Forward pricing in the shipping freight markets

Che Mohd Imran Che Taib

Department of Mathematics, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, MALAYSIA

Energy Finance 2013
Essen, Germany | 9–11 October 2013
Figure 1: Daily spot freight rates for the Panamax Index (1/3/99–11/11/11).
Outline

1. Introduction

2. Stochastic dynamics of the spot freight rates
 - Geometric Brownian motion
 - A Lévy-based dynamics
 - Stochastic volatility model of BNS
 - Continuous autoregressive model CAR(p)

3. Pricing of freight forward

4. Shape of the forward curves
More than 75% of the volume of the world trade in commodities and manufactured products are contributed from shipping industry.

Annualised volatility of shipping freight rates varies between 59% to 79% in the years 2008 to 2011.
More than 75% of the volume of the world trade in commodities and manufactured products are contributed from shipping industry.

Annualised volatility of shipping freight rates varies between 59% to 79% in the years 2008 to 2011.

Seaborne trade: oil tanker, gas tanker, container, dry-bulk, other
More than 75% of the volume of the world trade in commodities and manufactured products are contributed from shipping industry.

Annualised volatility of shipping freight rates varies between 59% to 79% in the years 2008 to 2011.

Seaborne trade: oil tanker, gas tanker, container, dry-bulk, other

Dry-bulk commodities:
- Major bulk: iron ore, coal, grain
- Minor bulk: steel products, fertilizer, sugar, cement, etc.

Major bulk are normally transported using Capesize and Panamax vessels.
Pricing forward using spot-forward relationship framework.

Stylized facts about the freight rate dynamics:
- Heavy-tailed logreturns
- Stochastic volatility
- Mean reversion
Pricing forward using spot-forward relationship framework.

Stylized facts about the freight rate dynamics:
- Heavy-tailed logreturns
- Stochastic volatility
- Mean reversion

Stochastic models for spot freight rates (based on the findings in Benth, Koekebakker and Taib [3]):
- Geometric Brownian motion
- Normal inverse Gaussian (NIG) Lévy model
- Barndorff-Nielsen and Shephard (BNS) stochastic volatility
- Continuous-time autoregressive (CAR) driven by:
 - Brownian motion
 - NIG Lévy process
 - BNS stochastic volatility
Table of Contents

1 Introduction

2 Stochastic dynamics of the spot freight rates
 • Geometric Brownian motion
 • A Lévy-based dynamics
 • Stochastic volatility model of BNS
 • Continuous autoregressive model CAR(\(p\))

3 Pricing of freight forward

4 Shape of the forward curves
The explicit dynamics of GBM model

\[S(t) = S(0) \exp(\mu t + \sigma B(t)) \, . \]

Define for a given discretization in time \(\Delta > 0 \),

\[r_\Delta(t) := \ln S(t + \Delta) - \ln S(t) \, , \quad t = 0, \Delta, 2\Delta, \ldots. \]
Geometric Brownian motion

- The explicit dynamics of GBM model

\[S(t) = S(0) \exp(\mu t + \sigma B(t)) \].

- Define for a given discretization in time \(\Delta > 0 \),

\[r_\Delta(t) := \ln S(t + \Delta) - \ln S(t) , t = 0, \Delta, 2\Delta, \ldots \]
A Lévy-based dynamics

- Define the spot price $S(t)$, $t \geq 0$, as an exponential Lévy process,
 \[S(t) = S(0) \exp(L(t)). \]

- The logreturns are defined as
 \[r_\Delta(t) = L(t + \Delta) - L(t), \]
 for $t = 0, \Delta, 2\Delta, \ldots$.

- The logreturns are fitted using NIG($\delta, \alpha, \mu, \beta$) family of distribution.
A Lévy-based dynamics

- Define the spot price $S(t)$, $t \geq 0$, as an exponential Lévy process,
 \[S(t) = S(0) \exp(L(t)). \]

- The logreturns are defined as
 \[r_\Delta(t) = L(t + \Delta) - L(t), \]
 for $t = 0, \Delta, 2\Delta, \ldots$.

- The logreturns are fitted using NIG($\delta, \alpha, \mu, \beta$) family of distribution.
Stochastic volatility model of Barndorff-Nielsen and Shephard

- The BNS model is defined as follows,

\[d \ln S(t) = \left(\mu + \beta \sigma^2(t) \right) dt + \sigma(t) dB(t), \quad (1) \]

where

\[\sigma^2(t) = \sum_{i=1}^{n} \omega_i V_i(t), \]

for Ornstein-Uhlenbeck processes

\[dV_i(t) = -\lambda_i V_i(t) dt + dZ_i(\lambda_i t), \quad i = 1, \ldots, n. \]

- \(r_\Delta(t) \) is a mean-variance mixture model.

- For \(n = 1 \) and the stationary distribution of \(\sigma^2(t) = V(t) \) is inverse Gaussian, then the logreturns will become approximately NIG distributed.
Continuous autoregressive model, CAR(p)

Denote $\ln S(t) = Y(t)$ and for $p \geq 1$, the p-dimensional OU process $X(t)$ is defined as the solution of

$$dX(t) = AX(t) \, dt + e_p \sigma dB(t),$$

where A is the $p \times p$ matrix given by

$$A = \begin{bmatrix} 0 & & I \\ -\alpha_p & \ldots & -\alpha_1 \end{bmatrix},$$

and $Y(t) = e'_1 X(t)$.
Continuous autoregressive model, CAR\((p) \)

- Denote \(\ln S(t) = Y(t) \) and for \(p \geq 1 \), the \(p \)-dimensional OU process \(X(t) \) is defined as the solution of

\[
 dX(t) = AX(t) \, dt + e_p \sigma \, dB(t),
\]

where \(A \) is the \(p \times p \) matrix given by

\[
 A = \begin{bmatrix}
 0 & & \\
 -\alpha_p & \cdots & I \\
 & -\alpha_1 & \\
 \end{bmatrix},
\]

and \(Y(t) = e_1' X(t) \).

- CAR model driven by NIG Lévy process

\[
 dX(t) = AX(t) \, dt + e_p \, dL(t).
\]
Continuous autoregressive model, CAR(p)

- Denote $\ln S(t) = Y(t)$ and for $p \geq 1$, the p-dimensional OU process $X(t)$ is defined as the solution of

$$dX(t) = AX(t) \, dt + e_p \sigma \, dB(t),$$

where A is the $p \times p$ matrix given by

$$A = \begin{bmatrix} 0 & I \\ -\alpha_p & \ddots & -\alpha_1 \end{bmatrix},$$

and $Y(t) = e'_1 X(t)$.

- CAR model driven by NIG Lévy process

$$dX(t) = AX(t) \, dt + e_p \, dL(t).$$

- CAR model driven by BNS-SV process

$$dX(t) = AX(t) \, dt + e_p \sigma(t) \, dB(t).$$
Table of Contents

1. Introduction

2. Stochastic dynamics of the spot freight rates
 - Geometric Brownian motion
 - A Lévy-based dynamics
 - Stochastic volatility model of BNS
 - Continuous autoregressive model CAR(p)

3. Pricing of freight forward

4. Shape of the forward curves
The value of any derivative is defined as the **present value of its expected payoff** where the expectation is taken under risk neutral measure Q.

Pay nothing to enter the contract implies that,

$$e^{-r(T-t)}E_Q[S(T) - F(t, T) | \mathcal{F}_t] = 0.$$

The spot-forward relationship formula is

$$F(t, T) = E_Q[S(T) | \mathcal{F}_t].$$
The value of any derivative is defined as the present value of its expected payoff where the expectation is taken under risk neutral measure \(Q \).

Pay nothing to enter the contract implies that,

\[
e^{-r(T-t)} \mathbb{E}_Q [S(T) - F(t, T) \mid \mathcal{F}_t] = 0.
\]

The spot-forward relationship formula is

\[
F(t, T) = \mathbb{E}_Q [S(T) \mid \mathcal{F}_t].
\]

Esscher transform:
• The value of any derivative is defined as the present value of its expected payoff where the expectation is taken under risk neutral measure \(Q \).

• Pay nothing to enter the contract implies that,

\[
e^{-r(T-t)} E_Q [S(T) - F(t, T) | \mathcal{F}_t] = 0.
\]

• The spot-forward relationship formula is

\[
F(t, T) = E_Q [S(T)|\mathcal{F}_t].
\]

• **Esscher transform**: Let \(\theta_L \) be the market price of risk. For \(0 \leq t \leq T \), we define a process \(\pi_L(t) \) as

\[
\pi_L(t) = \exp (\theta_L L(t) - \phi_L(\theta_L) t).
\]

Thus, the Radon-Nikodym derivative

\[
\frac{dQ}{dP} \bigg|_{\mathcal{F}_t} = \pi_L(t),
\]

such that \(\pi_L \) is the density process of a measure \(Q \sim P \).
Forward pricing: GBM model

- Introduce a parametric class of measure change of \textit{Girsanov transform} for the case of Gaussian model using

\[
B_\theta(t) = B(t) - \theta t,
\]

with \(\theta \) as a constant describing the \textit{market price of risk}.

- The \(Q \)-dynamics of GBM is now taking the form

\[
dS(t) = \kappa S(t) dt + \sigma S(t) dB_\theta(t),
\]

where \(\kappa = \mu + \sigma \theta \) and \(B_\theta \) is a \(Q \)-Brownian motion.

- The explicit solution of (3) for \(t \leq T \) is

\[
S(T) = S(t) \exp \left(\left(\kappa - \frac{\sigma^2}{2} \right) (T - t) + \int_t^T \sigma dB_\theta(u) \right). \tag{4}
\]
Forward pricing: GBM model

Proposition

The price at time t for a forward contract with delivery at time $T \geq t \geq 0$ under geometric Brownian motion model is given as

$$F(t, T) = S(t) \exp(\kappa (T - t)),$$

where $\kappa = \mu + \sigma \theta$.
Forward pricing: NIG Lévy model

Lemma

If \(g : [0, t] \mapsto \mathbb{R} \) is a bounded and measurable function and Condition ?? holds for \(k := \sup_{s \in [0, t]} |g(s)| \), then

\[
\mathbb{E} \left[\exp \left(\int_0^t g(u) \, dL(u) \right) \right] = \exp \left(\int_0^t \phi(g(u)) \, du \right),
\]

where \(\phi(\lambda) = \psi(-i\lambda) \).

Proposition

The price at time \(t \) for a forward contract with delivery at time \(T \geq t \geq 0 \) under NIG Lévy model is given as

\[
F(t, T) = S(t) \exp \{ \phi_L(\theta_L + 1) - \phi_L(\theta_L) \} (T - t).
\]
Forward pricing: BNS stochastic volatility model

Proposition

The price at time t for a forward contract with delivery at time $T \geq t \geq 0$ under **BNS stochastic volatility** model is given as

$$F(t, T) = S(t) \exp \left((\mu + \theta)(T - t) + \sum_{j=1}^{n} \Theta(T - t) V_j(t) \right) \times \exp \left(\sum_{j=1}^{n} \int_{t}^{T} \{ \phi_{Z} (\Theta(T - \nu) + \theta_{V}) - \phi_{Z}(\theta_{V}) \} \, d\nu \right),$$

where $\Theta(\xi) = \frac{\omega_j}{\lambda_j} (\beta + 0.5) (1 - e^{-\lambda_j \xi})$.

(5)
Forward pricing: CAR model

Proposition

The price of a forward contract at time t for delivery at time $T \geq t \geq 0$ under CAR(p) model driven by Brownian motion is given as

$$F(t, T) = \exp \left(e'_1 e^{A(T-t)} X(t) + \int_t^T \Sigma(T-u) \theta \sigma \, du \right) \times \exp \left(\frac{1}{2} \int_t^T \Sigma^2(T-u) \sigma^2 \, du \right),$$

where $\Sigma(T-u) = e'_1 e^{A(T-u)} e_p$.
Proposition

The price of a forward contract at time t for delivery at time $T \geq t \geq 0$ under $\text{CAR}(p)$ model driven by normal inverse Gaussian process is given as

$$F(t, T) = \exp \left(e_1' e^{A(T-t)} X(t) + \int_t^T \{ \phi_L(\Sigma(T - u) + \theta_L) - \phi_L(\theta_L) \} \, du \right).$$
Proposition

The price of a forward contract at time t for delivery at time $T \geq t \geq 0$ under $\text{CAR}(p)$ driven by BNS stochastic volatility process is given as

$$F(t, T) = \exp \left(e^t A(T-t) X(t) + \int_t^T \Sigma(T-u) \theta \, du \right)$$

$$\times \exp \left(\sum_{j=1}^n \frac{\omega_j}{2} \int_t^T \Sigma^2(T-u) e^{-\lambda_j(u-t)} \, du V_j(t) \right)$$

$$\times \exp \left(\sum_{j=1}^n \int_t^T \left\{ \phi_Z \left(\frac{\omega_j}{2} \int_\nu^T \Upsilon(u-\nu) \, du + \theta V \right) - \phi_Z(\theta V) \right\} \, d\nu \right)$$

where $\Upsilon(x) = \Sigma^2(T-u) e^{-\lambda_j x}$.
Table of Contents

1. Introduction

2. Stochastic dynamics of the spot freight rates
 - Geometric Brownian motion
 - A Lévy-based dynamics
 - Stochastic volatility model of BNS
 - Continuous autoregressive model CAR(p)

3. Pricing of freight forward

4. Shape of the forward curves
Figure 2: Slope of forward curves for Panamax vessels for several times to delivery.
Figure 3: The observed forward rate on 2 Jan 2009 together with the theoretical forward curves derived from GBM, NIG and BNS models.
Figure 4: Actual forward curve observed on 2 Jan 2009 together with the curve of forward from CAR(3) driven by Brownian motion for $\theta = 0.67$.

Introduction
Stochastic dynamics of the spot freight rates
Pricing of freight forward
Shape of the forward curves

Terima kasih