈ [m,M].
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price K .

Marginal profit & loss: (P(s)− K )u(s), where P(s) is the
spot price of ”energy”.

Cumulative P&L:∫ T

0
e−rs(P(s)− K )u(s) ds,

with r > 0 risk-free interest rate.

However, the seller usually wants the total amount of energy
Z (T ) =

∫ T
0 u(s) ds to lie between a minimum and a maximum

quantity, i.e. Z (T ) ∈ [m,M].



The problem Swing contracts with penalties Swing contracts with strict constraints Conclusions

Two kinds of constraints

The constraint Z (T ) ∈ [m,M] is implemented in two main ways.

1 penalties: make the buyer pay a penalty Φ̃(P(T ),Z (T )),
where Φ̃(p, z) is null for z ∈ [m,M] and usually convex in z .

2 strict constraint: impose the constraint Z (T ) ∈ [m,M] to
be satisfied strictly, i.e. to force the buyer to withdraw the
minimum cumulative amount of energy m and to stop giving
the energy when the maximum M has been reached (BLN
2012, but only with m = 0).

Our aim in both the cases: optimally exercising a swing option,
represented as a continuous time stochastic control problem.
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Stochastic control of swings with penalties

In the case of swing contracts with penalties, we get a standard
stochastic control problem, as the maximization of the final
expected payoff for a buyer entering in the contract at a generic
time t ∈ [0,T ] is given by

Ṽ (t, p, z) = sup
u∈At

Etpz

[∫ T

t
e−r(s−t)(P(s)− K )u(s) ds

−e−r(T−t)Φ̃(P(T ),Z (T ))
]
,

with (t, p, z) ∈ [0,T ]× R2, where Etpz stands for the expectation
conditioned to P(t) = p, Z (t) = z and

At := {u = {u(s)}s∈[t,T ] | u progr. meas. and s.t. u(s) ∈ [0, ū]}

In this case the standard theory can be applied.
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Stochastic control of swings with strict constraints

Conversely, swing contracts with strict constraints give rise to a
stochastic control problem with a nonstandard state constraint:

V (t, p, z) = sup
u∈Aadm

tz

Etpz

[ ∫ T

t
e−r(s−t)(P(s)− K )u(s) ds

]
, (1)

with (t, p, z) in a suitable domain D ⊆ [0,T ]× R2, where

Aadm
tz := {u ∈ At | Z (T ) ∈ [m,M] Ptpz -a.s.}

Due to the presence of the constraint on Z t,z;u(T ), here standard
theory does not apply.
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The link between the two kind of contracts

Swing contracts with penalties or with strict constraints are not so
different:

intuitively, if you fix a high penalty, the buyer will have little
interest in violating the constraint Z (T ) ∈ [m,M];

mathematically, we prove that in a set D̃ ⊆ D the value
function V pricing a swing with strict constraint is the limit of
the value functions V c pricing suitable unconstrained
contracts, where the constraint has been substituted by an
appropriate penalization in the pricing functional.

moreover, both the value functions are solutions of a
Hamilton-Jacobi-Bellman (HJB) equation with suitable
boundary conditions.



The problem Swing contracts with penalties Swing contracts with strict constraints Conclusions

The link between the two kind of contracts

Swing contracts with penalties or with strict constraints are not so
different:

intuitively, if you fix a high penalty, the buyer will have little
interest in violating the constraint Z (T ) ∈ [m,M];

mathematically, we prove that in a set D̃ ⊆ D the value
function V pricing a swing with strict constraint is the limit of
the value functions V c pricing suitable unconstrained
contracts, where the constraint has been substituted by an
appropriate penalization in the pricing functional.

moreover, both the value functions are solutions of a
Hamilton-Jacobi-Bellman (HJB) equation with suitable
boundary conditions.



The problem Swing contracts with penalties Swing contracts with strict constraints Conclusions

The link between the two kind of contracts

Swing contracts with penalties or with strict constraints are not so
different:

intuitively, if you fix a high penalty, the buyer will have little
interest in violating the constraint Z (T ) ∈ [m,M];

mathematically, we prove that in a set D̃ ⊆ D the value
function V pricing a swing with strict constraint is the limit of
the value functions V c pricing suitable unconstrained
contracts, where the constraint has been substituted by an
appropriate penalization in the pricing functional.

moreover, both the value functions are solutions of a
Hamilton-Jacobi-Bellman (HJB) equation with suitable
boundary conditions.



The problem Swing contracts with penalties Swing contracts with strict constraints Conclusions

The link between the two kind of contracts

Swing contracts with penalties or with strict constraints are not so
different:

intuitively, if you fix a high penalty, the buyer will have little
interest in violating the constraint Z (T ) ∈ [m,M];

mathematically, we prove that in a set D̃ ⊆ D the value
function V pricing a swing with strict constraint is the limit of
the value functions V c pricing suitable unconstrained
contracts, where the constraint has been substituted by an
appropriate penalization in the pricing functional.

moreover, both the value functions are solutions of a
Hamilton-Jacobi-Bellman (HJB) equation with suitable
boundary conditions.



The problem Swing contracts with penalties Swing contracts with strict constraints Conclusions

Swing contracts with penalties

Let T > 0 be a fixed contract horizon and t ∈ [0,T ]. We model
the price of energy through a stochastic process P which satisfies
the SDE

dPt,p(s) = f (s,Pt,p(s))ds +σ(s,Pt,p(s))dW (s), s ∈ [t,T ], (2)

with initial condition Pt,p(t) = p, where f , σ ∈ C ([0,T ]× R; R)
are suitable functions. Also, for each s ∈ [t,T ] and u ∈ At , denote
by Z t,z;u(s) the energy bought up to time s:

Z t,z;u(s) = z +

∫ s

t
u(τ)dτ, s ∈ [t,T ].

If the globally purchased energy Z t,z;u(T ) does not fall within a
fixed range [m,M] (m,M ∈ R, with m ≤ M), the holder must pay
a penalty Φ̃(Pt,p(T ),Z t,z;u(T )), with Φ̃ : R2 → R.



The problem Swing contracts with penalties Swing contracts with strict constraints Conclusions

Swing contracts with penalties

Let T > 0 be a fixed contract horizon and t ∈ [0,T ]. We model
the price of energy through a stochastic process P which satisfies
the SDE

dPt,p(s) = f (s,Pt,p(s))ds +σ(s,Pt,p(s))dW (s), s ∈ [t,T ], (2)

with initial condition Pt,p(t) = p, where f , σ ∈ C ([0,T ]× R; R)
are suitable functions. Also, for each s ∈ [t,T ] and u ∈ At , denote
by Z t,z;u(s) the energy bought up to time s:

Z t,z;u(s) = z +

∫ s

t
u(τ)dτ, s ∈ [t,T ].

If the globally purchased energy Z t,z;u(T ) does not fall within a
fixed range [m,M] (m,M ∈ R, with m ≤ M), the holder must pay
a penalty Φ̃(Pt,p(T ),Z t,z;u(T )), with Φ̃ : R2 → R.



The problem Swing contracts with penalties Swing contracts with strict constraints Conclusions

Swing contracts with penalties

Let T > 0 be a fixed contract horizon and t ∈ [0,T ]. We model
the price of energy through a stochastic process P which satisfies
the SDE

dPt,p(s) = f (s,Pt,p(s))ds +σ(s,Pt,p(s))dW (s), s ∈ [t,T ], (2)

with initial condition Pt,p(t) = p, where f , σ ∈ C ([0,T ]× R; R)
are suitable functions. Also, for each s ∈ [t,T ] and u ∈ At , denote
by Z t,z;u(s) the energy bought up to time s:

Z t,z;u(s) = z +

∫ s

t
u(τ)dτ, s ∈ [t,T ].

If the globally purchased energy Z t,z;u(T ) does not fall within a
fixed range [m,M] (m,M ∈ R, with m ≤ M), the holder must pay
a penalty Φ̃(Pt,p(T ),Z t,z;u(T )), with Φ̃ : R2 → R.



The problem Swing contracts with penalties Swing contracts with strict constraints Conclusions

Various kinds of penalty

Typical examples:
1 penalty directly proportional to Pt,p(T ) and to the entity of

the overrunning or underrunning:

Φ̃(p, z) = −Ap(z −M)+ − Bp(m − z)+,

for all (p, z) ∈ R2, where A,B > 0 are suitable constants. In
several practical cases, A = B.

2 replace p above, representing the spot price at the end T of
the contract, with an arithmetic mean of spot prices over
[0,T ] (thus requiring another state variable in the problem).

3 replace p with a fixed (high) penalty.

In the light of the above discussion, we assume that Φ̃ is null for
z ∈ [m,M], globally concave in z and such that

|Φ̃(p+h, z)−Φ̃(p, z)| ≤ Ch(1+|z |), |Φ̃(p, z+h)−Φ̃(p, z)| ≤ Ch(1+|p|), ∀(p, z) ∈ R2, h > 0,

where C > 0 is a constant.
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The stochastic control problem

Let r ≥ 0 be the risk-free rate. We get a stochastic optimal
control problem, with the following value function:

Ṽ (t, p, z) = sup
u∈At

J̃(t, p, z ; u), (3)

for each (t, p, z) ∈ [0,T ]× R2, where

J̃(t, p, z ; u) = Etpz

[∫ T

t
e−r(s−t)(Pt,p(s)− K )u(s)ds +

+e−r(T−t)Φ̃(Pt,p(T ),Z t,z;u(T ))

]
Problem (3) belongs to a widely studied class of control problems,
with well-known classical results.
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The HJB equation

Theorem. The function Ṽ is the unique viscosity solution of

− Ṽt + r Ṽ − f Ṽp −
1

2
σ2Ṽpp + min

v∈[0,ū]
[−v(Ṽz + p − K )] = 0,

∀(t, p, z) ∈ [0,T [×R2, (4)

with final condition

Ṽ (T , p, z) = Φ̃(p, z), ∀(p, z) ∈ R2, (5)

and such that

|Ṽ (t, p, z)| ≤ Č (1 + |p|2 + |z |2), ∀(t, p, z) ∈ [0,T ]× R2,

for some constant Č > 0.
Remark. Equation (4) is the same as in BLN 2012, but with
different domain and boundary conditions (5).
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and such that

|Ṽ (t, p, z)| ≤ Č (1 + |p|2 + |z |2), ∀(t, p, z) ∈ [0,T ]× R2,

for some constant Č > 0.
Remark. Equation (4) is the same as in BLN 2012, but with
different domain and boundary conditions (5).
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Properties of the value function

Proposition. For each (t, z) ∈ [0,T ]× R the function Ṽ (t, ·, z) is
Lipschitz continuous, uniformly in t. Moreover, the derivative
Ṽp(t, p, z) exists for a.e. (t, p, z) ∈ [0,T ]× R2 and we have

|Ṽp(t, p, z)| ≤ M1(1 + |z |), for some constant M1 > 0.

Proposition. For each (t, p) ∈ [0,T ]×R the function Ṽ (t, p, ·) is

- Lipschitz continuous, uniformly in t. Moreover, the derivative
Ṽz(t, p, z) exists for a.e. (t, p, z) ∈ [0,T ]× R2 and we have
|Ṽz(t, p, z)| ≤ M2(1 + |p|), for some constant M2 > 0.

- concave and a.e. twice differentiable;

- weakly increasing in ]−∞,M − (T − t)ū] and weakly
decreasing in [m,+∞[. In particular, if M − (T − t)ū ≥ m
then the function Ṽ (t, p, ·) is constant in [m,M − (T − t)ū]
(they all are maximum points).
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Ṽz(t, p, z) exists for a.e. (t, p, z) ∈ [0,T ]× R2 and we have
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decreasing in [m,+∞[. In particular, if M − (T − t)ū ≥ m
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Monotonicity of the value function

The last monotonicity result is described in Figure 1.

M

m

T

z

t0
M - ūT

     decreasing
         V(t, p, ∙) 

increasing
V(t, p, ∙)

 const.
V(t, p, ∙)
 

Figure: monotonicity of Ṽ (t, p, ·)

Apparently unexpected result: for suitable t and for all p, the
function V (t, p, ·) is constant in an interval.
As a matter of fact, if z is in the grey region, then
Z t,z;u(T ) ∈ [m,M] for each u ∈ At , so that Φ̃(P(T ),Z (T )) ≡ 0
and the initial z does not influence the value function.
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Optimal buying strategy

As already observed in BLN 2012, an optimal control policy is

u(t, p, z) =

{
ū if Ṽz(t, p, z) ≥ p − K ,

0 if Ṽz(t, p, z) < p − K .
(6)

Notice that, by our regularity results, the candidate in (6) is
a.e. well-defined.
Moreover, since Ṽ is concave in z , for each fixed (t, p) there exists
z̄(t, p) ∈ [−∞,+∞] such that Ṽz(t, p, z) < p − K if and only if
z > z̄(t, p): for t fixed, the function z̄(t, ·) (which in BLN 2012 is
called exercise curve) can be used to write u as

u(t, p, z) =

{
ū if z ≤ z̄(t, p),

0 if z > z̄(t, p).
(7)
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Stochastic control problem

Let P and Z be as before. This time we get a stochastic optimal
control problem with the following value function:

Ṽ (t, p, z) = sup
u∈Aadm

tz

J̃(t, p, z ; u), (8)

where

J̃(t, p, z ; u) = Etpz

[∫ T

t
e−r(s−t)(Pt,p(s)− K )u(s)ds

]
and we recall that

Aadm
tz := {u ∈ At | Z (T ) ∈ [m,M] Ptpz -a.s.}

The first thing to notice here is that, for some initial values z ≥ 0,
we have Aadm

tz = ∅ (for example if we start with z > M), so z must
satisfy suitable constraints.
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Admissible domain

In order for Aadm
tz to be nonempty, we must impose that (t, p, z)

belongs to

D = {(t, p, z) ∈ [0,T ]× R2 : m − ū(T − t) ≤ z ≤ M}
We also will need the following sets (the latter for ρ > 0):

D̃ = {(t, p, z) ∈ [0,T ]× R2 : m − ū(T − t) < z < M},
Dρ = {(t, p, z) ∈ [0,T ]× R2 : m + ρ− ū(T − t) ≤ z ≤ M − ρ}.

We have D̃ = ∪ρ>0Dρ and D = cl(D̃):
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m - ūT
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m + ρ

Figure: the sets D, D̃,Dρ
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Dρ = {(t, p, z) ∈ [0,T ]× R2 : m + ρ− ū(T − t) ≤ z ≤ M − ρ}.
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The idea

Approximate the value function Ṽ , pricing a swing with strict
constraint, as the limit of value functions Ṽ c pricing unconstrained
contracts with the penalization

Φc(p, z) = −c

[(
z −

(
M − 1√

c

))+

+

((
m +

1√
c

)
− z

)+
]
,

Nice economical interpretation: here we are approximating a swing
contract with the strict constraint Z (T ) ∈ [m,M] with a sequence
of suitable contracts with increasing penalties for

Z (T ) /∈
[
m + 1√

c
,M − 1√

c

]
.
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The approximating problems

Let

α = {(t, p, z) ∈ D : z = M},
β = {(t, p, z) ∈ D : z + ū(T − t) = m},
γ = {T} × R× [m,M],

so that D \ D̃ = α ∪ β.
Proposition. The functions Ṽ c converge to Ṽ uniformly on
compact subsets of D̃, and Ṽ is continuous in D. Moreover, if
(t, p, z) ∈ α we have Ṽ (t, p, z) = 0, and if (t, p, z) ∈ β we have

Ṽ (t, p, z) = ū Etpz

[∫ T

t
e−r(s−t)(Pt,p(s)− K )ds

]
=: ξ(t, p)

(deterministic function of t and p that in some specific models can
be computed in semi-closed form).
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The HJB equation for the value function

As Ṽ = limc→0 Ṽ c , and these latter are solutions of

− Ṽt + r Ṽ − f Ṽp −
1

2
σ2Ṽpp + min

v∈[0,ū]
[−v(Ṽz + p−K )] = 0, (9)

the question is: will Ṽ solve the same equation?
Theorem. The function V is the unique viscosity solution of
Equation (9) in the domain D \ (α ∪ β ∪ γ), with boundary
conditions

V (t, p, z) = 0, ∀(t, p, z) ∈ α,
(NEW) V (t, p, z) = ξ(t, z), ∀(t, p, z) ∈ β,

V (T , p, z) = 0, ∀(p, z) ∈ R× [m,M],

such that

|V (t, p, z)| ≤ Č (1 + |p|2 + |z |2), ∀(t, p, z) ∈ D, (10)

for some constant Č > 0.
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Properties of the value function

Proposition. Let (t, z) ∈ [0,T ]× R be such that (t, p, z) ∈ D for
each p ∈ R. Then:

- the function V (t, ·, z) is Lipschitz continuous, uniformly in
(t, z). Moreover, the derivative Vp(t, p, z) exists for
a.e. (t, p, z) ∈ D and we have |Vp(t, p, z)| ≤ M1, for some
constant M1 > 0.

- if f (s, ·), σ(s, ·) ∈ C 2
b (R), uniformly in s ∈ [0,T ], the function

V (t, ·, z) is locally semiconvex, uniformly in t, and a.e. twice
differentiable.

Proposition. For each (t, p) ∈ [0,T ]× R the function V (t, p, ·)
is:

- concave, Lipschitz continuous and a.e. twice differentiable;

- weakly increasing in [m− (T − t)ū,M − (T − t)ū] and weakly
decreasing in [m,M]. In particular, if M − (T − t)ū ≥ m then
the function V (t, p, ·) is constant in [m,M − (T − t)ū] (they
all are maximum points).
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the function V (t, p, ·) is constant in [m,M − (T − t)ū] (they
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Monotonicity of the value function

The last monotonicity result is described in Figure 3.
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Figure: monotonicity of V (t, p, ·)

As in the previous case, it was foreseeable that the function
V (t, p, ·) is constant in an interval: if M − (T − t)ū ≥ m and
z ∈ [m,M − (T − t)ū] then Aadm

tz = At (i.e. all controls satisfies
the constraint), which implies that the initial value z does not
influence the value function. This generalizes an intuitive result in
BLN 2012: for (t, z) such that the volume constraint is de facto
absent, the value function V does not depend on z .
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Optimal buying strategy

An optimal control policy is again

u(t, p, z) =

{
ū if Ṽz(t, p, z) ≥ p − K ,

0 if Ṽz(t, p, z) < p − K .
(11)

Notice that also in this case, by our regularity results, u is
a.e. well-defined. Since Ṽ is again concave in z , for each fixed
(t, p) there exists z̄(t, p) ∈ [−∞,+∞] such that
Ṽz(t, p, z) < p − K if and only if z > z̄(t, p): for t fixed, the
exercise curve z̄(t, ·) can be used to write u as

u(t, p, z) =

{
ū if z ≤ z̄(t, p),

0 if z > z̄(t, p).
(12)
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Conclusions

We characterize the value of swing contracts in continuous
time as the unique viscosity solution of a HJB equation with
suitable boundary conditions.

The case of contracts with penalties is a straightforward
application of classical optimal control theory: their value is
the unique viscosity solution of a HJB equation, and in that
case only a terminal condition is needed.

Conversely, the case of contracts with strict constraints is a
nonstandard stochastic control problem. We approximate the
value function with a sequence of value functions of
appropriate penalized swing contracts and show that they
converge to the value of a contract with strict constraints.
The value function is also the unique viscosity solution of the
same HJB equation as before, subject to terminal and
boundary conditions.
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Conclusions (II)

For both swing contracts, their value function is Lipschitz
both in p (spot price of energy) and in z (current cumulated
quantity).

The value function is concave with respect to z , weakly
increasing for z ≤ M − (T − t)ū, where t is the current time
and ū is the maximum marginal energy that can be
purchased, and weakly decreasing for z ≥ m.

These results make the optimal exercise policy well defined.
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