A comparison of extended electricity price models considering the impact of wind energy feed-in

Essen, 06-08 October 2010
Dogan Keles
1. Background

2. Impact of wind power feed-in on electricity prices

3. Modelling electricity prices via stochastic processes

4. Simulation of wind-power feed-in

5. Extended electricity price modeling considering the impact of wind power feed-in

6. Conclusions and Outlook
Background

- High uncertainties in energy markets due to liberalization and structural changes
- Electricity prices have become very volatile

\[\text{Stochastic simulation to capture these volatilities} \]

- Volatile feed-in of large amount wind power into grid
- Wind power feed-in (WPF) has a significant impact on the electricity price
- Long-term effects on power plant mix

\[\text{Evaluation of new investments need to consider uncertain prices and WPF} \]

\[\text{Therefore a basic knowledge of the interrelations is necessary} \]
Impact of wind power feed-in (WPF) on electricity prices

- historical couples of electricity prices and WPF (2006-2009)

→ the electricity price declines by 1,47 €/MWh on an average per Gigawatt wind power feed-in
→ reason: merit order effect of WPF
→ the average price reduction of 1,47 €/MWh per GW does not explain extreme price decreases of up to -500€/MWh
Impact of wind power feed-in (WPF) on electricity prices

- change of electricity prices depending on the current load

-governmental intervention in the electricity market

- the average price change caused by WPF varies according to the demand level
- possible cause: irregular structure of the merit order curve

\[
\text{average change in electricity price per GW of wind energy feed-in [€/MWh]}
\]

\[
\beta \alpha + \beta = \text{load [GW]}
\]

\[
\text{price change } \alpha_L \text{ dependent on load}
\]

\[
\text{price change without consideration of load}
\]
Modeling electricity prices via stochastic prices

- basic model for power price simulation:

 - Division of the power price into a deterministic and a stochastic components
 - Simulation of the stochastic portion via models of financial mathematics

 ![Diagram](https://via.placeholder.com/150)

- historical power price time series (logarithmized)
- Elimination of the deterministic components
 - Trend
 - annual, weekly, daily cycle
- Stochastic component of the power price
- Simulation of the stochastic component
- simulated power price time series (logarithmized)
- Addition of the deterministic components
 - Trend
 - annual, weekly, daily cycle
- simulated stochastic part of electricity prices
Modelling electricity prices via stochastic prices

Modelling of the stochastic component:

Base regime:

- **Autoregressive mean-average (ARMA(p,q))- process**
 - Assumption: Price X_{t}^{s} depend on the last p prices and X_{t-p} and q innovations ε_{t-p}
 $X_{t}^{BASE,s} = \sum_{i=1}^{p} \alpha_{i}X_{t-i}^{R} + \sum_{j=1}^{q} \beta_{j}\varepsilon_{t-j} + \varepsilon_{t}$
 - Parameters are estimated via MLE (Garch-Toolbox in MATLAB)
 - Innovations: $\varepsilon_{t} \sim$ Laplace($\mu_{\varepsilon},b_{\varepsilon}$)

- **Integrated ARMA (ARIMA)-process**
- **GARCH-Process**
- **Mean-Reversion process**
Jump regime: extension of the base processes

\[X_{t}^{s,\text{JUMP}} = X_{t}^{s,\text{BASE}} + \ln J_{t} \]

\[\ln J_{t} \sim N(\mu_{\ln J}, \sigma_{\ln J}^2) \]

- Prices in \(X_{t}^{s} \) beyond a confidence interval \([\mu - 3 \cdot \sigma, \mu + 3 \cdot \sigma]\) are declared as jumps.
- Calculation of switching probabilities as the relative frequency of price switches between the one in and out the confidence interval:

\[
P_{12} = \frac{\text{card}\{l \mid X_{l,t}^{SR} \in [\mu - 3\sigma, \mu + 3\sigma] \land X_{l,t+1}^{SR} \in (\mu + 3\sigma, \ln 3000]\}}{\text{card}\{l \mid X_{l,t}^{SR} \in [\mu - 3\sigma, \mu + 3\sigma]\}}
\]

\[
T = \begin{bmatrix}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{bmatrix}
\]

- Differentiation of switching probabilities for summer weekdays, winter weekdays and weekends.

\[\rightarrow \text{Simulation of the stochastic component } X_{t}^{s} \text{ with the regime-switching model and addition of the deterministic ones} \]

\[\rightarrow \text{Simulated electricity price paths} \]
Modeling electricity prices via stochastic prices – simulation results

Simulated prices vs. *Historical spot prices*:
- **Weekly cycle**
- **Long-term average**
- **Jump/spike**

Simulated PDC vs. *Historical PDC*:
- **Daily cycle**
Modeling electricity prices via stochastic prices – simulation results

<table>
<thead>
<tr>
<th>Stochastic Model</th>
<th>MRSE [€/MWh]</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean-Reversion (MR)</td>
<td>8.51</td>
<td>6.11</td>
</tr>
<tr>
<td>ARMA(1,1), *(5,5)</td>
<td>8.63,</td>
<td>6.86,</td>
</tr>
<tr>
<td></td>
<td>8.62</td>
<td>7.12</td>
</tr>
<tr>
<td>ARIMA(1,1,1), *(5,1,5)</td>
<td>8.15,</td>
<td>5.91,</td>
</tr>
<tr>
<td></td>
<td>8.19</td>
<td>5.55</td>
</tr>
<tr>
<td>GARCH(1,1),*(5,5)</td>
<td>15.10,</td>
<td>9.03,</td>
</tr>
<tr>
<td></td>
<td>17.85</td>
<td>11.07</td>
</tr>
<tr>
<td>MR without RS</td>
<td>19.92</td>
<td>17.52</td>
</tr>
<tr>
<td>GARCH without RS</td>
<td>109.18,</td>
<td>102.01,</td>
</tr>
<tr>
<td></td>
<td>111.84</td>
<td>102.97</td>
</tr>
<tr>
<td>ARIMA without deseasonalizing</td>
<td>9.94,</td>
<td>14.92,</td>
</tr>
<tr>
<td></td>
<td>21.96</td>
<td>13.00</td>
</tr>
</tbody>
</table>
Simulation of wind power feed-in

- Overview of the simulation model

- Estimation of Laplace-distribution parameters depending on the utilization level

- Deseasonalisation

- Analysis of change rates:
 - Laplace / exp. Distributed
 - Direction depends on own history
 - Amount depends on utilization level

- Probabilities for the direction of changes

- Recursive simulation

- Current level

- Distribution parameter

- Height of change

- Direction of change

- Current capacity utilization

- Current change rate

- Simulated capacity utilization without season

- Reseasonalisation

- Simulated capacity utilization with season
Simulation of wind energy feed-in (WEF)

- utilization levels are classified by height
- the distribution of change rates is analysed separately for each class and parameters are determined
- with the help of these distribution parameters the height of the change is determined as a random number dependent on the recent utilization level
• parameters μ^+ und μ^-

$\mu_{t+1}^+ = -5,2 \cdot 10^{-4} \cdot Niv(X_t)^2 + 0,055 \cdot Niv(X_t) + 0,83$

$\mu_{t+1}^- = 0,042 \cdot Niv(X_t) + 0,38$

$\rightarrow \mu^+$ and μ^- correspond to the mean of the positive and negative changes, that were moved by the modal value

\rightarrow the height of negative change rates grows with increasing utilization level

\rightarrow the height of positive change rates reaches its maximum at medium utilization rates
Simulation approach

→ Recursive simulation of the hourly capacity utilization X_t^{sim} based on the model of the change rates ΔX_t^{sim}

$$X_t^{\text{sim}} = X_{t-1}^{\text{sim}} + \Delta X_{t-1}^{\text{sim}}$$
Simulation of wind power feed-in (WPF)

- Simulation results for an actual installed capacity of 26 GW wind power
Extended modeling of power prices including the impact of wind power feed-in

- extension of the base model

Elimination of the deterministic components
- Trend
- annual, weekly, daily cycle

Addition of the deterministic components
- Trend
- annual, weekly, daily cycle

historical power price time series

stochastic component

wind power feed-in

remaining stochastic price component

Simulation of the remaining stochastic price component via financial models

simulated stochastic power price path

Addition of the impact of wind power feed-in

simulated time series of wind energy feed-in

Simulation of wind power feed-in levels

\[SP_{hist, stoch} = SP_{hist} - SP_{hist, det} \]

\[-\Delta SP(WEF_{hist}) \]

impact of the WPF is included to the stochastic, but explainable price component and thus it is treated like a deterministic price component.
Modeling electricity prices under volatile WPF – simulation results

Comparison of the electricity price simulation results **without** and **with** consideration of wind power simulation:

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th></th>
<th>2008</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W/O Wind</td>
<td>with Wind</td>
<td>HISTORICAL</td>
<td>W/O Wind</td>
</tr>
<tr>
<td>MRSE [€/MWh]</td>
<td>8.51</td>
<td>6.67</td>
<td>-</td>
<td>6.11</td>
</tr>
<tr>
<td>MAPE</td>
<td>13.93%</td>
<td>10.64%</td>
<td>-</td>
<td>6.40%</td>
</tr>
<tr>
<td>R²</td>
<td>36.60%</td>
<td>38.38%</td>
<td>-</td>
<td>52.53%</td>
</tr>
<tr>
<td>Mean [€/MWh]</td>
<td>41.25</td>
<td>38.86</td>
<td>38.85</td>
<td>67.65</td>
</tr>
<tr>
<td>σ [€/MWh]</td>
<td>23.94</td>
<td>20.16</td>
<td>19.41</td>
<td>33.87</td>
</tr>
<tr>
<td>skewness</td>
<td>1.49</td>
<td>-1.16</td>
<td>-3.23</td>
<td>2.01</td>
</tr>
<tr>
<td>kurtosis</td>
<td>20.08</td>
<td>8.66</td>
<td>83.90</td>
<td>37.85</td>
</tr>
</tbody>
</table>

→ the consideration of the impact of wind power leads to significant improvement of the price simulation
Summary

- The simulation results of the mean-reversion and the ARMA-models do not differ significantly, both models are suitable for electricity price simulation.

- However, the GARCH approach is less suitable, the MRSE is very high in this case.

- Regime switching approach improves the simulation immensely, the error is reduced by more than half.

- Consideration of the seasonal components leads also to a significant improvement of the electricity price simulation.

- Impact of wind power:
 - Depends strongly on the actual load level.
 - Wind power feed-in can be simulated via Laplace-distributed change rates.
 - The separation of the stochastic component into a “wind power driven” one and remaining stochastic one improves also the electricity price simulation.
Thank you!

Questions?
Impact of wind energy feed-in (WEF) on electricity prices

- structure of the merit order

- exponential structure, jumps and constant levels
- depending on merit order characteristics equal WEF can cause different price reductions
Impact of wind energy feed-in (WEF) on electricity prices

- Comparison of the merit order structure and price reductions

→ merit order structure and extreme market situations explain fluctuations within price reductions by WEF
Modeling electricity prices via stochastic prices

Modeling of the deterministic parts:

Logarithmised prices
(2002 - 2009)

Trend of price logs

Annual cycle

Weekly cycle

Daily cycle

Stochastic residues

$X_t = \ln p_t$

$X_t^{trend} = X_0 + \lambda \cdot t$

$X_{annual\ cycle}^d(t) = \alpha_{dh} + \beta_{dh} \cos \left(2\pi \frac{t - \tau}{8760} \right) + \gamma_{dh} \sin \left(2\pi \frac{t - \tau}{8760} \right)$

$X_{weekly\ cycle}^t = \alpha + \beta \sin \left(\frac{\pi \cdot t}{168} - \varphi \right)$

$X_{daily\ cycle}^{i,season} = \frac{24}{T} \sum_{t=0}^{(T/24)-1} X_{i+24t,season}$

$\forall \ i \in \{1,2,\ldots,24\} \land \forall season \in \{\text{winter, spring, summer, autumn}\}$

$X_t^s = X_t - X_t^{trend} - X_t^{annual\ cycle} - X_t^{weekly\ cycle} - X_t^{daily\ cycle}$

- Negative prices are set to 0.01€/MWh
- Log. leads to variance stabilization
Modelling electricity prices

Modelling of the stochastic component:

Base regime:

Mean-reversion process

- Assumption: prices return to the long-term mean μ with the speed κ

$$dX_t = \kappa(\mu - X_t) \cdot dt + \sigma \cdot dW_t$$

- Wiener Process $dW_t = \varepsilon_t \, dt^{1/2}$, whereas ε_t is a standard normally distributed error term

- Exact solution:

$$E(X_t) = ae^{-\theta t} + \mu(1 - e^{-\theta t})$$

$$\text{Cov}(X_s, X_t) = \frac{\sigma^2}{2\theta} (e^{-\theta|s-t|} - e^{-\theta(s+t)})$$

$$X_t \sim \mathcal{N}(ae^{-\theta t} + \mu(1 - e^{-\theta t}), \frac{\sigma^2}{2\theta}(1 - e^{-2\theta t}))$$

- Parameter estimation via MLE
• Analysis of change rates: dependencies

→ Dependency of change rates on historical values (Autocorrelation):
 - Direction of a change depends on previous change
 - Probability, that change will be positive or negative, results from how many directly preceding changes were positive or negative
 - With historical date probabilities can be determined and thus for each hour in the simulation time frame the direction can be provided

→ Dependency of change rates on historical values of capacity utilization:
 - historical capacity utilization determine the amount of the following change
 - this history is described by the level of utilization, defined as the moving average of the past 11 hours
Simulation of wind energy feed-in (WEF)

• parameter m

\[m = -0.024 \cdot Niv(X) + 0.10 \]

→ m corresponds to the mode of change rates
→ the higher the utilization level, the smaller (or more negative) the average change amount
Simulation of wind energy feed-in (WEF)

- Modelling the change rates Δx_t^{sim}

$$
\Delta X_t^{\text{sim}} = \begin{cases}
 e_t + m_t & , l_t = 1 \\
 -e_t + m_t & , l_t = -1
\end{cases}
$$

$$
e_t \sim \begin{cases}
 \text{Exp}(\mu_t^+) & , l_t = 1 \\
 \text{Exp}(\mu_t^-) & , l_t = -1
\end{cases}
$$

$$
m_t, \mu_t^+, \mu_t^- = f[Niv_t(X_t)]
$$

$t = 1, \ldots, N^{\text{sim}}$

- Amount of the change rate is generated with a exponentially distributed random number, that is moved by the modal value of the original Laplace distribution
- The direction of the change is determined by the series I of algebraic signs, that provides the direction of the change in each hour t