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The paper of Benth-Lempa-Nilssen (2012) was a real breakthrough
in the evaluation of swing contracts in continuous time (also Best
Paper Award of E&F 2010 Essen).

It characterized the value of a swing contract with final constraint
Z(T) € [m, M], with m =0, as the value function of a stochastic
control problem, linked to a suitable Hamilton-Jacobi-Bellman
equation ~» nice numerics. . .
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Swing contracts in continuous time

The paper of Benth-Lempa-Nilssen (2012) was a real breakthrough
in the evaluation of swing contracts in continuous time (also Best
Paper Award of E&F 2010 Essen).

It characterized the value of a swing contract with final constraint
Z(T) € [m, M], with m =0, as the value function of a stochastic
control problem, linked to a suitable Hamilton-Jacobi-Bellman
equation ~» nice numerics. . .

... but two questions were still unanswered:

@ from the mathematical side: HJB equations seldom (and not
in this case) have explicit solutions to be checked to be
smooth: if not, in which sense the value function can be a
solution? Is it in our case?

@ from the applied side: "true” contracts have m > 0 (often
m > 0.5M). Is it still possible, for this situation, to write
down a HJB equation? With which boundary conditions?

Our aim is to fill these gaps.
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marginal amount of energy u(s) € [0, 7] at a prespecified strike
price K.
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More in details. . .

Following Benth-Lempa-Nilssen (2012), for a given contract with
maturity T the buyer can choose, at each time s € [0, T], a
marginal amount of energy u(s) € [0, 7] at a prespecified strike
price K.
e Marginal profit & loss: (P(s) — K)u(s), where P(s) is the
spot price of "energy”.
o Cumulative P&L:

i
/O e=(P(s) — K)u(s) ds,

with r > 0 risk-free interest rate.
However, the seller usually wants the total amount of energy
Z(T)= fOT u(s) ds to lie between a minimum and a maximum
quantity, i.e. Z(T) € [m, M].
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Two kinds of constraints

The constraint Z(T) € [m, M] is implemented in two main ways.

@ penalties: make the buyer pay a penalty ®(P(T),Z(T)),
where ®(p, z) is null for z € [m, M] and usually convex in z.

@ strict constraint: impose the constraint Z(T) € [m, M| to
be satisfied strictly, i.e. to force the buyer to withdraw the
minimum cumulative amount of energy m and to stop giving
the energy when the maximum M has been reached (BLN
2012, but only with m = 0).

Our aim in both the cases: optimally exercising a swing option,
represented as a continuous time stochastic control problem.
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Stochastic control of swings with penalties

In the case of swing contracts with penalties, we get a standard
stochastic control problem, as the maximization of the final
expected payoff for a buyer entering in the contract at a generic
time t € [0, T] is given by

_ T
V(t,p,z) = sup E¢p, [/ e "CI(P(s) — K)u(s) ds
ue At t

—e=T=98(P(T), Z(T))|

with (t, p,z) € [0, T] x R?, where E;p, stands for the expectation
conditioned to P(t) = p, Z(t) = z and

t := {u = {u(s)}sefe,7) | U progr. meas. and s.t. u(s) € [0, 7]}
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In the case of swing contracts with penalties, we get a standard
stochastic control problem, as the maximization of the final
expected payoff for a buyer entering in the contract at a generic
time t € [0, T] is given by

_ T
V(t,p,z) = sup E¢p, [/ e "CI(P(s) — K)u(s) ds
ue At t

—e=T=98(P(T), Z(T))|

with (t, p,z) € [0, T] x R?, where E;p, stands for the expectation
conditioned to P(t) = p, Z(t) = z and

t := {u = {u(s)}sefe,7) | U progr. meas. and s.t. u(s) € [0, 7]}

In this case the standard theory can be applied.
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Stochastic control of swings with strict constraints

Conversely, swing contracts with strict constraints give rise to a
stochastic control problem with a nonstandard state constraint:

)
V(t.p,7) = sup Et,,z[ / e~r=0(P(s) — K)u(s) ds|, (1)
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Stochastic control of swings with strict constraints

Conversely, swing contracts with strict constraints give rise to a
stochastic control problem with a nonstandard state constraint:

.
V(t,p,z) = sup Et,,z[ / e "6CO(P(s) — K)u(s) ds|, (1)
ueAdm t

with (t,p,z) in a suitable domain D C [0, T] x R2, where

Am = fue A | Z(T) € [mM] Pypy-as.}

tz

Due to the presence of the constraint on Z%%¥(T), here standard
theory does not apply.
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The link between the two kind of contracts

Swing contracts with penalties or with strict constraints are not so
different:

@ intuitively, if you fix a high penalty, the buyer will have little
interest in violating the constraint Z(T) € [m, M];

@ mathematically, we prove that in a set D C D the value
function V pricing a swing with strict constraint is the limit of
the value functions V¢ pricing suitable unconstrained
contracts, where the constraint has been substituted by an
appropriate penalization in the pricing functional.

@ moreover, both the value functions are solutions of a
Hamilton-Jacobi-Bellman (HJB) equation with suitable
boundary conditions.



Swing contracts with penalties
©000000

Swing contracts with penalties

Let T > 0 be a fixed contract horizon and t € [0, T]. We model
the price of energy through a stochastic process P which satisfies
the SDE

dP"P(s) = f(s, Pt"P(s))ds+o(s, P"P(s))dW(s), set, T], (2)

with initial condition P“P(t) = p, where f, o € C([0, T] x R; R)
are suitable functions.
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Swing contracts with penalties

Let T > 0 be a fixed contract horizon and t € [0, T]. We model
the price of energy through a stochastic process P which satisfies
the SDE

dP"P(s) = f(s, Pt"P(s))ds+o(s, P"P(s))dW(s), set, T], (2)

with initial condition P“P(t) = p, where f, o € C([0, T] x R; R)
are suitable functions. Also, for each s € [t, T] and u € A;, denote
by Z%#!(s) the energy bought up to time s:

Z87U(s) = 7 + /t u(r)dr, se[tT]

If the globally purchased energy Z%%4(T) does not fall within a
fixed range [m, M] (m, M € R, with m < M), the holder must pay
a penalty ®(PHP(T), ZH%4(T)), with ® : R? — R.
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Various kinds of penalty

Typical examples:
@ penalty directly proportional to P»P(T) and to the entity of
the overrunning or underrunning:

®(p,z) = —Ap(z — M)" — Bp(m — 2)",
for all (p, z) € R?, where A, B > 0 are suitable constants. In
several practical cases, A = B.
@ replace p above, representing the spot price at the end T of
the contract, with an arithmetic mean of spot prices over
[0, T] (thus requiring another state variable in the problem).
@ replace p with a fixed (high) penalty.
In the light of the above discussion, we assume that ® is null for
z € [m, M|, globally concave in z and such that

[®(p+h, 2)~B(p. 2)| < Ch(1+|z]). |(p,z+h)~b(p,2)| < Ch(1+]p]).

where C > 0 is a constant.
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The stochastic control problem

Let r > 0 be the risk-free rate. We get a stochastic optimal
control problem, with the following value function:

V(t, p,z) = sup j(t, p,z;u), (3)
uc A

for each (t, p,z) € [0, T] x R?, where

. T
It p,ziu) = Etpz[ / e~ (PLP(s) — K)u(s)ds +
t

+e "(T=o(PLP(T), Z5%4(T))
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The stochastic control problem

Let r > 0 be the risk-free rate. We get a stochastic optimal
control problem, with the following value function:

V(t, p,z) = sup j(t, p,z;u), (3)
uc A

for each (t, p,z) € [0, T] x R?, where
~ T
Ht.pziu) = Eep [ / e~r=0(PtP(s) — K)u(s)ds +
t
—r(T—t)d( pt.p t,z;u
+e ®(PP(T), Z252(T))

Problem (3) belongs to a widely studied class of control problems,
with well-known classical results.
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The HJB equation

Theorem. The function V is the unique viscosity solution of

— Vi1V —fV, - 10 Vpp—i-vén[(l)n [~v(V, +p— K)] =0,
Y(t,p,z) € [0, T[xR?, (4)
with final condition
V(T.p.2)=8(p.2).  V(p.2) €R?, (5)
and such that
V(t,p.2)| < CA+pP+121?),  Y(t,p.2) €0, T] xR

for some constant C > 0.
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The HJB equation

Theorem. The function V is the unique viscosity solution of

— Vi1V —fV, - 10 Vpp—i-vén[(l)n [~v(V, +p— K)] =0,
Y(t,p,z) € [0, T[xR?, (4)
with final condition
V(T,p,z) =®(p,z),  ¥(p,z) € R? (5)
and such that

V(t.p,2) < EQ+[p +127),  W(t.p,2) € [0, T] x 2,

for some constant C > 0.
Remark. Equation (4) is the same as in BLN 2012, but with
different domain and boundary conditions (5).
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Properties of the value function

Proposition. For each (t,z) € [0, T] x R the function V(t,-, z) is
Lipschitz continuous, uniformly in t. Moreover, the derivative
Vio(t, p, z) exists for a.e. (t, p,z) € [0, T] x R? and we have

[Vi(t, p,z)| < Mi(1+ |z]), for some constant M; > 0.
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Properties of the value function

Proposition. For each (t,z) € [0, T] x R the function V(t,-, z) is
Lipschitz continuous, uniformly in t. Moreover, the derivative
Vio(t, p, z) exists for a.e. (t, p,z) € [0, T] x R? and we have
[Vi(t, p,z)| < Mi(1+ |z]), for some constant M; > 0.
Proposition. For each (t,p) € [0, T] x R the function V(t,p,-) is

- Lipschitz continuous, uniformly in t. Moreover, the derivative
V. (t, p, z) exists for a.e. (t,p,z) € [0, T] x R? and we have
|V.(t,p,z)| < Ma(1+ |p]|), for some constant M> > 0.

- concave and a.e. twice differentiable;

- weakly increasing in | — oo, M — (T — t)&] and weakly
decreasing in [m, +oo[. In particular, if M — (T —t)u > m
then the function V/(t,p, ) is constant in [m, M — (T — t)q]
(they all are maximum points).
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Monotonicity of the value function

The last monotonicity result is described in Figure 1.

z
M| decreasing
Vit p,)

const.
Vit p.)

T

increasing
Vit p,)

Figure: monotonicity of V(t, p,*)

Apparently unexpected result: for suitable t and for all p, the
function V/(t, p,-) is constant in an interval.
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Monotonicity of the value function

The last monotonicity result is described in Figure 1.

z

M| decreasing
Vit p,)

const.
Vit p.)

T

increasing
Vit p,)

Figure: monotonicity of V(t, p,*)

Apparently unexpected result: for suitable t and for all p, the
function V/(t, p,-) is constant in an interval.

As a matter of fact, if z is in the grey region, then

Zt24(T) € [m, M] for each u € Ay, so that ®(P(T),Z(T)) =0
and the initial z does not influence the value function.
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Optimal buying strategy

As already observed in BLN 2012, an optimal control policy is

u(t,p,z) = {U if Vo(t,p,2) > p— K, o

1o if Ve(t,p,z) < p— K.

Notice that, by our regularity results, the candidate in (6) is
a.e. well-defined.
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Optimal buying strategy

As already observed in BLN 2012, an optimal control policy is

ta ’ = e
ult.p.2) 0 if V,(t,p,z) <p—K.

_ : > p_
{u if Vo(t,p,z)>p—K, (6)
Notice that, by our regularity results, the candidate in (6) is
a.e. well-defined.

Moreover, since V is concave in~z, for each fixed (t, p) there exists
z(t, p) € [-00,+00] such that V,(t,p,z) < p— K if and only if

z > z(t, p): for t fixed, the function z(t,-) (which in BLN 2012 is
called exercise curve) can be used to write u as

u(t,p,z) =

u if z <z(t,p), @)
0 if z > z(t, p).
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Stochastic control problem

Let P and Z be as before. This time we get a stochastic optimal
control problem with the following value function:

V(t,p,z)= sup J(t,p,zu), (8)
uEA?Sm

where

. T
Wt pyziu) = Et,,z{ / ers=0(Pto(s) — K)u(s)ds

t

and we recall that

A?gm ={ue A | Z(T) € [m,M] Pyp,-as.}
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Stochastic control problem

Let P and Z be as before. This time we get a stochastic optimal
control problem with the following value function:

V(t,p,z)= sup J(t,p,zu), (8)
uE.A?gm

where

i
Wt pyziu) = Et,,z{ / ers=0(Pto(s) — K)u(s)ds

t

and we recall that
Am = fuc A | Z(T) € [mM] Pypy-as.}

The first thing to notice here is that, for some initial values z > 0,

adm

we have A3™ = () (for example if we start with z > M), so z must

satisfy suitable constraints.
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Admissible domain

In order for A29™ to be nonempty, we must impose that (t, p, z)
belongs to

D={(t,p,z) €[0, T] xR?:m—a(T —t) <z <M}
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Admissible domain

In order for A29™ to be nonempty, we must impose that (t, p, z)
belongs to

D={(t,p,z) €[0, T] xR?:m—a(T —t) <z <M}
We also will need the following sets (the latter for p > 0):
D={(t,;p,2) €[0, T xR?:m— (T —t) < z < M},

z z z
M Mp=mmmmmm M
M-p
m+p
m m m

t t t
0 0
T T 0 T

, m-aT+p
m-aT m-aT m-aT
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Admissible domain

In order for A29™ to be nonempty, we must impose that (t, p, z)
belongs to

D={(t,p,z) €[0, T] xR?:m—a(T —t) <z <M}
We also will need the following sets (the latter for p > 0):
D={(t,;p,2) €[0, T| xR2: m—u(T — t) < z < M},
DP ={(t,p,z) € [0, T xR%:m+p—u(T —t) <z < M—p}.
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Admissible domain

In order for A29™ to be nonempty, we must impose that (t, p, z)
belongs to

D={(t,p,z) €[0, T] xR?:m—a(T —t) <z <M}
We also will need the following sets (the latter for p > 0):
D={(t,;p,2) €[0, T xR?:m— (T —t) < z < M},
D ={(t,p,2) €[0, T xR2:m+p—0(T —t)<z<M—p}.
We have D = U,~oD” and D = cl(D):

z z z

M M e M
M-p
m+p

m m m

%
.
.

Figure: the sets D,ﬁ,Dp
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The idea

Approximate the value function V, pricing a swing with strict
constraint, as the limit of value functions V¢ pricing unconstrained
contracts with the penalization

o= <[ (o= - 2)) (2 ]
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The idea

Approximate the value function V, pricing a swing with strict
constraint, as the limit of value functions V¢ pricing unconstrained
contracts with the penalization

o= <[ (o= - 2)) (2 ]

Nice economical interpretation: here we are approximating a swing
contract with the strict constraint Z(T) € [m, M] with a sequence
of suitable contracts with increasing penalties for

Z(T) ¢ [m+%,M—%}
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The approximating problems

Let

a = {(t,p,z) €D:z= M},
{(t,p,z) € D:z+u(T —t) = m},
v = {T} xR x[m,M],

@
I

sothat D\ D =aUf.
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The approximating problems

Let

a = {(t,p,z) €D:z= M},
B = {(t,p,z) €D:z+u(T —t)=m},
v = {T} xR x[m,M],

sothat D\ D =aUf.

Proposition. The functions | ve converge to % uniformly on
compact subsets of D, and V is continuous in D. Moreover, if
(t,p,z) € a we have V(t,p, z) =0, and if (t,p,z) € B we have

)
V(t,p.2) = 0 | [ e/ 0(PE2(9) - K)as| = €(t.p)
t

(deterministic function of t and p that in some specific models can
be computed in semi-closed form).
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As V = lime_g V¢, and these latter are solutions of
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the question is: will V solve the same equation?
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The HJB equation for the value function

As V = lime_g V¢, and these latter are solutions of
~ ~ - 1 .~ ~
Vit rV —fV,— Ea2v,,,, + r’rE(i)n_][—v(Vz +p—K)] =0, (9)
ve|0,u

the question is: will V solve the same equation?
Theorem. The function V is the unique viscosity solution of
Equation (9) in the domain D\ (o U 8 U ), with boundary
conditions
V(t,p,z) = 0, Y(t, p,z) € «,
(NEW) V(t,p,z) = ¢&(t,z), Y(t,p,z)€pf,
V(T,p,z) = 0, V(p,z) € R x [m, M],
such that
V(t.p.2) < EA+pP+2P),  W(t.p2)eD,  (10)

for some constant C > 0.
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Properties of the value function

Proposition. Let (t,z) € [0, T] x R be such that (t, p,z) € D for
each p € R. Then:

- the function V/(t,-, z) is Lipschitz continuous, uniformly in
(t,z). Moreover, the derivative V(t, p, z) exists for
a.e. (t,p,z) € D and we have |V,(t, p,z)| < My, for some
constant M; > 0.

- if £(s,-),0(s,-) € C2(R), uniformly in s € [0, T], the function
V(t,-, z) is locally semiconvex, uniformly in t, and a.e. twice
differentiable.

Proposition. For each (t,p) € [0, T] x R the function V(t,p,-)
is:

- concave, Lipschitz continuous and a.e. twice differentiable;

- weakly increasing in [m— (T — t)u, M — (T — t)u] and weakly
decreasing in [m, M]. In particular, if M — (T — t)u > m then
the function V/(t,p,-) is constant in [m, M — (T — t)u] (they
all are maximum points).
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The last monotonicity result is described in Figure 3.

Figure: monotonicity of V(t,p,-)
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As in the previous case, it was foreseeable that the function
V(t,p,-) is constant in an interval: if M — (T — t)o > m and
z€[m M — (T — t)u] then A2™ = A, (i.e. all controls satisfies
the constraint), which implies that the initial value z does not
influence the value function.
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Monotonicity of the value function

The last monotonicity result is described in Figure 3.

‘z

decreasing
Vit p, )

Const.
Vit.p,)

Figure: monotonicity of V(t,p,-)

As in the previous case, it was foreseeable that the function
V(t,p,-) is constant in an interval: if M — (T — t)o > m and
z€[m M — (T — t)u] then A2™ = A, (i.e. all controls satisfies
the constraint), which implies that the initial value z does not
influence the value function. This generalizes an intuitive result in
BLN 2012: for (t,z) such that the volume constraint is de facto
absent, the value function V does not depend on z,



Swing contracts with strict constraints
0000000e

Optimal buying strategy

An optimal control policy is again

v (11)

(t ) u ifvz(t7PaZ)ZP_Ka
u ) 7Z =
“hp 0 if Vo(t,p,z) <p—K.

Notice that also in this case, by our regularity results, u is
a.e. well-defined.
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Optimal buying strategy

An optimal control policy is again

u f Vz t7 ’ Z - K,

u(t,p,z) =
ult.p.2) 0 if Vo(t,p,z) <p—K.

Notice that also in this case, by our regularity results, u is
a.e. well-defined. Since V is again concave in z, for each fixed
(t, p) there exists Z(t, p) € [—00, +-00] such that

V,(t,p,z) < p— K if and only if z > Z(t, p): for t fixed, the
exercise curve Z(t,-) can be used to write u as

o if z < z(t,p),
u(t,p.2) = {O if z > z(t, p). (12)
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Conclusions

@ We characterize the value of swing contracts in continuous
time as the unique viscosity solution of a HJB equation with
suitable boundary conditions.

@ The case of contracts with penalties is a straightforward
application of classical optimal control theory: their value is
the unique viscosity solution of a HIB equation, and in that
case only a terminal condition is needed.

@ Conversely, the case of contracts with strict constraints is a
nonstandard stochastic control problem. We approximate the
value function with a sequence of value functions of
appropriate penalized swing contracts and show that they
converge to the value of a contract with strict constraints.
The value function is also the unique viscosity solution of the
same HJB equation as before, subject to terminal and
boundary conditions.
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quantity).
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Conclusions (II)

@ For both swing contracts, their value function is Lipschitz
both in p (spot price of energy) and in z (current cumulated
quantity).

@ The value function is concave with respect to z, weakly
increasing for z < M — (T — t)u, where t is the current time
and @ is the maximum marginal energy that can be
purchased, and weakly decreasing for z > m.

@ These results make the optimal exercise policy well defined.
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