

(ロ) (四) (日) (日) (日)

3

The Information Premium in Electricity Markets

Energy Finance / INREC, Essen 2010

Richard Biegler-König | Institute of Mathematical Finance | Ulm University

Table of contents

Motivation

The information premium with delivery period

Empirical Study

Richard Biegler-König | Essen | October 2010

Motivation

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Richard Biegler-König | Essen | October 2010

What is the relationship between spot and forward?

Risk Premium

The risk premium is the difference between the forward price and the expected spot price:

$$R(t,T) = F(t,T) - \mathbb{E}[S(T)|\mathcal{F}_t]$$

where \mathcal{F} is the historical filtration.

- Risk premium exists for all underlyings, in particular electricity
- Several ideas to explain its shape and size:
 - ▶ Changing to risk-neutral measure, assuming $F(t, T) = \mathbb{E}^{\mathbb{Q}}[S(T)|\mathcal{F}_t]$
 - Bessembinder and Lemmon: Equilibrium approach
 - Benth, Cartea, Kiesel: Influence of market power
- Here, we will introduce an information approach

What is the relationship between spot and forward?

Risk Premium

The risk premium is the difference between the forward price and the expected spot price:

$$R(t,T) = F(t,T) - \mathbb{E}[S(T)|\mathcal{F}_t]$$

where \mathcal{F} is the historical filtration.

- Risk premium exists for all underlyings, in particular electricity
- Several ideas to explain its shape and size:
 - ▶ Changing to risk-neutral measure, assuming $F(t, T) = \mathbb{E}^{\mathbb{Q}}[S(T)|\mathcal{F}_t]$
 - Bessembinder and Lemmon: Equilibrium approach
 - Benth, Cartea, Kiesel: Influence of market power
- Here, we will introduce an information approach

What is the relationship between spot and forward?

Risk Premium

The risk premium is the difference between the forward price and the expected spot price:

$$R(t,T) = F(t,T) - \mathbb{E}[S(T)|\mathcal{F}_t]$$

where \mathcal{F} is the historical filtration.

- ► Risk premium exists for all underlyings, in particular electricity
- Several ideas to explain its shape and size:
 - ▶ Changing to risk-neutral measure, assuming $F(t, T) = \mathbb{E}^{\mathbb{Q}}[S(T)|\mathcal{F}_t]$
 - Bessembinder and Lemmon: Equilibrium approach
 - Benth, Cartea, Kiesel: Influence of market power
- Here, we will introduce an information approach

Motivation 1/4

Figure: EEX Forward prices observed on 01/10/06 (left) and 01/10/07 (right)

- Typical winter and bank holidays behaviour in both graphs
- General upward shift in 2008

 \Rightarrow 2nd phase of CO₂ certificates

Motivation 2/4

- Future information is incorporated in the forward price
- ... but not necessarily in the spot price due to non-storability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

... buy-and-hold strategy does not work

Motivation 3/4

Assuming the Efficient Markets Hypothesis holds one has the well-known relation between spot and forward:

$$F(t,T) = \mathbb{E}^{\mathbb{Q}}[S_T|\mathcal{F}_t]$$

- ▶ Not sufficient: natural filtration $\mathcal{F}_t = \sigma(S_s, s \leq t)$
- Idea: enlarge the filtration!
- ... by information about the spot at some future time T_{Υ}
- Info could be that spot will be in certain interval...
- ... or the value of a correlated process (temperature)

Motivation 3/4

Assuming the Efficient Markets Hypothesis holds one has the well-known relation between spot and forward:

$$F(t, T) = \mathbb{E}^{\mathbb{Q}}[S_T | \mathcal{F}_t]$$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへで

▶ Not sufficient: natural filtration $\mathcal{F}_t = \sigma(S_s, s \leq t)$

Idea: enlarge the filtration!

- ... by information about the spot at some future time T_{Υ}
- Info could be that spot will be in certain interval...
- ... or the value of a correlated process (temperature)

Motivation 3/4

Assuming the Efficient Markets Hypothesis holds one has the well-known relation between spot and forward:

$$F(t, T) = \mathbb{E}^{\mathbb{Q}}[S_T | \mathcal{F}_t]$$

- ▶ Not sufficient: natural filtration $\mathcal{F}_t = \sigma(S_s, s \leq t)$
- Idea: enlarge the filtration!
- ... by information about the spot at some future time T_{Υ}
- Info could be that spot will be in certain interval...
- ... or the value of a correlated process (temperature)

Motivation 4/4

Filtrations

- \mathcal{F}_t the historical filtration
- \mathcal{H}_t complete information, i.e. $\mathcal{H}_t = \mathcal{F}_t \lor \sigma(\mathcal{S}(\mathcal{T}_{\Upsilon}))$
- G_t the filtration of all information publicly available to the market
- ▶ Hence, we have the relation $\mathcal{F}_t \subseteq \mathcal{G}_t \subseteq \mathcal{H}_t$
- In the following we will consider the observed forward as

 $F(t,T) = \mathbb{E}^{\mathbb{Q}}[S(T)|\mathcal{G}_t]$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへで

Richard Biegler-König | Essen | October 2010

Motivation 4/4

Filtrations

- \mathcal{F}_t the historical filtration
- \mathcal{H}_t complete information, i.e. $\mathcal{H}_t = \mathcal{F}_t \lor \sigma(\mathcal{S}(\mathcal{T}_{\Upsilon}))$
- G_t the filtration of all information publicly available to the market
- Hence, we have the relation $\mathcal{F}_t \subseteq \mathcal{G}_t \subseteq \mathcal{H}_t$
- In the following we will consider the observed forward as

 $F(t,T) = \mathbb{E}^{\mathbb{Q}}[S(T)|\mathcal{G}_t]$

The information premium 1/2

Quantify the influence of future information using:

Information Premium

The information premium is defined to be

$$I(t,T) = \mathbb{E}[S_T|\mathcal{G}_t] - \mathbb{E}[S_T|\mathcal{F}_t]$$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへで

i.e. the difference between the prices of the forward under \mathcal{G} and \mathcal{F} .

The information premium 2/2

Lemma

The information premium is orthogonal to the space $L^2(\mathcal{F}_t, \mathbb{P})$.

Proof:

 $\mathbb{E}[I_{\mathcal{G}}(t,T) \mid \mathcal{F}_t] = \mathbb{E}[\mathbb{E}[S(T) \mid \mathcal{G}_t] - \mathbb{E}[S(T) \mid \mathcal{F}_t] \mid \mathcal{F}_t] = 0$

- Result valid for all measures equivalent to P
- Usual method to attain the Risk Premium is a measure change

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへで

► This is not possible for the Information Premium

The information premium 2/2

Lemma

The information premium is orthogonal to the space $L^2(\mathcal{F}_t, \mathbb{P})$.

Proof:

 $\mathbb{E}[I_{\mathcal{G}}(t,T) \mid \mathcal{F}_t] = \mathbb{E}[\mathbb{E}[S(T) \mid \mathcal{G}_t] - \mathbb{E}[S(T) \mid \mathcal{F}_t] \mid \mathcal{F}_t] = 0$

- Result valid for all measures equivalent to \mathbb{P}
- Usual method to attain the Risk Premium is a measure change

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへで

► This is not possible for the Information Premium

The information premium with delivery period

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Spot price model and forward price with delivery

Two-factor arithmetic Spot Price

$$S(t) = \Lambda(t) + X(t) + Y(t)$$
$$X(T) = e^{-\alpha(T-t)}X(t) + \sigma \int_{t}^{T} e^{\alpha(T-s)} dW(s)$$
$$Y(T) = e^{-\beta(T-t)}Y(t) + \int_{t}^{T} e^{\beta(T-s)} dL(s)$$

where $\Lambda(t)$ is deterministic, W(t) a BM, L(t) a Lévy process.

$$F(t, T_1, T_2) = \frac{1}{T_2 - T_1} \mathbb{E}\left[\int_{T_1}^{T_2} S(u) du \mid \mathcal{F}_t\right]$$

Richard Biegler-König | Essen | October 2010

Spot price model and forward price with delivery

Two-factor arithmetic Spot Price

$$S(t) = \Lambda(t) + X(t) + Y(t)$$
$$X(T) = e^{-\alpha(T-t)}X(t) + \sigma \int_{t}^{T} e^{\alpha(T-s)} dW(s)$$
$$Y(T) = e^{-\beta(T-t)}Y(t) + \int_{t}^{T} e^{\beta(T-s)} dL(s)$$

where $\Lambda(t)$ is deterministic, W(t) a BM, L(t) a Lévy process.

The forward price with delivery in $[T_1, T_2]$ is then given by ►

$$F(t, T_1, T_2) = \frac{1}{T_2 - T_1} \mathbb{E}\left[\int_{T_1}^{T_2} S(u) du \mid \mathcal{F}_t\right]$$

Enlargement of filtrations

- We will demonstrate how to calculate the information premium in this model
- ▶ We will enlarge the historical filtration of Lévy process L_t...
- \blacktriangleright ... with future information about the value $L_{T_{T}}$
- Grossissements de filtrations:
 - Developed by French Mathematicians (Jeulin, Yor) in the 1980s

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへで

First theorem by Ito in 1976

Enlargement of filtrations

- We will demonstrate how to calculate the information premium in this model
- ▶ We will enlarge the historical filtration of Lévy process *L*_t...
- ... with future information about the value $L_{T_{T}}$
- Grossissements de filtrations:
 - Developed by French Mathematicians (Jeulin, Yor) in the 1980s

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへで

First theorem by Ito in 1976

Itō's theorem for Lévy processes and additional incomplete information

Theorem

Let L_t be a Lévy process and $\mathcal{G}_t \subseteq \mathcal{H}_t = \mathcal{F}_t \vee \sigma(L_{T_{\Upsilon}})$. Then

- 1. L is still a semimartingale with respect to G_t
- 2. if $\mathbb{E}[|L_t|] < \infty$ then

$$\xi(t) = L_t - \int_0^{t \wedge \mathcal{T}_{\Upsilon}} rac{\mathbb{E}[L_{\mathcal{T}_{\Upsilon}} - L_s | \mathcal{G}_s]}{\mathcal{T}_{\Upsilon} - s} \; ds$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

is a G_t -martingale.

Future Lévy information 1/3

The info premium is

$$I_{\mathcal{G}}(t, T_1, T_2; T_{\Upsilon}) = F_{\mathcal{G}}(t, T_1, T_2) - F_{\mathcal{F}}(t, T_1, T_2)$$

Brownian motion terms as well as X_t and Y_t terms cancel (both filtrations coincide), thus

$$I_{\mathcal{G}}(t, T_{1}, T_{2}; T_{\Upsilon}) = \frac{1}{T_{2} - T_{1}} \mathbb{E} \left[\int_{T_{1}}^{T_{2}} \int_{t}^{u} e^{-\beta(u-s)} dL(s) du | \mathcal{G}_{t} \right] \\ - \frac{1}{T_{2} - T_{1}} \hat{\beta}(t, T_{1}, T_{2}) \phi'(0)$$

where β̂ is some deterministic function (> 0) and φ is the log-moment-generating function of L₁

Future Lévy information 2/3

► We now apply Itō's theorem (remember $\xi(t) = L(t) - \int_0^t \frac{\mathbb{E}[L(T_{\Gamma}) - L(s)|\mathcal{G}_s]}{T_{\Gamma} - s} ds$ is a \mathcal{G} -martingale) $\mathbb{E}\left[\int_{T_1}^{T_2} \int_t^u e^{-\beta(u-s)} \frac{dL(s)du|\mathcal{G}_t}{ds}\right]$ $= \mathbb{E}\left[\int_{T_1}^{T_2} \int_t^u e^{-\beta(u-s)} \frac{\mathbb{E}[L_{T_{\Gamma}} - L_s|\mathcal{G}_s]}{T_{\Gamma} - s} ds du|\mathcal{G}_t\right]$ $= \dots$ $= \frac{\mathbb{E}[L_{T_{\Gamma}} - L_t|\mathcal{G}_t]}{T_{\Gamma} - t} \hat{\beta}(t, T_1, T_2)$

Future Lévy information 3/3

Collecting terms yields

$$\begin{split} I_{\mathcal{G}}(t,T_1,T_2;T_{\Upsilon}) &= \frac{1}{T_2 - T_1} \ \hat{\beta}(t,T_1,T_2) \left(\frac{\mathbb{E}[L_{T_{\Upsilon}} - L_t | \mathcal{G}_t]}{T_{\Upsilon} - t} - \phi'(0) \right) \\ &= \frac{1}{T_2 - T_1} \ \frac{\hat{\beta}(t,T_1,T_2)}{T_{\Upsilon} - t} \left(\mathbb{E}[L_{T_{\Upsilon}} | \mathcal{G}_t] - \mathbb{E}[L_{T_{\Upsilon}} | \mathcal{F}_t] \right) \end{split}$$

Sign of the premium depends on $\mathbb{E}[L_{\mathcal{T}_{T}}|\mathcal{G}_{t}] - \mathbb{E}[L_{\mathcal{T}_{T}}|\mathcal{F}_{t}]$... which matches the intuition:

• i.e. CO_2 certificates: positive premium $\Rightarrow \mathbb{E}[L_{T_T}|\mathcal{G}_t] > \mathbb{E}[L_{T_T}|\mathcal{F}_t]$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Future Lévy information 3/3

Collecting terms yields

$$\begin{split} I_{\mathcal{G}}(t, T_{1}, T_{2}; T_{\Upsilon}) &= \frac{1}{T_{2} - T_{1}} \,\,\hat{\beta}(t, T_{1}, T_{2}) \left(\frac{\mathbb{E}[L_{T_{\Upsilon}} - L_{t} | \mathcal{G}_{t}]}{T_{\Upsilon} - t} - \phi'(0) \right) \\ &= \frac{1}{T_{2} - T_{1}} \,\, \frac{\hat{\beta}(t, T_{1}, T_{2})}{T_{\Upsilon} - t} \left(\mathbb{E}[L_{T_{\Upsilon}} | \mathcal{G}_{t}] - \mathbb{E}[L_{T_{\Upsilon}} | \mathcal{F}_{t}] \right) \end{split}$$

- ▶ Sign of the premium depends on $\mathbb{E}[L_{T_{\Upsilon}}|\mathcal{G}_t] \mathbb{E}[L_{T_{\Upsilon}}|\mathcal{F}_t]$
- ... which matches the intuition:
 - i.e. CO_2 certificates: positive premium $\Rightarrow \mathbb{E}[L_{T_{\Upsilon}}|\mathcal{G}_t] > \mathbb{E}[L_{T_{\Upsilon}}|\mathcal{F}_t]$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Summary so far:

- We have seen an idea of what is possible theoretically
- As a by-product we thought about how to take expectations for this spot model and with delivery periods

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへで

► Remember also the orthogonality result of the information premium E[I_g(t, T) | F_t] = 0

Empirical Study -"showing" the information premium exists

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Showing the existence of the info premium 1/2

- Agenda:
 - 1. Calibrate the spot model to observed data (EEX)
 - 2. Calculate expectations under \mathbb{P}
 - 3. Conduct for each class of month-forwards a constant distance-minimising change of measure (ls-sense)
 - 4. Calculate expectation under \mathbb{Q}
 - 5. Assume observed forward price $\hat{F}(t, T_1, T_2)$ is $F_{\mathcal{G}}^{\mathbb{Q}}(t, T_1, T_2)$
 - 6. For the life-time of different forwards calculate

 $\hat{I}^{\mathbb{Q}}_{\mathcal{G}}(t, T_1, T_2) = \hat{F}(t, T_1, T_2) - F^{\mathbb{Q}}_{\mathcal{F}}(t, T_1, T_2)$

ション (日本) (日本) (日本) (日本)

(where the January 2008 forward will be our main example)

Spot Calibrating

- EEX spot from 01/02/2007 to 30/10/2008
- Includes CO₂-date 01/01/08 as midpoint

Figure: Spot and Simulation for data set

・ロット (雪) (日) (日)

Expectations and change of measure

 \blacktriangleright Prices under $\mathbb P$ and $\mathbb Q$ and observed January 2008 forward

Figure: Observed, $\mathbb{E}^{\mathbb{P}}$ and $\mathbb{E}^{\mathbb{Q}}$ Prices

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

The information premium?

- ▶ The residual $\hat{I}_{\mathcal{G}}^{\mathbb{Q}}(t, T_1, T_2) = \hat{F}(t, T_1, T_2) F_{\mathcal{F}}^{\mathbb{Q}}(t, T_1, T_2)$
 - Is positive approx. between 5 and 20 €
 - converges in the delivery period

Figure: The residual $\hat{I}_{\mathcal{G}}^{\mathbb{Q}}(t, T_1, T_2)$ for the January 2008 forward

Showing the existence of the info premium 2/2

- $\hat{I}_{\mathcal{G}}^{\mathbb{Q}}(t, T_1, T_2)$ is our best guess for $I(t, T_1, T_2)!$
- We need to show that:
 - 1. $\hat{I}_{\mathcal{G}}^{\mathbb{Q}} \neq \mathbf{0}$
 - 2. $\hat{I}_{\mathcal{G}}^{\mathbb{Q}}$ is not \mathcal{F}_t -measurable, i.e. $\mathbb{E}[\hat{I}_{\mathcal{G}}^{\mathbb{Q}}|\mathcal{F}_t] = 0$
- ▶ We will consider Nov07, Jan08, Mar08 and Aug08 contracts (lifetime before, during and after 01/01/08)

Showing the existence of the info premium 2/2

- $\hat{I}_{\mathcal{G}}^{\mathbb{Q}}(t, T_1, T_2)$ is our best guess for $I(t, T_1, T_2)!$
- We need to show that:
 - 1. $\hat{I}_{\mathcal{G}}^{\mathbb{Q}} \neq \mathbf{0}$
 - 2. $\hat{I}_{\mathcal{G}}^{\mathbb{Q}}$ is not \mathcal{F}_t -measurable, i.e. $\mathbb{E}[\hat{I}_{\mathcal{G}}^{\mathbb{Q}}|\mathcal{F}_t] = 0$
- We will consider Nov07, Jan08, Mar08 and Aug08 contracts (lifetime before, during and after 01/01/08)

$\hat{I}_{\mathcal{G}}^{\mathbb{Q}}$ non-zero?

All four series are clearly not white-noise

Ljung-Box test rejected at all levels

How do we show non-measurability?

- We want to show $\mathbb{E}[\hat{I}_{\mathcal{G}}^{\mathbb{Q}}|\mathcal{F}_t] = 0$
 - ► Consider Hilbert space L²(F, Q)
 - For the spot $\hat{I}_{g}^{\mathbb{Q}}$ in terms of a countable basis of the spot...
 - ... by means of regression from S onto $\hat{I}_{G}^{\mathbb{Q}}$
 - Non-measurability ⇒ Bad regression results!
- For now, let $\mathcal{B} = \{x^i : i \in \mathcal{I}\}$ the polynomial basis
- ► To avoid spurious regression (Granger/Newbold) we use (stationary) first differences

ション (日本) (日本) (日本) (日本)

How do we show non-measurability?

- We want to show $\mathbb{E}[\hat{I}_{\mathcal{G}}^{\mathbb{Q}}|\mathcal{F}_t] = 0$
 - ► Consider Hilbert space L²(F, Q)
 - For the spot $\hat{I}_{g}^{\mathbb{Q}}$ in terms of a countable basis of the spot...
 - ... by means of regression from S onto $\hat{I}_{G}^{\mathbb{Q}}$
 - Non-measurability ⇒ Bad regression results!
- ▶ For now, let $\mathcal{B} = \{x^i : i \in \mathcal{I}\}$ the polynomial basis
- To avoid spurious regression (Granger/Newbold) we use (stationary) first differences

ション (日本) (日本) (日本) (日本)

Regression results

• Regression: $riangle \hat{I}_{\mathcal{G}}^{\mathbb{Q}}(t, T_1, T_2) = \sum_{i=1}^{N} c_i riangle S_t^i + \epsilon(t)$

Regression results for N = 10

	Nov 07	Jan 08	Mar 08	Aug 08
R^2	0.14	0.07		0.07
F – stat	1.47	0.65		0.75

F-value for 95% is 1.88, thus we cannot reject $c_1 = \ldots = c_N = 0$

- Increasing N does not alter the results
- Contracts living on 01/01/08 show more extreme results!
- We conclude that $\hat{I}^{\mathbb{Q}}_{\mathcal{C}}(t, T_1, T_2)$ is not \mathcal{F}_t -measurable!

Regression results

• Regression:
$$riangle \hat{I}_{\mathcal{G}}^{\mathbb{Q}}(t, T_1, T_2) = \sum_{i=1}^{N} c_i riangle S_t^i + \epsilon(t)$$

Regression results for $N = 10$					
		Nov 07	Jan 08	Mar 08	Aug 08
	R^2	0.14	0.07	0.03	0.07
	F – stat	1.47	0.65	0.35	0.75

F-value for 95% is 1.88, thus we cannot reject $c_1 = \ldots = c_N = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへで

- Increasing N does not alter the results
- Contracts living on 01/01/08 show more extreme results!
- We conclude that $\hat{I}^{\mathbb{Q}}_{\mathcal{C}}(t, T_1, T_2)$ is not \mathcal{F}_t -measurable!

Regression results

• Regression:
$$riangle \hat{I}_{\mathcal{G}}^{\mathbb{Q}}(t, T_1, T_2) = \sum_{i=1}^{N} c_i riangle S_t^i + \epsilon(t)$$

Regression results for $N = 10$					
		Nov 07	Jan 08	Mar 08	Aug 08
	R^2	0.14	0.07	0.03	0.07
	F – stat	1.47	0.65	0.35	0.75

F-value for 95% is 1.88, thus we cannot reject $c_1 = \ldots = c_N = 0$

- Increasing N does not alter the results
- Contracts living on 01/01/08 show more extreme results!
- We conclude that $\hat{I}^{\mathbb{Q}}_{\mathcal{G}}(t, T_1, T_2)$ is not \mathcal{F}_t -measurable!

Discussion

- Size of $\hat{I}_{\mathcal{G}}^{\mathbb{Q}}$ for Jan08:
 - 2007: CO₂ price practically zero
 - ▶ 2008: around 22€
 - assume 0.7tCO₂/MWh efficiency rate
 - ▶ \Rightarrow info premium should be around 0.7. $22 \in \approx 15 \in$
 - \Rightarrow which $\hat{I}_{\mathcal{G}}^{\mathbb{Q}}$ is!
- Other underlyings:
 - We consider electricity as an example where buy-and-hold does not work at all
 - Still, we claim that our approach is valid for other underlyings as well (unexplained risk premium!)

Discussion

- Size of $\hat{I}_{\mathcal{G}}^{\mathbb{Q}}$ for Jan08:
 - 2007: CO₂ price practically zero
 - ▶ 2008: around 22€
 - assume 0.7tCO₂/MWh efficiency rate
 - ▶ \Rightarrow info premium should be around 0.7. $22 \in \approx 15 \in$
 - \Rightarrow which $\hat{I}_{\mathcal{G}}^{\mathbb{Q}}$ is!
- Other underlyings:
 - We consider electricity as an example where buy-and-hold does not work at all
 - Still, we claim that our approach is valid for other underlyings as well (unexplained risk premium!)

Conclusion and future research

- Conclusion:
 - Introduced the notion of the information premium to explain the spot-forward relationship
 - Briefly showed that theoretical results are possible
 - Provided algorithm to empirically check existence of info premium
 - ... which yields a time series that makes sense in shape and value
 - ▶ ... which explains what happened when CO₂ fees were introduced

References

F. E. Benth and Th. Meyer-Brandis *The information premium for non-storable commodities*, Journal of Energy Markets, 2009

Thank you for your attention...

Appendix I - Spot calibration

	Mean	Stnd. Dev.	Skewness	Kurtosis
Observed	52.18	23.94	0.69	0.28
Simulated	52.93	26.20	1.36	8.93

Table: First four moments of the original series and of the simulated paths

Parameter	α	σ	β	λ	р	q	η_1	η_2
Value	0.538	11.108	0.786	0.034	0.955	0.045	0.019	0.027

Table: Fitted parameter values for the data set 01/02/2007 until 30/10/2008

Appendix II - Change of measure

Figure: Observed, $\mathbb{E}^{\mathbb{P}}$ and $\mathbb{E}^{\mathbb{Q}}$ Six-month-forward Prices

Appendix III - Regression Results

Figure: $riangle \hat{l}_{g}^{\mathbb{Q}}$ and regression function

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Appendix IV - Forward price formula with delivery

Risk-neutral valuation formula yields:

$$0 = e^{-rt} \mathbb{E}^{\mathbb{Q}}\left[\int_{T_1}^{T_2} e^{-r(u-t)}(S(u) - F(t, T_1, T_2))du | \mathcal{F}_t\right]$$

If settlements only take place at the final date T₂ one gets

$$0 = e^{-rt} \mathbb{E}^{\mathbb{Q}}\left[\int_{T_1}^{T_2} (S(u) - F(t, T_1, T_2)) du | \mathcal{F}_t\right]$$

and finally for the futures price:

$$F(t, T_1, T_2) = \mathbb{E}^{\mathbb{Q}}\left[\int_{T_1}^{T_2} \frac{1}{T_2 - T_1} S(u) du | \mathcal{F}_t\right]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Appendix V - LSMC vs BKBK

Method	Classical LSMC	New Method
Time	fixed t	$t_k \in [t_0, T_n]$
Regressor	Simulated X _t	stationary $ riangle X_{t_k} \ \forall k$
Regressand	Simulated $F(X_{t+1})$	stationary $\triangle F(t_k) \forall k$
Goal	Value of cond. expectation	Quality of regression

Table: Comparison of methods