Swing contracts with strict constraints 00000000

Conclusions 00

Optimal exercise of swing contracts in energy markets: an integral constrained stochastic optimal control problem

Matteo Basei Annalisa Cesaroni Tiziano Vargiolu

Department of Mathematics, University of Padua

October 9–11, 2013 Energy& Finance Conference, Essen (Germany)

Swing contracts with strict constraints 00000000

Conclusions

Outline

2 Swing contracts with penalties

3 Swing contracts with strict constraints

Swing contracts with strict constraints 00000000

Conclusions

Outline

2 Swing contracts with penalties

Swing contracts with strict constraints

4 Conclusions

Swing contracts with strict constraints 00000000

Outline

2 Swing contracts with penalties

3 Swing contracts with strict constraints

4 Conclusions

- ▲日を ▲聞を ▲目を 一回 - のみぐ

Swing contracts with strict constraints 00000000

Conclusions

Outline

2 Swing contracts with penalties

3 Swing contracts with strict constraints

4 Conclusions

・ 日 ・ ・ 二 ・ ・ 二 ・ ・ 日 ・ ・ 日 ・ ・ ・

The	problem
•00	000

Swing contracts with strict constraints $_{\rm OOOOOOO}$

Conclusions

Swing contracts in continuous time

The paper of Benth-Lempa-Nilssen (2012) was a real breakthrough in the evaluation of swing contracts in continuous time (also *Best Paper Award* of E&F 2010 Essen).

It characterized the value of a swing contract with final constraint $Z(T) \in [m, M]$, with m = 0, as the value function of a stochastic control problem, linked to a suitable Hamilton-Jacobi-Bellman equation \rightsquigarrow nice numerics...

... but two questions were still unanswered:

- Ifrom the mathematical side: HJB equations seldom (and not in this case) have explicit solutions to be checked to be smooth: if not, in which sense the value function can be a solution? Is it in our case?
- Ifrom the applied side: "true" contracts have m > 0 (often m > 0.5M). Is it still possible, for this situation, to write down a HJB equation? With which boundary conditions?

The	problem
000	000

Swing contracts with strict constraints ${\scriptstyle 0000000}$

Conclusions

Swing contracts in continuous time

The paper of Benth-Lempa-Nilssen (2012) was a real breakthrough in the evaluation of swing contracts in continuous time (also *Best Paper Award* of E&F 2010 Essen).

It characterized the value of a swing contract with final constraint $Z(T) \in [m, M]$, with m = 0, as the value function of a stochastic control problem, linked to a suitable Hamilton-Jacobi-Bellman equation \rightsquigarrow nice numerics...

... but two questions were still unanswered:

- from the mathematical side: HJB equations seldom (and not in this case) have explicit solutions to be checked to be smooth: if not, in which sense the value function can be a solution? Is it in our case?
- Ifrom the applied side: "true" contracts have m > 0 (often m > 0.5M). Is it still possible, for this situation, to write down a HJB equation? With which boundary conditions?

The	problem
000	000

Swing contracts with strict constraints $_{\rm OOOOOOO}$

Conclusions

Swing contracts in continuous time

The paper of Benth-Lempa-Nilssen (2012) was a real breakthrough in the evaluation of swing contracts in continuous time (also *Best Paper Award* of E&F 2010 Essen).

It characterized the value of a swing contract with final constraint $Z(T) \in [m, M]$, with m = 0, as the value function of a stochastic control problem, linked to a suitable Hamilton-Jacobi-Bellman equation \rightsquigarrow nice numerics...

... but two questions were still unanswered:

- from the mathematical side: HJB equations seldom (and not in this case) have explicit solutions to be checked to be smooth: if not, in which sense the value function can be a solution? Is it in our case?
- Ifrom the applied side: "true" contracts have m > 0 (often m > 0.5M). Is it still possible, for this situation, to write down a HJB equation? With which boundary conditions?

The	problem
000	000

Swing contracts with strict constraints $_{\rm OOOOOOO}$

Conclusions

Swing contracts in continuous time

The paper of Benth-Lempa-Nilssen (2012) was a real breakthrough in the evaluation of swing contracts in continuous time (also *Best Paper Award* of E&F 2010 Essen).

It characterized the value of a swing contract with final constraint $Z(T) \in [m, M]$, with m = 0, as the value function of a stochastic control problem, linked to a suitable Hamilton-Jacobi-Bellman equation \rightsquigarrow nice numerics...

... but two questions were still unanswered:

- from the mathematical side: HJB equations seldom (and not in this case) have explicit solutions to be checked to be smooth: if not, in which sense the value function can be a solution? Is it in our case?
- (a) from the applied side: "true" contracts have m > 0 (often m > 0.5M). Is it still possible, for this situation, to write down a HJB equation? With which boundary conditions?

The	problem
•00	000

Swing contracts with strict constraints $_{\rm OOOOOOO}$

Conclusions

Swing contracts in continuous time

The paper of Benth-Lempa-Nilssen (2012) was a real breakthrough in the evaluation of swing contracts in continuous time (also *Best Paper Award* of E&F 2010 Essen).

It characterized the value of a swing contract with final constraint $Z(T) \in [m, M]$, with m = 0, as the value function of a stochastic control problem, linked to a suitable Hamilton-Jacobi-Bellman equation \rightsquigarrow nice numerics...

... but two questions were still unanswered:

- from the mathematical side: HJB equations seldom (and not in this case) have explicit solutions to be checked to be smooth: if not, in which sense the value function can be a solution? Is it in our case?
- (a) from the applied side: "true" contracts have m > 0 (often m > 0.5M). Is it still possible, for this situation, to write down a HJB equation? With which boundary conditions?

The problem 0●0000	ו	Swing contracts with penalties	Swing contracts with strict constraints	Conclusion

More in details...

Following Benth-Lempa-Nilssen (2012), for a given contract with maturity T the buyer can choose, at each time $s \in [0, T]$, a marginal amount of energy $u(s) \in [0, \overline{u}]$ at a prespecified strike price K.

- Marginal profit & loss: (P(s) − K)u(s), where P(s) is the spot price of "energy".
- Cumulative P&L:

$$\int_0^T e^{-rs} (P(s) - K) u(s) \ ds$$

with r > 0 risk-free interest rate.

However, the seller usually wants the total amount of energy $Z(T) = \int_0^T u(s) ds$ to lie between a minimum and a maximum quantity, i.e. $Z(T) \in [m, M]$.

N / ·	all and the		
The problem o●oooo	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions 00

More in details...

Following Benth-Lempa-Nilssen (2012), for a given contract with maturity T the buyer can choose, at each time $s \in [0, T]$, a marginal amount of energy $u(s) \in [0, \overline{u}]$ at a prespecified strike price K.

- Marginal profit & loss: (P(s) − K)u(s), where P(s) is the spot price of "energy".
- Cumulative P&L:

$$\int_0^T e^{-rs} (P(s) - K) u(s) \ ds$$

with r > 0 risk-free interest rate.

However, the seller usually wants the total amount of energy $Z(T) = \int_0^T u(s) ds$ to lie between a minimum and a maximum quantity, i.e. $Z(T) \in [m, M]$.

・ロト・日本・モート モー うへぐ

N A	1		
The problem ⊃●○○○○	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions 00

More in details...

Following Benth-Lempa-Nilssen (2012), for a given contract with maturity T the buyer can choose, at each time $s \in [0, T]$, a marginal amount of energy $u(s) \in [0, \overline{u}]$ at a prespecified strike price K.

- Marginal profit & loss: (P(s) − K)u(s), where P(s) is the spot price of "energy".
- Cumulative P&L:

$$\int_0^T e^{-rs} (P(s) - K) u(s) \ ds$$

with r > 0 risk-free interest rate.

However, the seller usually wants the total amount of energy $Z(T) = \int_0^T u(s) ds$ to lie between a minimum and a maximum quantity, i.e. $Z(T) \in [m, M]$.

More in de	tails		
The problem ⊙●○○○○	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions 00

Following Benth-Lempa-Nilssen (2012), for a given contract with maturity T the buyer can choose, at each time $s \in [0, T]$, a marginal amount of energy $u(s) \in [0, \overline{u}]$ at a prespecified strike price K.

- Marginal profit & loss: (P(s) − K)u(s), where P(s) is the spot price of "energy".
- Cumulative P&L:

$$\int_0^T e^{-rs} (P(s) - K) u(s) \ ds$$

with r > 0 risk-free interest rate.

However, the seller usually wants the total amount of energy $Z(T) = \int_0^T u(s) ds$ to lie between a minimum and a maximum quantity, i.e. $Z(T) \in [m, M]$.

Swing contracts with strict constraints $_{\rm OOOOOOO}$

Conclusions

Two kinds of constraints

The constraint $Z(T) \in [m, M]$ is implemented in two main ways.

- **penalties:** make the buyer pay a penalty $\Phi(P(T), Z(T))$, where $\widetilde{\Phi}(p, z)$ is null for $z \in [m, M]$ and usually convex in z.
- Strict constraint: impose the constraint Z(T) ∈ [m, M] to be satisfied strictly, i.e. to force the buyer to withdraw the minimum cumulative amount of energy m and to stop giving the energy when the maximum M has been reached (BLN 2012, but only with m = 0).

Swing contracts with strict constraints ${\scriptstyle 0000000}$

Conclusions

Two kinds of constraints

The constraint $Z(T) \in [m, M]$ is implemented in two main ways.

9 penalties: make the buyer pay a penalty $\widetilde{\Phi}(P(T), Z(T))$, where $\widetilde{\Phi}(p, z)$ is null for $z \in [m, M]$ and usually convex in z.

Strict constraint: impose the constraint Z(T) ∈ [m, M] to be satisfied strictly, i.e. to force the buyer to withdraw the minimum cumulative amount of energy m and to stop giving the energy when the maximum M has been reached (BLN 2012, but only with m = 0).

Two kinds of constraints

The constraint $Z(T) \in [m, M]$ is implemented in two main ways.

- **penalties:** make the buyer pay a penalty $\widetilde{\Phi}(P(T), Z(T))$, where $\widetilde{\Phi}(p, z)$ is null for $z \in [m, M]$ and usually convex in z.
- Strict constraint: impose the constraint Z(T) ∈ [m, M] to be satisfied strictly, i.e. to force the buyer to withdraw the minimum cumulative amount of energy m and to stop giving the energy when the maximum M has been reached (BLN 2012, but only with m = 0).

Two kinds of constraints

The constraint $Z(T) \in [m, M]$ is implemented in two main ways.

- **penalties:** make the buyer pay a penalty $\widetilde{\Phi}(P(T), Z(T))$, where $\widetilde{\Phi}(p, z)$ is null for $z \in [m, M]$ and usually convex in z.
- Strict constraint: impose the constraint Z(T) ∈ [m, M] to be satisfied strictly, i.e. to force the buyer to withdraw the minimum cumulative amount of energy m and to stop giving the energy when the maximum M has been reached (BLN 2012, but only with m = 0).

The problem	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions
000000			

Stochastic control of swings with penalties

In the case of swing contracts with penalties, we get a standard stochastic control problem, as the maximization of the final expected payoff for a buyer entering in the contract at a generic time $t \in [0, T]$ is given by

$$\widetilde{V}(t,p,z) = \sup_{u \in \mathcal{A}_t} \mathbb{E}_{tpz} \left[\int_t^T e^{-r(s-t)} (P(s) - K) u(s) \, ds \right. \\ \left. - e^{-r(T-t)} \widetilde{\Phi}(P(T), Z(T)) \right],$$

with $(t, p, z) \in [0, T] \times \mathbb{R}^2$, where \mathbb{E}_{tpz} stands for the expectation conditioned to P(t) = p, Z(t) = z and

 $\mathcal{A}_t := \{u = \{u(s)\}_{s \in [t, \mathcal{T}]} \mid u \text{ progr. meas. and s.t. } u(s) \in [0, \bar{u}]\}$

(日) (同) (三) (三) (三) (○) (○)

In this case the standard theory can be applied.

The problem	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions
000000			

Stochastic control of swings with penalties

In the case of swing contracts with penalties, we get a standard stochastic control problem, as the maximization of the final expected payoff for a buyer entering in the contract at a generic time $t \in [0, T]$ is given by

$$\widetilde{V}(t,p,z) = \sup_{u \in \mathcal{A}_t} \mathbb{E}_{tpz} \left[\int_t^T e^{-r(s-t)} (P(s) - K) u(s) \, ds \right. \\ \left. - e^{-r(T-t)} \widetilde{\Phi}(P(T), Z(T)) \right],$$

with $(t, p, z) \in [0, T] \times \mathbb{R}^2$, where \mathbb{E}_{tpz} stands for the expectation conditioned to P(t) = p, Z(t) = z and

 $\mathcal{A}_t := \{u = \{u(s)\}_{s \in [t, \mathcal{T}]} \mid u \text{ progr. meas. and s.t. } u(s) \in [0, \overline{u}]\}$

In this case the standard theory can be applied.

Stochastic control of swings with strict constraints

Conversely, swing contracts with strict constraints give rise to a stochastic control problem with a nonstandard state constraint:

$$V(t,p,z) = \sup_{u \in \mathcal{A}_{tz}^{adm}} \mathbb{E}_{tpz} \left[\int_t^T e^{-r(s-t)} (P(s) - K) u(s) \, ds \right], \quad (1)$$

with (t, p, z) in a suitable domain $\mathcal{D} \subseteq [0, T] \times \mathbb{R}^2$, where

$$\mathcal{A}_{tz}^{\mathsf{adm}} := \{ u \in \mathcal{A}_t \mid Z(T) \in [m, M] \mid \mathbb{P}_{tpz}\text{-a.s.} \}$$

Due to the presence of the constraint on $Z^{t,z;u}(T)$, here standard theory does **not** apply.

Stochastic control of swings with strict constraints

Conversely, swing contracts with strict constraints give rise to a stochastic control problem with a nonstandard state constraint:

$$V(t,p,z) = \sup_{u \in \mathcal{A}_{tz}^{\mathrm{adm}}} \mathbb{E}_{tpz} \left[\int_t^T e^{-r(s-t)} (P(s) - K) u(s) \, ds \right], \quad (1)$$

with (t, p, z) in a suitable domain $\mathcal{D} \subseteq [0, T] imes \mathbb{R}^2$, where

$$\mathcal{A}_{tz}^{\mathsf{adm}} := \{ u \in \mathcal{A}_t \mid Z(T) \in [m, M] \mid \mathbb{P}_{tpz}\text{-a.s.} \}$$

Due to the presence of the constraint on $Z^{t,z;u}(T)$, here standard theory does **not** apply.

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

The link between the two kind of contracts

- intuitively, if you fix a high penalty, the buyer will have little interest in violating the constraint Z(T) ∈ [m, M];
- mathematically, we prove that in a set D̃ ⊆ D the value function V pricing a swing with strict constraint is the limit of the value functions V^c pricing suitable unconstrained contracts, where the constraint has been substituted by an appropriate penalization in the pricing functional.
- moreover, both the value functions are solutions of a Hamilton-Jacobi-Bellman (HJB) equation with suitable boundary conditions.

The link between the two kind of contracts

- intuitively, if you fix a high penalty, the buyer will have little interest in violating the constraint Z(T) ∈ [m, M];
- mathematically, we prove that in a set D ⊆ D the value function V pricing a swing with strict constraint is the limit of the value functions V^c pricing suitable unconstrained contracts, where the constraint has been substituted by an appropriate penalization in the pricing functional.
- moreover, both the value functions are solutions of a Hamilton-Jacobi-Bellman (HJB) equation with suitable boundary conditions.

The link between the two kind of contracts

- intuitively, if you fix a high penalty, the buyer will have little interest in violating the constraint Z(T) ∈ [m, M];
- mathematically, we prove that in a set *D̃* ⊆ *D* the value function V pricing a swing with strict constraint is the limit of the value functions V^c pricing suitable unconstrained contracts, where the constraint has been substituted by an appropriate penalization in the pricing functional.
- moreover, both the value functions are solutions of a Hamilton-Jacobi-Bellman (HJB) equation with suitable boundary conditions.

The link between the two kind of contracts

- intuitively, if you fix a high penalty, the buyer will have little interest in violating the constraint Z(T) ∈ [m, M];
- mathematically, we prove that in a set D̃ ⊆ D the value function V pricing a swing with strict constraint is the limit of the value functions V^c pricing suitable unconstrained contracts, where the constraint has been substituted by an appropriate penalization in the pricing functional.
- moreover, both the value functions are solutions of a Hamilton-Jacobi-Bellman (HJB) equation with suitable boundary conditions.

Swing contracts with strict constraints $_{\rm OOOOOOO}$

Conclusions

Swing contracts with penalties

Let T > 0 be a fixed contract horizon and $t \in [0, T]$. We model the price of energy through a stochastic process P which satisfies the SDE

$$dP^{t,p}(s) = f(s, P^{t,p}(s))ds + \sigma(s, P^{t,p}(s))dW(s), \quad s \in [t, T], (2)$$

with initial condition $P^{t,p}(t) = p$, where $f, \sigma \in C([0, T] \times \mathbb{R}; \mathbb{R})$ are suitable functions. Also, for each $s \in [t, T]$ and $u \in A_t$, denote by $Z^{t,z;u}(s)$ the energy bought up to time s:

$$Z^{t,z;u}(s) = z + \int_t^s u(\tau)d\tau, \qquad s \in [t, T].$$

If the globally purchased energy $Z^{t,z;u}(T)$ does not fall within a fixed range [m, M] $(m, M \in \mathbb{R}$, with $m \leq M$), the holder must pay a penalty $\tilde{\Phi}(P^{t,p}(T), Z^{t,z;u}(T))$, with $\tilde{\Phi} : \mathbb{R}^2 \to \mathbb{R}$.

Swing contracts with strict constraints ${\scriptstyle 0000000}$

Conclusions

Swing contracts with penalties

Let T > 0 be a fixed contract horizon and $t \in [0, T]$. We model the price of energy through a stochastic process P which satisfies the SDE

$$dP^{t,p}(s) = f(s, P^{t,p}(s))ds + \sigma(s, P^{t,p}(s))dW(s), \quad s \in [t, T], (2)$$

with initial condition $P^{t,p}(t) = p$, where $f, \sigma \in C([0, T] \times \mathbb{R}; \mathbb{R})$ are suitable functions. Also, for each $s \in [t, T]$ and $u \in A_t$, denote by $Z^{t,z;u}(s)$ the energy bought up to time s:

$$Z^{t,z;u}(s) = z + \int_t^s u(\tau)d\tau, \qquad s \in [t,T].$$

If the globally purchased energy $Z^{t,z;u}(T)$ does not fall within a fixed range [m, M] $(m, M \in \mathbb{R}, \text{ with } m \leq M)$, the holder must pay a penalty $\widetilde{\Phi}(P^{t,p}(T), Z^{t,z;u}(T))$, with $\widetilde{\Phi} : \mathbb{R}^2 \to \mathbb{R}$.

Swing contracts with strict constraints $_{\rm OOOOOOO}$

Conclusions

Swing contracts with penalties

Let T > 0 be a fixed contract horizon and $t \in [0, T]$. We model the price of energy through a stochastic process P which satisfies the SDE

$$dP^{t,p}(s) = f(s, P^{t,p}(s))ds + \sigma(s, P^{t,p}(s))dW(s), \quad s \in [t, T], (2)$$

with initial condition $P^{t,p}(t) = p$, where $f, \sigma \in C([0, T] \times \mathbb{R}; \mathbb{R})$ are suitable functions. Also, for each $s \in [t, T]$ and $u \in A_t$, denote by $Z^{t,z;u}(s)$ the energy bought up to time s:

$$Z^{t,z;u}(s) = z + \int_t^s u(\tau)d\tau, \qquad s \in [t,T].$$

If the globally purchased energy $Z^{t,z;u}(T)$ does not fall within a fixed range [m, M] $(m, M \in \mathbb{R}, \text{ with } m \leq M)$, the holder must pay a penalty $\widetilde{\Phi}(P^{t,p}(T), Z^{t,z;u}(T))$, with $\widetilde{\Phi} : \mathbb{R}^2 \to \mathbb{R}$.

Typical examples:

penalty directly proportional to P^{t,p}(T) and to the entity of the overrunning or underrunning:

$$\widetilde{\Phi}(p,z) = -Ap(z-M)^+ - Bp(m-z)^+,$$

for all $(p, z) \in \mathbb{R}^2$, where A, B > 0 are suitable constants. In several practical cases, A = B.

- replace p above, representing the spot price at the end T of the contract, with an arithmetic mean of spot prices over [0, T] (thus requiring another state variable in the problem).
- replace p with a fixed (high) penalty.
- In the light of the above discussion, we assume that $\tilde{\Phi}$ is null for $z \in [m, M]$, globally concave in z and such that

 $|\widetilde{\Phi}(p+h,z) - \widetilde{\Phi}(p,z)| \le Ch(1+|z|), \quad |\widetilde{\Phi}(p,z+h) - \widetilde{\Phi}(p,z)| \le Ch(1+|p|),$ where C > 0 is a constant.

Typical examples:

penalty directly proportional to P^{t,p}(T) and to the entity of the overrunning or underrunning:

$$\widetilde{\Phi}(p,z) = -Ap(z-M)^+ - Bp(m-z)^+,$$

for all $(p, z) \in \mathbb{R}^2$, where A, B > 0 are suitable constants. In several practical cases, A = B.

replace p above, representing the spot price at the end T of the contract, with an arithmetic mean of spot prices over [0, T] (thus requiring another state variable in the problem).
replace p with a fixed (high) penalty.

In the light of the above discussion, we assume that $\widetilde{\Phi}$ is null for $z \in [m, M]$, globally concave in z and such that

 $|\widetilde{\Phi}(p+h,z) - \widetilde{\Phi}(p,z)| \le Ch(1+|z|), \quad |\widetilde{\Phi}(p,z+h) - \widetilde{\Phi}(p,z)| \le Ch(1+|p|),$ where C > 0 is a constant.

Typical examples:

penalty directly proportional to P^{t,p}(T) and to the entity of the overrunning or underrunning:

$$\widetilde{\Phi}(p,z) = -Ap(z-M)^+ - Bp(m-z)^+,$$

for all $(p, z) \in \mathbb{R}^2$, where A, B > 0 are suitable constants. In several practical cases, A = B.

- replace p above, representing the spot price at the end T of the contract, with an arithmetic mean of spot prices over [0, T] (thus requiring another state variable in the problem).
- In the light of the above discussion, we assume that $\widetilde{\Phi}$ is null for $z \in [m, M]$, globally concave in z and such that

 $|\widetilde{\Phi}(p+h,z)-\widetilde{\Phi}(p,z)|\leq Ch(1+|z|), \ \ |\widetilde{\Phi}(p,z+h)-\widetilde{\Phi}(p,z)|\leq Ch(1+|p|),$

where C > 0 is a constant.

Typical examples:

penalty directly proportional to P^{t,p}(T) and to the entity of the overrunning or underrunning:

$$\widetilde{\Phi}(p,z) = -Ap(z-M)^+ - Bp(m-z)^+,$$

for all $(p, z) \in \mathbb{R}^2$, where A, B > 0 are suitable constants. In several practical cases, A = B.

- replace p above, representing the spot price at the end T of the contract, with an arithmetic mean of spot prices over [0, T] (thus requiring another state variable in the problem).
 replace p with a fixed (high) penalty.
- In the light of the above discussion, we assume that $\widetilde{\Phi}$ is null for $z \in [m, M]$, globally concave in z and such that
- $|\widetilde{\Phi}(p+h,z)-\widetilde{\Phi}(p,z)|\leq Ch(1+|z|), \ \ |\widetilde{\Phi}(p,z+h)-\widetilde{\Phi}(p,z)|\leq Ch(1+|p|),$

where C > 0 is a constant.

Typical examples:

penalty directly proportional to P^{t,p}(T) and to the entity of the overrunning or underrunning:

$$\widetilde{\Phi}(p,z) = -Ap(z-M)^+ - Bp(m-z)^+,$$

for all $(p, z) \in \mathbb{R}^2$, where A, B > 0 are suitable constants. In several practical cases, A = B.

- replace p above, representing the spot price at the end T of the contract, with an arithmetic mean of spot prices over [0, T] (thus requiring another state variable in the problem).
 replace p with a fixed (high) penalty.
- In the light of the above discussion, we assume that $\widetilde{\Phi}$ is null for $z \in [m, M]$, globally concave in z and such that

$$|\widetilde{\Phi}(p+h,z) - \widetilde{\Phi}(p,z)| \le Ch(1+|z|), \quad |\widetilde{\Phi}(p,z+h) - \widetilde{\Phi}(p,z)| \le Ch(1+|p|), \quad \forall where C > 0 \text{ is a constant.}$$

The problem

Swing contracts with penalties 0000000

Swing contracts with strict constraints 00000000

Conclusions

The stochastic control problem

Let $r \ge 0$ be the risk-free rate. We get a stochastic optimal control problem, with the following value function:

$$\widetilde{V}(t,p,z) = \sup_{u \in \mathcal{A}_t} \widetilde{J}(t,p,z;u),$$
(3)

for each $(t, p, z) \in [0, T] imes \mathbb{R}^2$, where

$$\widetilde{J}(t, p, z; u) = \mathbb{E}_{tpz} \left[\int_t^T e^{-r(s-t)} (P^{t,p}(s) - K) u(s) ds + e^{-r(T-t)} \widetilde{\Phi} (P^{t,p}(T), Z^{t,z;u}(T)) \right]$$

Problem (3) belongs to a widely studied class of control problems, with well-known classical results.

The problem

Swing contracts with penalties 0000000

Swing contracts with strict constraints 00000000

Conclusions

The stochastic control problem

Let $r \ge 0$ be the risk-free rate. We get a stochastic optimal control problem, with the following value function:

$$\widetilde{V}(t,p,z) = \sup_{u \in \mathcal{A}_t} \widetilde{J}(t,p,z;u),$$
(3)

for each $(t, p, z) \in [0, T] imes \mathbb{R}^2$, where

$$\widetilde{J}(t, p, z; u) = \mathbb{E}_{tpz} \left[\int_t^T e^{-r(s-t)} (P^{t,p}(s) - K) u(s) ds + e^{-r(T-t)} \widetilde{\Phi} (P^{t,p}(T), Z^{t,z;u}(T)) \right]$$

Problem (3) belongs to a widely studied class of control problems, with well-known classical results.
Swing contracts with penalties

Swing contracts with strict constraints 00000000

Conclusions

The HJB equation

Theorem. The function \widetilde{V} is the unique viscosity solution of

$$-\widetilde{V}_{t}+r\widetilde{V}-f\widetilde{V}_{p}-\frac{1}{2}\sigma^{2}\widetilde{V}_{pp}+\min_{v\in[0,\overline{u}]}[-v(\widetilde{V}_{z}+p-\mathcal{K})]=0,$$

$$\forall (t,p,z)\in[0,T[\times\mathbb{R}^{2}, (4)$$

with final condition

$$\widetilde{V}(T, p, z) = \widetilde{\Phi}(p, z), \qquad \forall (p, z) \in \mathbb{R}^2,$$
 (5)

and such that

 $|\widetilde{V}(t, p, z)| \leq \check{C}(1+|p|^2+|z|^2), \qquad orall (t, p, z) \in [0, T] imes \mathbb{R}^2,$

for some constant $\check{C} > 0$.

Remark. Equation (4) is the same as in BLN 2012, but with different domain and boundary conditions (5).

Swing contracts with penalties

Swing contracts with strict constraints 00000000

Conclusions

The HJB equation

Theorem. The function \widetilde{V} is the unique viscosity solution of

$$-\widetilde{V}_{t}+r\widetilde{V}-f\widetilde{V}_{p}-\frac{1}{2}\sigma^{2}\widetilde{V}_{pp}+\min_{v\in[0,\overline{u}]}[-v(\widetilde{V}_{z}+p-\mathcal{K})]=0,$$

$$\forall (t,p,z)\in[0,T[\times\mathbb{R}^{2}, (4)$$

with final condition

$$\widetilde{V}(T, p, z) = \widetilde{\Phi}(p, z), \qquad \forall (p, z) \in \mathbb{R}^2,$$
 (5)

and such that

$$|\widetilde{V}(t, p, z)| \leq \check{C}(1+|p|^2+|z|^2), \qquad orall(t, p, z) \in [0, \, \mathcal{T}] imes \mathbb{R}^2,$$

for some constant $\check{C} > 0$.

Remark. Equation (4) is the same as in BLN 2012, but with different domain and boundary conditions (5).

Swing contracts with penalties

Swing contracts with strict constraints 00000000

Conclusions

Properties of the value function

- Lipschitz continuous, uniformly in t. Moreover, the derivative $\widetilde{V}_z(t, p, z)$ exists for a.e. $(t, p, z) \in [0, T] \times \mathbb{R}^2$ and we have $|\widetilde{V}_z(t, p, z)| \leq M_2(1 + |p|)$, for some constant $M_2 > 0$.
- concave and a.e. twice differentiable;
- weakly increasing in $] \infty$, $M (T t)\overline{u}]$ and weakly decreasing in $[m, +\infty[$. In particular, if $M (T t)\overline{u} \ge m$ then the function $\widetilde{V}(t, p, \cdot)$ is constant in $[m, M (T t)\overline{u}]$ (they all are maximum points).

Swing contracts with penalties 0000000

Swing contracts with strict constraints 00000000

Conclusions

Properties of the value function

- Lipschitz continuous, uniformly in t. Moreover, the derivative $\widetilde{V}_z(t, p, z)$ exists for a.e. $(t, p, z) \in [0, T] \times \mathbb{R}^2$ and we have $|\widetilde{V}_z(t, p, z)| \leq M_2(1 + |p|)$, for some constant $M_2 > 0$.
- concave and a.e. twice differentiable;
- weakly increasing in $] \infty$, $M (T t)\overline{u}]$ and weakly decreasing in $[m, +\infty[$. In particular, if $M (T t)\overline{u} \ge m$ then the function $\widetilde{V}(t, p, \cdot)$ is constant in $[m, M (T t)\overline{u}]$ (they all are maximum points).

Swing contracts with penalties 0000000

Swing contracts with strict constraints 00000000

Conclusions

Properties of the value function

- Lipschitz continuous, uniformly in t. Moreover, the derivative $\widetilde{V}_z(t, p, z)$ exists for a.e. $(t, p, z) \in [0, T] \times \mathbb{R}^2$ and we have $|\widetilde{V}_z(t, p, z)| \leq M_2(1 + |p|)$, for some constant $M_2 > 0$.
- concave and a.e. twice differentiable;
- weakly increasing in $] \infty$, $M (T t)\overline{u}]$ and weakly decreasing in $[m, +\infty[$. In particular, if $M (T t)\overline{u} \ge m$ then the function $\widetilde{V}(t, p, \cdot)$ is constant in $[m, M (T t)\overline{u}]$ (they all are maximum points).

Swing contracts with penalties 0000000

Swing contracts with strict constraints 00000000

Conclusions

Properties of the value function

- Lipschitz continuous, uniformly in t. Moreover, the derivative $\widetilde{V}_z(t, p, z)$ exists for a.e. $(t, p, z) \in [0, T] \times \mathbb{R}^2$ and we have $|\widetilde{V}_z(t, p, z)| \leq M_2(1 + |p|)$, for some constant $M_2 > 0$.
- concave and a.e. twice differentiable;
- weakly increasing in $] \infty$, $M (T t)\overline{u}]$ and weakly decreasing in $[m, +\infty[$. In particular, if $M (T t)\overline{u} \ge m$ then the function $\widetilde{V}(t, p, \cdot)$ is constant in $[m, M (T t)\overline{u}]$ (they all are maximum points).

Swing contracts with penalties 0000000

Swing contracts with strict constraints $_{\rm OOOOOOO}$

Conclusions

Monotonicity of the value function

The last monotonicity result is described in Figure 1.

Figure: monotonicity of $\widetilde{V}(t, p, \cdot)$

Apparently unexpected result: for suitable t and for all p, the function $V(t, p, \cdot)$ is constant in an interval.

As a matter of fact, if z is in the grey region, then $Z^{t,z;u}(T) \in [m, M]$ for each $u \in A_t$, so that $\widetilde{\Phi}(P(T), Z(T)) \equiv 0$ and the initial z does not influence the value function.

Swing contracts with penalties 0000000

Swing contracts with strict constraints $_{\rm OOOOOOO}$

Conclusions

Monotonicity of the value function

The last monotonicity result is described in Figure 1.

Figure: monotonicity of $\widetilde{V}(t, p, \cdot)$

Apparently unexpected result: for suitable t and for all p, the function $V(t, p, \cdot)$ is constant in an interval. As a matter of fact, if z is in the grey region, then $Z^{t,z;u}(T) \in [m, M]$ for each $u \in A_t$, so that $\widetilde{\Phi}(P(T), Z(T)) \equiv 0$ and the initial z does not influence the value function.

O t	here the second second		
000000	000000	0000000	00
The problem	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions

Optimal buying strategy

As already observed in BLN 2012, an optimal control policy is

$$\underline{u}(t, p, z) = \begin{cases} \overline{u} & \text{if } \widetilde{V}_z(t, p, z) \ge p - K, \\ 0 & \text{if } \widetilde{V}_z(t, p, z) (6)$$

Notice that, by our regularity results, the candidate in (6) is a.e. well-defined.

Moreover, since V is concave in z, for each fixed (t, p) there exists $\overline{z}(t, p) \in [-\infty, +\infty]$ such that $\widetilde{V}_z(t, p, z) if and only if <math>z > \overline{z}(t, p)$: for t fixed, the function $\overline{z}(t, \cdot)$ (which in BLN 2012 is called **exercise curve**) can be used to write \underline{u} as

$$\underline{u}(t,p,z) = \begin{cases} \overline{u} & \text{if } z \leq \overline{z}(t,p), \\ 0 & \text{if } z > \overline{z}(t,p). \end{cases}$$
(7)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The problem 000000	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions 00
	and the second second		

Optimal buying strategy

As already observed in BLN 2012, an optimal control policy is

$$\underline{u}(t, p, z) = \begin{cases} \overline{u} & \text{if } \widetilde{V}_z(t, p, z) \ge p - K, \\ 0 & \text{if } \widetilde{V}_z(t, p, z) (6)$$

Notice that, by our regularity results, the candidate in (6) is a.e. well-defined.

Moreover, since V is concave in z, for each fixed (t, p) there exists $\overline{z}(t, p) \in [-\infty, +\infty]$ such that $\widetilde{V}_z(t, p, z) if and only if <math>z > \overline{z}(t, p)$: for t fixed, the function $\overline{z}(t, \cdot)$ (which in BLN 2012 is called **exercise curve**) can be used to write \underline{u} as

$$\underline{u}(t,p,z) = \begin{cases} \overline{u} & \text{if } z \leq \overline{z}(t,p), \\ 0 & \text{if } z > \overline{z}(t,p). \end{cases}$$
(7)

The problem	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions
000000		•0000000	00

Stochastic control problem

Let P and Z be as before. This time we get a stochastic optimal control problem with the following value function:

$$\widetilde{V}(t,p,z) = \sup_{u \in \mathcal{A}_{tz}^{adm}} \widetilde{J}(t,p,z;u),$$
(8)

where

$$\widetilde{J}(t,p,z;u) = \mathbb{E}_{tpz}\left[\int_t^T e^{-r(s-t)}(P^{t,p}(s)-K)u(s)ds\right]$$

and we recall that

$$\mathcal{A}_{tz}^{\mathsf{adm}} := \{ u \in \mathcal{A}_t \mid Z(T) \in [m, M] \mid \mathbb{P}_{tpz}\text{-}\mathsf{a.s.} \}$$

The first thing to notice here is that, for some initial values $z \ge 0$, we have $\mathcal{A}_{tz}^{adm} = \emptyset$ (for example if we start with z > M), so z must satisfy suitable constraints.

The problem 000000	Swing contracts with penalties	Swing contracts with strict constraints •0000000	Conclusions

Stochastic control problem

Let P and Z be as before. This time we get a stochastic optimal control problem with the following value function:

$$\widetilde{V}(t,p,z) = \sup_{u \in \mathcal{A}_{tz}^{adm}} \widetilde{J}(t,p,z;u),$$
(8)

where

$$\widetilde{J}(t,p,z;u) = \mathbb{E}_{tpz}\left[\int_t^T e^{-r(s-t)}(P^{t,p}(s)-K)u(s)ds\right]$$

and we recall that

$$\mathcal{A}_{tz}^{adm} := \{ u \in \mathcal{A}_t \mid Z(T) \in [m, M] \mid \mathbb{P}_{tpz}\text{-a.s.} \}$$

The first thing to notice here is that, for some initial values $z \ge 0$, we have $\mathcal{A}_{tz}^{adm} = \emptyset$ (for example if we start with z > M), so z must satisfy suitable constraints.

The	prob	lem

Swing contracts with strict constraints $0 \bullet 000000$

Conclusions

Admissible domain

In order for $\mathcal{A}_{tz}^{\mathrm{adm}}$ to be nonempty, we must impose that (t, p, z) belongs to

$$\mathcal{D} = \{(t, p, z) \in [0, T] \times \mathbb{R}^2 : m - \overline{u}(T - t) \le z \le M\}$$

We also will need the following sets (the latter for $\rho > 0$):

 $\widetilde{\mathcal{D}} = \{(t, p, z) \in [0, T] \times \mathbb{R}^2 : m - \overline{u}(T - t) < z < M\},\$ $\mathcal{D}^{\rho} = \{(t, p, z) \in [0, T] \times \mathbb{R}^2 : m + \rho - \overline{u}(T - t) \le z \le M - \rho$

We have $\widetilde{\mathcal{D}} = \cup_{\rho > 0} \mathcal{D}^{\rho}$ and $\mathcal{D} = \mathsf{cl}(\widetilde{\mathcal{D}})$:

Figure: the sets $\mathcal{D}, \mathcal{D}, \mathcal{D}^{\rho}$

e problem	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions
		0000000	

Admissible domain

In order for $\mathcal{A}_{tz}^{\text{adm}}$ to be nonempty, we must impose that (t, p, z) belongs to

$$\mathcal{D} = \{(t, p, z) \in [0, T] \times \mathbb{R}^2 : m - \overline{u}(T - t) \le z \le M\}$$

We also will need the following sets (the latter for $\rho > 0$):

$$\widetilde{\mathcal{D}} = \{(t, p, z) \in [0, T] \times \mathbb{R}^2 : m - \overline{u}(T - t) < z < M\},$$

 $\mathcal{D}^{\rho} = \{(t, p, z) \in [0, T] \times \mathbb{R}^2 : m + \rho - \overline{u}(T - t) \le z \le M - \rho\}.$ We have $\widetilde{\mathcal{D}} = \bigcup_{\rho > 0} \mathcal{D}^{\rho}$ and $\mathcal{D} = cl(\widetilde{\mathcal{D}})$:

Figure: the sets $\mathcal{D}, \mathcal{D}, \mathcal{D}^{\rho}$

e problem	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions
		0000000	

Admissible domain

In order for $\mathcal{A}_{tz}^{\mathrm{adm}}$ to be nonempty, we must impose that (t, p, z) belongs to

$$\mathcal{D} = \{(t, p, z) \in [0, T] \times \mathbb{R}^2 : m - \overline{u}(T - t) \le z \le M\}$$

We also will need the following sets (the latter for $\rho > 0$):

$$\begin{split} \widetilde{\mathcal{D}} &= \{(t, p, z) \in [0, T] \times \mathbb{R}^2 : m - \overline{u}(T - t) < z < M\}, \\ \mathcal{D}^{\rho} &= \{(t, p, z) \in [0, T] \times \mathbb{R}^2 : m + \rho - \overline{u}(T - t) \leq z \leq M - \rho\}. \\ \text{We have } \widetilde{\mathcal{D}} &= \cup_{\rho > 0} \mathcal{D}^{\rho} \text{ and } \mathcal{D} = \mathsf{cl}(\widetilde{\mathcal{D}}): \end{split}$$

Figure: the sets $\mathcal{D}, \widetilde{\mathcal{D}}, \mathcal{D}^{\rho}$

problem	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions
0000		0000000	

Admissible domain

In order for $\mathcal{A}_{tz}^{\mathrm{adm}}$ to be nonempty, we must impose that (t, p, z) belongs to

$$\mathcal{D} = \{(t, p, z) \in [0, T] \times \mathbb{R}^2 : m - \overline{u}(T - t) \le z \le M\}$$

We also will need the following sets (the latter for $\rho > 0$):

$$\begin{split} \widetilde{\mathcal{D}} &= \{(t,p,z) \in [0,T] \times \mathbb{R}^2 : m - \overline{u}(T-t) < z < M\}, \\ \mathcal{D}^{\rho} &= \{(t,p,z) \in [0,T] \times \mathbb{R}^2 : m + \rho - \overline{u}(T-t) \leq z \leq M - \rho\}. \\ \text{We have } \widetilde{\mathcal{D}} &= \cup_{\rho > 0} \mathcal{D}^{\rho} \text{ and } \mathcal{D} = \mathsf{cl}(\widetilde{\mathcal{D}}): \end{split}$$

Figure: the sets $\mathcal{D}, \widetilde{\mathcal{D}}, \mathcal{D}^{\rho}_{4} = 0 + 4 = 0 + 4 = 0$

The problem 000000	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions 00
The idea			

Approximate the value function \widetilde{V} , pricing a swing with strict constraint, as the limit of value functions \widetilde{V}^c pricing unconstrained contracts with the penalization

$$\Phi^{c}(p,z) = -c\left[\left(z - \left(M - \frac{1}{\sqrt{c}}\right)\right)^{+} + \left(\left(m + \frac{1}{\sqrt{c}}\right) - z\right)^{+}\right],$$

Nice economical interpretation: here we are approximating a swing contract with the strict constraint $Z(T) \in [m, M]$ with a sequence of suitable contracts with increasing penalties for $Z(T) \notin \left[m + \frac{1}{\sqrt{c}}, M - \frac{1}{\sqrt{c}}\right]$.

< ロ ト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

The problem 000000	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions 00
The idea			

Approximate the value function \widetilde{V} , pricing a swing with strict constraint, as the limit of value functions \widetilde{V}^c pricing unconstrained contracts with the penalization

$$\Phi^{c}(p,z) = -c\left[\left(z - \left(M - \frac{1}{\sqrt{c}}\right)\right)^{+} + \left(\left(m + \frac{1}{\sqrt{c}}\right) - z\right)^{+}\right],$$

Nice economical interpretation: here we are approximating a swing contract with the strict constraint $Z(T) \in [m, M]$ with a sequence of suitable contracts with increasing penalties for $Z(T) \notin \left[m + \frac{1}{\sqrt{c}}, M - \frac{1}{\sqrt{c}}\right]$.

(日) (同) (三) (三) (三) (○) (○)

The	prob	

Swing contracts with strict constraints 00000000

Conclusions 00

The approximating problems

Let

$$\begin{aligned} \alpha &= \{(t, p, z) \in \mathcal{D} : z = M\}, \\ \beta &= \{(t, p, z) \in \mathcal{D} : z + \overline{u}(T - t) = m\}, \\ \gamma &= \{T\} \times \mathbb{R} \times [m, M], \end{aligned}$$

so that $\mathcal{D} \setminus \widetilde{\mathcal{D}} = \alpha \cup \beta$.

Proposition. The functions V^c converge to V uniformly on compact subsets of $\tilde{\mathcal{D}}$, and \tilde{V} is continuous in \mathcal{D} . Moreover, if $(t, p, z) \in \alpha$ we have $\tilde{V}(t, p, z) = 0$, and if $(t, p, z) \in \beta$ we have

$$\widetilde{V}(t,p,z) = \overline{u} \mathbb{E}_{tpz} \left[\int_t^T e^{-r(s-t)} (P^{t,p}(s) - K) ds \right] =: \xi(t,p)$$

(deterministic function of t and p that in some specific models can be computed in semi-closed form).

The	problem	

Swing contracts with strict constraints

Conclusions

The approximating problems

Let

$$\begin{aligned} \alpha &= \{(t, p, z) \in \mathcal{D} : z = M\}, \\ \beta &= \{(t, p, z) \in \mathcal{D} : z + \overline{u}(T - t) = m\}, \\ \gamma &= \{T\} \times \mathbb{R} \times [m, M], \end{aligned}$$

so that $\mathcal{D} \setminus \widetilde{\mathcal{D}} = \alpha \cup \beta$. **Proposition.** The functions \widetilde{V}^c converge to \widetilde{V} uniformly on compact subsets of $\widetilde{\mathcal{D}}$, and \widetilde{V} is continuous in \mathcal{D} . Moreover, if $(t, p, z) \in \alpha$ we have $\widetilde{V}(t, p, z) = 0$, and if $(t, p, z) \in \beta$ we have

$$\widetilde{V}(t,p,z) = \overline{u} \mathbb{E}_{tpz} \left[\int_t^T e^{-r(s-t)} (P^{t,p}(s) - K) ds \right] =: \xi(t,p)$$

(deterministic function of t and p that in some specific models can be computed in semi-closed form).

Swing contracts with penalties 0000000

Swing contracts with strict constraints $_{\texttt{OOOOOOO}}$

Conclusions

The HJB equation for the value function

As $\widetilde{V} = \lim_{c \to 0} \widetilde{V}^c$, and these latter are solutions of

$$-\widetilde{V}_t + r\widetilde{V} - f\widetilde{V}_p - \frac{1}{2}\sigma^2\widetilde{V}_{pp} + \min_{v \in [0,\overline{u}]} [-v(\widetilde{V}_z + p - K)] = 0, \quad (9)$$

the question is: will \widetilde{V} solve the same equation?

Theorem. The function V is the unique viscosity solution of Equation (9) in the domain $\mathcal{D} \setminus (\alpha \cup \beta \cup \gamma)$, with boundary conditions

$$\begin{array}{rcl} V(t,p,z) &=& 0, & \forall (t,p,z) \in \alpha, \\ \textbf{(NEW)} & V(t,p,z) &=& \xi(t,z), & \forall (t,p,z) \in \beta, \\ V(T,p,z) &=& 0, & \forall (p,z) \in \mathbb{R} \times [m,M], \end{array}$$

such that

$$|V(t,p,z)| \le \check{C}(1+|p|^2+|z|^2), \qquad \forall (t,p,z) \in \mathcal{D}, \tag{10}$$

some constant $\check{C} > 0.$

Swing contracts with penalties

Swing contracts with strict constraints $_{\texttt{OOOOOOO}}$

Conclusions

The HJB equation for the value function

As $\widetilde{V} = \lim_{c \to 0} \widetilde{V}^c$, and these latter are solutions of

$$-\widetilde{V}_t + r\widetilde{V} - f\widetilde{V}_p - \frac{1}{2}\sigma^2\widetilde{V}_{pp} + \min_{v \in [0,\overline{u}]} [-v(\widetilde{V}_z + p - K)] = 0, \quad (9)$$

the question is: will V solve the same equation?

Theorem. The function V is the unique viscosity solution of Equation (9) in the domain $\mathcal{D} \setminus (\alpha \cup \beta \cup \gamma)$, with boundary conditions

$$\begin{array}{lll} V(t,p,z) &=& 0, & \forall (t,p,z) \in \alpha, \\ \textbf{(NEW)} & V(t,p,z) &=& \xi(t,z), & \forall (t,p,z) \in \beta, \\ V(T,p,z) &=& 0, & \forall (p,z) \in \mathbb{R} \times [m,M], \end{array}$$

such that

$$|V(t,p,z)| \leq \check{C}(1+|p|^2+|z|^2), \qquad \forall (t,p,z) \in \mathcal{D}, \qquad (10)$$

for some constant $\check{C} > 0$.

Properties of the value function

Proposition. Let $(t, z) \in [0, T] \times \mathbb{R}$ be such that $(t, p, z) \in \mathcal{D}$ for each $p \in \mathbb{R}$. Then:

- the function $V(t, \cdot, z)$ is Lipschitz continuous, uniformly in (t, z). Moreover, the derivative $V_p(t, p, z)$ exists for a.e. $(t, p, z) \in D$ and we have $|V_p(t, p, z)| \leq M_1$, for some constant $M_1 > 0$.
- if $f(s, \cdot), \sigma(s, \cdot) \in C_b^2(\mathbb{R})$, uniformly in $s \in [0, T]$, the function $V(t, \cdot, z)$ is locally semiconvex, uniformly in t, and a.e. twice differentiable.

- concave, Lipschitz continuous and a.e. twice differentiable;
- weakly increasing in $[m (T t)\overline{u}, M (T t)\overline{u}]$ and weakly decreasing in [m, M]. In particular, if $M (T t)\overline{u} \ge m$ then the function $V(t, p, \cdot)$ is constant in $[m, M (T t)\overline{u}]$ (they all are maximum points).

Swing contracts with penalties 0000000

Properties of the value function

Proposition. Let $(t, z) \in [0, T] \times \mathbb{R}$ be such that $(t, p, z) \in \mathcal{D}$ for each $p \in \mathbb{R}$. Then:

- the function $V(t, \cdot, z)$ is Lipschitz continuous, uniformly in (t, z). Moreover, the derivative $V_p(t, p, z)$ exists for a.e. $(t, p, z) \in \mathcal{D}$ and we have $|V_p(t, p, z)| \leq M_1$, for some constant $M_1 > 0$.
- if $f(s, \cdot), \sigma(s, \cdot) \in C_b^2(\mathbb{R})$, uniformly in $s \in [0, T]$, the function $V(t, \cdot, z)$ is locally semiconvex, uniformly in t, and a.e. twice differentiable.

- concave, Lipschitz continuous and a.e. twice differentiable;
- weakly increasing in $[m (T t)\overline{u}, M (T t)\overline{u}]$ and weakly decreasing in [m, M]. In particular, if $M (T t)\overline{u} \ge m$ then the function $V(t, p, \cdot)$ is constant in $[m, M (T t)\overline{u}]$ (they all are maximum points).

Swing contracts with penalties 0000000

Properties of the value function

Proposition. Let $(t, z) \in [0, T] \times \mathbb{R}$ be such that $(t, p, z) \in \mathcal{D}$ for each $p \in \mathbb{R}$. Then:

- the function $V(t, \cdot, z)$ is Lipschitz continuous, uniformly in (t, z). Moreover, the derivative $V_p(t, p, z)$ exists for a.e. $(t, p, z) \in \mathcal{D}$ and we have $|V_p(t, p, z)| \leq M_1$, for some constant $M_1 > 0$.
- if $f(s, \cdot), \sigma(s, \cdot) \in C_b^2(\mathbb{R})$, uniformly in $s \in [0, T]$, the function $V(t, \cdot, z)$ is locally semiconvex, uniformly in t, and a.e. twice differentiable.

- concave, Lipschitz continuous and a.e. twice differentiable;
- weakly increasing in $[m (T t)\overline{u}, M (T t)\overline{u}]$ and weakly decreasing in [m, M]. In particular, if $M (T t)\overline{u} \ge m$ then the function $V(t, p, \cdot)$ is constant in $[m, M (T t)\overline{u}]$ (they all are maximum points).

Properties of the value function

Proposition. Let $(t, z) \in [0, T] \times \mathbb{R}$ be such that $(t, p, z) \in \mathcal{D}$ for each $p \in \mathbb{R}$. Then:

- the function $V(t, \cdot, z)$ is Lipschitz continuous, uniformly in (t, z). Moreover, the derivative $V_p(t, p, z)$ exists for a.e. $(t, p, z) \in \mathcal{D}$ and we have $|V_p(t, p, z)| \leq M_1$, for some constant $M_1 > 0$.
- if $f(s, \cdot), \sigma(s, \cdot) \in C_b^2(\mathbb{R})$, uniformly in $s \in [0, T]$, the function $V(t, \cdot, z)$ is locally semiconvex, uniformly in t, and a.e. twice differentiable.

- concave, Lipschitz continuous and a.e. twice differentiable;
- weakly increasing in $[m (T t)\overline{u}, M (T t)\overline{u}]$ and weakly decreasing in [m, M]. In particular, if $M - (T - t)\overline{u} \ge m$ then the function $V(t, p, \cdot)$ is constant in $[m, M - (T - t)\overline{u}]$ (they all are maximum points).

Properties of the value function

Proposition. Let $(t, z) \in [0, T] \times \mathbb{R}$ be such that $(t, p, z) \in \mathcal{D}$ for each $p \in \mathbb{R}$. Then:

- the function $V(t, \cdot, z)$ is Lipschitz continuous, uniformly in (t, z). Moreover, the derivative $V_p(t, p, z)$ exists for a.e. $(t, p, z) \in \mathcal{D}$ and we have $|V_p(t, p, z)| \leq M_1$, for some constant $M_1 > 0$.
- if $f(s, \cdot), \sigma(s, \cdot) \in C_b^2(\mathbb{R})$, uniformly in $s \in [0, T]$, the function $V(t, \cdot, z)$ is locally semiconvex, uniformly in t, and a.e. twice differentiable.

- concave, Lipschitz continuous and a.e. twice differentiable;
- weakly increasing in $[m (T t)\overline{u}, M (T t)\overline{u}]$ and weakly decreasing in [m, M]. In particular, if $M (T t)\overline{u} \ge m$ then the function $V(t, p, \cdot)$ is constant in $[m, M (T t)\overline{u}]$ (they all are maximum points).

Properties of the value function

Proposition. Let $(t, z) \in [0, T] \times \mathbb{R}$ be such that $(t, p, z) \in \mathcal{D}$ for each $p \in \mathbb{R}$. Then:

- the function $V(t, \cdot, z)$ is Lipschitz continuous, uniformly in (t, z). Moreover, the derivative $V_p(t, p, z)$ exists for a.e. $(t, p, z) \in \mathcal{D}$ and we have $|V_p(t, p, z)| \leq M_1$, for some constant $M_1 > 0$.
- if $f(s, \cdot), \sigma(s, \cdot) \in C_b^2(\mathbb{R})$, uniformly in $s \in [0, T]$, the function $V(t, \cdot, z)$ is locally semiconvex, uniformly in t, and a.e. twice differentiable.

- concave, Lipschitz continuous and a.e. twice differentiable;
- weakly increasing in $[m (T t)\overline{u}, M (T t)\overline{u}]$ and weakly decreasing in [m, M]. In particular, if $M - (T - t)\overline{u} \ge m$ then the function $V(t, p, \cdot)$ is constant in $[m, M - (T - t)\bar{u}]$ (they all are maximum points).

Swing contracts with penalties 0000000

Swing contracts with strict constraints 00000000

Conclusions

Monotonicity of the value function

The last monotonicity result is described in Figure 3.

Figure: monotonicity of $V(t, p, \cdot)$

As in the previous case, it was foreseeable that the function $V(t, p, \cdot)$ is constant in an interval: if $M - (T - t)\overline{u} \ge m$ and $z \in [m, M - (T - t)\overline{u}]$ then $\mathcal{A}_{tz}^{adm} = \mathcal{A}_t$ (i.e. all controls satisfies the constraint), which implies that the initial value z does not influence the value function. This generalizes an intuitive result in BLN 2012: for (t, z) such that the volume constraint is *de facto* absent, the value function V does not depend on $Z_{p, A}$, $A_{p, A}$, $A_{p, A}$.

Swing contracts with penalties 0000000

Swing contracts with strict constraints 00000000

Conclusions

Monotonicity of the value function

The last monotonicity result is described in Figure 3.

Figure: monotonicity of $V(t, p, \cdot)$

As in the previous case, it was foreseeable that the function $V(t, p, \cdot)$ is constant in an interval: if $M - (T - t)\overline{u} \ge m$ and $z \in [m, M - (T - t)\overline{u}]$ then $\mathcal{A}_{tz}^{adm} = \mathcal{A}_t$ (i.e. all controls satisfies the constraint), which implies that the initial value z does not influence the value function. This generalizes an intuitive result in BLN 2012: for (t, z) such that the volume constraint is *de facto* absent, the value function V does not depend on \mathcal{A}_{tz} , $t \ge 1$.

Swing contracts with penalties 0000000

Swing contracts with strict constraints 00000000

Conclusions

Monotonicity of the value function

The last monotonicity result is described in Figure 3.

Figure: monotonicity of $V(t, p, \cdot)$

As in the previous case, it was foreseeable that the function $V(t, p, \cdot)$ is constant in an interval: if $M - (T - t)\overline{u} \ge m$ and $z \in [m, M - (T - t)\overline{u}]$ then $\mathcal{A}_{tz}^{adm} = \mathcal{A}_t$ (i.e. all controls satisfies the constraint), which implies that the initial value z does not influence the value function. This generalizes an intuitive result in BLN 2012: for (t, z) such that the volume constraint is *de facto* absent, the value function V does not depend on $Z_{t, t}$ and $Z_{t, t}$ an

The	prob	lem

Swing contracts with strict constraints

Conclusions 00

Optimal buying strategy

An optimal control policy is again

$$\underline{u}(t, p, z) = \begin{cases} \overline{u} & \text{if } \widetilde{V}_z(t, p, z) \ge p - K, \\ 0 & \text{if } \widetilde{V}_z(t, p, z) (11)$$

Notice that also in this case, by our regularity results, \underline{u} is a.e. well-defined. Since \overline{V} is again concave in z, for each fixed (t,p) there exists $\overline{z}(t,p) \in [-\infty, +\infty]$ such that $\overline{V}_z(t,p,z) if and only if <math>z > \overline{z}(t,p)$: for t fixed, the **exercise curve** $\overline{z}(t, \cdot)$ can be used to write \underline{u} as

$$\underline{u}(t,p,z) = \begin{cases} \overline{u} & \text{if } z \leq \overline{z}(t,p), \\ 0 & \text{if } z > \overline{z}(t,p). \end{cases}$$
(12)

The	prob	lem

Swing contracts with strict constraints

Conclusions

Optimal buying strategy

An optimal control policy is again

$$\underline{u}(t, p, z) = \begin{cases} \overline{u} & \text{if } \widetilde{V}_z(t, p, z) \ge p - K, \\ 0 & \text{if } \widetilde{V}_z(t, p, z) (11)$$

Notice that also in this case, by our regularity results, \underline{u} is a.e. well-defined. Since \widetilde{V} is again concave in z, for each fixed (t,p) there exists $\overline{z}(t,p) \in [-\infty, +\infty]$ such that $\widetilde{V}_z(t,p,z) if and only if <math>z > \overline{z}(t,p)$: for t fixed, the **exercise curve** $\overline{z}(t, \cdot)$ can be used to write \underline{u} as

$$\underline{u}(t,p,z) = \begin{cases} \overline{u} & \text{if } z \leq \overline{z}(t,p), \\ 0 & \text{if } z > \overline{z}(t,p). \end{cases}$$
(12)

The	problem

Swing contracts with strict constraints 00000000

Conclusions ●○

Conclusions

- We characterize the value of swing contracts in continuous time as the unique viscosity solution of a HJB equation with suitable boundary conditions.
- The case of contracts with penalties is a straightforward application of classical optimal control theory: their value is the unique viscosity solution of a HJB equation, and in that case only a terminal condition is needed.
- Conversely, the case of contracts with strict constraints is a nonstandard stochastic control problem. We approximate the value function with a sequence of value functions of appropriate penalized swing contracts and show that they converge to the value of a contract with strict constraints. The value function is also the unique viscosity solution of the same HJB equation as before, subject to terminal and boundary conditions.

The problem 000000	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions ●0
Concluci	0.05		

- We characterize the value of swing contracts in continuous time as the unique viscosity solution of a HJB equation with suitable boundary conditions.
- The case of contracts with penalties is a straightforward application of classical optimal control theory: their value is the unique viscosity solution of a HJB equation, and in that case only a terminal condition is needed.
- Conversely, the case of contracts with strict constraints is a nonstandard stochastic control problem. We approximate the value function with a sequence of value functions of appropriate penalized swing contracts and show that they converge to the value of a contract with strict constraints. The value function is also the unique viscosity solution of the same HJB equation as before, subject to terminal and boundary conditions.

Conclusic	ons		
The problem	Swing contracts with penalties	Swing contracts with strict constraints	Conclusions ●○

- We characterize the value of swing contracts in continuous time as the unique viscosity solution of a HJB equation with suitable boundary conditions.
- The case of contracts with penalties is a straightforward application of classical optimal control theory: their value is the unique viscosity solution of a HJB equation, and in that case only a terminal condition is needed.
- Conversely, the case of contracts with strict constraints is a nonstandard stochastic control problem. We approximate the value function with a sequence of value functions of appropriate penalized swing contracts and show that they converge to the value of a contract with strict constraints. The value function is also the unique viscosity solution of the same HJB equation as before, subject to terminal and boundary conditions.
Conclusions (II)

- For both swing contracts, their value function is Lipschitz both in *p* (spot price of energy) and in *z* (current cumulated quantity).
- The value function is concave with respect to z, weakly increasing for $z \leq M (T t)\overline{u}$, where t is the current time and \overline{u} is the maximum marginal energy that can be purchased, and weakly decreasing for $z \geq m$.
- These results make the optimal exercise policy well defined.

Conclusions (II)

- For both swing contracts, their value function is Lipschitz both in *p* (spot price of energy) and in *z* (current cumulated quantity).
- The value function is concave with respect to z, weakly increasing for $z \le M (T t)\overline{u}$, where t is the current time and \overline{u} is the maximum marginal energy that can be purchased, and weakly decreasing for $z \ge m$.
- These results make the optimal exercise policy well defined.

Conclusions (II)

- For both swing contracts, their value function is Lipschitz both in *p* (spot price of energy) and in *z* (current cumulated quantity).
- The value function is concave with respect to z, weakly increasing for $z \le M (T t)\overline{u}$, where t is the current time and \overline{u} is the maximum marginal energy that can be purchased, and weakly decreasing for $z \ge m$.
- These results make the optimal exercise policy well defined.