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Motivation: Swing Options

e An electricity or gas SUPPLIER needs to be capable, at any point in time, to deliver
the electricity or gas demanded by its customers.

e Demand for electricity or gas by households usually depends on
temperature
— How cold it is in winter so that radiators (electric or gas-fired) are turned on.
— How warm it is in the summer so that air-conditioning turns on.

e Temperature cannot be predicted long in advance. Suppliers may have
to deliver more or less VOLUME of electricity or gas, than what they
have accounted for.

e The, unaccounted for, electricity or gas, has to be produced or purchased
from the market and there is always a PRICE associated.

e This dependence on both PRICE and VOLUME is what lies at the
heart of a Swing Option.
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Swing Option Pricing by “Forest of trees”

e A tree (or grid) is constructed that discretizes the price movements of the underlying
(gas or electricity), at each time-step throughout the duration of the contract.

e The cumulative volume, V' (%), purchased up to time t;_1, ¢ = 1,...,n, is the key
variable.

e One tree is used for EVERY possible value of the cumulative volume, V' (%).
e Pricing is done using the backward induction method.
e A grid that incorporates both jumps and mean-reversion is needed.

— We will use the model by Geman and Roncoroni, Journal of Business (2006)

— At each time-step, t;, the density of the price of the underlying needs to be efficiently
discretized: Bally, V., Pages, G. & Printems, J., Mathematical Finance (2005)

— Compare results obtained from the grid with Monte Carlo simulations.

— Swing Options pricing by Monte Carlo simulations: Barrera-Esteve, C., Bergeret, F.,
Dossal, C., Gobet, E., Meziou, A., Munos, R. & Reboul- Salze, D: Methodology and
Computing in Applied Probability (2006).
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Mathematical model for the spot electricity price under
an equivalent martingale measure Q:

dE(t) = 01[m(t) — E(t)] dt 4+ o(t)dW (t) + h(t ) In(J) dg(t) (1)

where

(t) = 5-Dit) + (®) )
D denotes the derivative with respect to time

w1 (t) is a deterministic function and drives the seasonal part of the process

61 is the speed of mean reversion of the diffusion part

o(t) is the volatility of the diffusion part

In(J) defines the size of the jump

W (t) is a Q-Brownian motion

q(t) is a Poisson counter under Q, with intensity A;(t) = 625(t)
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A closer look at the jump part of the process

e The function h(t) is defined as

h(t) = Lipwy<tt)y — Y{EW®)>T0)

— If at the time of a jump 7, E(77) is below the threshold 7 (77), then h will be
equal to 1, producing a jump in the upwards direction

— If E(77) is above the threshold, then h will be equal to -1, producing a downward
directed jump

= T(t) = p(t)+ A

e The function In(J) defines the size of the jump and has density:

936—93:1:

p(x7937¢) — 1 — o039 10§$§¢ (3)

— 03 is a parameter ensuring that p is a probability density function
— 1) is the maximum jump size
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Mean reversion and spikes in the Threshold Model

Threshaold maodel: Mean reversion and negative jJumps
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The solution of the model under ()

E(T)=D(t,T) + J(t,T) (4)
where
D(t.T) = u(T) + (BO) = u()e " + [ oe "V aw(y) ()

and

N(T—t)
J(t,T)=e " Y " h(r) [InJ] (6)
=1

e Choose a particular measure derived from the market prices of futures contracts.
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Approximation of the continuous-time process

e The time interval [t,T] is partitioned into n distinct subintervals using
n + 1 knots ¢;

e t=thp<t1 < - <th_1<ty,:=T
o tz'_|_1 — tz‘ = 5t, for all ¢
e Start by E(to) := E(to)

e Construct an approximating process that tracks the original process in
each sub-interval
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The approximating jump process: properties

e At most one jump allowed in each time interval

e Size of the jump: the same as the size of the first jump of the continuous-
time process

e Direction of the jump: Depends on the value of the underlying at the
CENTER of the interval, if it moves SOLELY by mean-reversion from
the beginning of the interval.

e Direction of jump in the original process: Depends on the value of the
underlying at a RANDOM time within the interval, if it moves SOLELY
by mean-reversion + noise from the beginning of the interval.
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The jump part of the approximating process

e Jump part of the original process
N[At(u—k)]
J(tu—r, tu—ngr) =€ Mumntl N T p(77) [In J];
i=1
e Jump part of the approximating process
T (tmers tmoni1) = € (LIm=ntl 1 (tm—rt(0/2)) R (tm—r + %)

X [In J]1 1gn[at(m—r)]>1}

e The function h/(«), for any & € (tm_x, tm—_ri1], is defined as:
W (@) := 1{De(ty o)< T(@)} = LY{Deltyypa)>T()}
where D.(t,,—_, o) is defined as:

Dc(tm—lm a) = ,LL(OC) -+ (E(tm_m) — M(tm—m)) e_el(a_tm—/{)

(7)

(8)

(9)

(10)
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The approximating process under ()
E[(ti + 5t) | E(ti)] - f)[(t,., ti 4 t) | E(ti)} n j[(t,-, ti + ot) | E(t,-)] (11)

where

D(ti, ti+ 1) | B(t)] = p(titot) + (B(t) — p(t))e "

ti—{—5t
b o (titot) e C1l+0) / MY g (y) (12)
t

i
and

~ ~ ot
J[(ti, ti + ot) | E(ti)] = e 2 (4 + ) InJ) Yy (13)

10
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Density of the components of the approximating process

e normal distribution with calculable mean and variance for the process

D(ti, tit+6t) | E(t)| = p(tirot) + (Bt — ut))e "

tz-+5t
+ o(ti46t) e 1t / eV dW (y)
t

1

e Conditional on the occurrence of at least one jump, the approximating jump process

~ ~ ot
J (ti, t; + 5t) ‘ E(tz)] = 8_91 2 h/(ti -+ %) [ln J]l 1{N[At(z’)]21} (14)
has a density given by
1 d _
fy(y) = fx(g~ (y)) 2’ (v)

5t
where g(x) = h'(t; + %)6_917 x, and fx is the density of the jump size.

11
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Density of the approximating process

e Conditioning on an initial value E(¢;):
E[(ti +6t) | E’(ti)} — 5[(@-, ti + ot) | E(t@-)} n j[(ti, ti + ot) | E(ti)}
— If no jump occurs then its density is defined from the density of
5[(@-, t; + ot) | E‘(ti)}

— If at least one jJump occurs its density is defined by the convolution of the densities
of N N
D[(ti, t; + ot) | E(ti)}

and

j[(ti, t; + o) | E(ti)}

12
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Discretization of the density of a stochastic process one
time-step ahead

e ) st o uonezialsg

e The density is divided into sections

e The probability mass within a section is assigned to the transition probability from the
starting node to the node in the middle of the section.

e A probability threshold II prevents movements to sections with very low probability
mass.

13
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First step on the tree
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Second step: A different conditional probability
distribution

55+ —
5+ _
45 -
&
4 2
35+ —
g —
25+ —
2 1 |
] 1 2

15
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Third step: Mean reversion starts influencing the
conditional distribution

16
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Fourth step: Strong mean reversion pull
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Some of the up movements have very low probability
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Mean reversion: Only downward movements
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Arrival probability

925

B.75

£y

425

The ﬁrobability of arriving
at this node is called
"arrival probability"

20
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A full one-year grid, time changing parameters

log-price of electricity

mawements during this period of very high Jump
intensity have been calculated in two sub-steps for /
increased accruracy. This results in additwonV
nodes of lowr arrival probability

| | | | | | |
-2

1] 50 100 150 200 250 300 350 400
Tirme [days)
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A full one-year grid, time changing parameters,
“filtering” on

log-price of electricity
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Tirme (days)
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Grid applications: European style options, time changing

para meters
Strike = e Strike = e || Strike = e*
Option Parameter values running
matures on at maturity method time (sec) | option price || option price || option price
w = 2.99 Monte Carlo 40 13.77 1.93 0
31 Jan 2009 Ay = 0.0042 Grid, all nodes included 0.8 13.76 1.95 0
o = 1.3821 Grid, filtering on 0.5 13.76 1.95 0
u = 3.65 Monte Carlo 180 20.73 8.53 2.01
30 Apr 2009 Ay = 3.58 Grid, all nodes included 10 20.75 8.51 2.06
o = 1.4559 Grid, filtering on 5.5 20.71 8.47 2.04
w = 3.25 Monte Carlo 250 94.18 82.10 57.39
30 Jun 2009 Aj = 35.76 Grid, all nodes included 24 93.86 81.49 57.23
oc=1.5 Grid, filtering on 13 93.80 81.43 57.19
pw = 3.13 Monte Carlo 325 35.75 23.36 11.01
31 Aug 2009 Ay = 12.52 Grid, all nodes included 30 35.19 23.02 10.64
o = 1.4410 Grid, filtering on 17 35.16 22.99 10.63
w = 2.99 Monte Carlo 430 12.30 1.36 0
31 Dec 2009 Ay = 0.0035 Grid, all nodes included 37 12.31 1.35 0
o = 1.3827 Grid, filtering on 23 12.29 1.35 0

23
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log-price of electricity

Swing option pricing on the tree

All possible nodes
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Swing option pricing on the tree

10 T T

All possible nodes

All possible values of
cumulative volume transacted
/ up to that node
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Swing option pricing on the tree

10 T T

All possible nodes

cumulative volume transacted
/| up to that node

log-price of electricity

Compare with expected future value

\ | | | | | |
2
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Swing option pricing on the tree

10 T T

All possible nodes

ik —Altpossible valuesof ——— ]
cumulative volume transacted
up to that node
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Compare with expected future value
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Swing option pricing on the tree

10 T T

All possible nodes

ik —Altpossible valuesof ——— ]
cumulative volume transacted
up to that node

log-price of electricity

Move backwards and repeat _
for all nodes and all time-steps Compare with expected future value

| | | | Take| optimal tralnsaction dqcisions

1] 50 100 150 200 250 300 350 400
Time [days)
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Grid and Monte Carlo methods for pricing swing options
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Grid and Monte Carlo methods for pricing swing options

e Both methods: Optimal transaction decisions and prices needed for each
combination of:

— admissible cumulative volume,
— value of the underlying,
— time-step

e Monte Carlo method (Longstaff - Schwartz)

— possible values of the underlying are generated from 1,000 paths

e Grid method

— Possible values of the underlying are represented by the nodes of the
grid at each time-step (about 200 nodes)

29
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Swing option prices: Time varying parameters

Storage contract parameters Price
Valuation date | Start date | End date min max Grid | Monte Carlo
= 2.99 uw=3.11
01-Jan-09 01-Jan-09 | 31-Mar-09 | o = 1.38 o=1.43 | 392.3 [375, 410]
)\J:10_4 Ay =1.60
uw=3.18 = 3.25
01-May-09 01-Jun-09 | 31-Jul-09 o = 1.46 oc=1.5 7214 | [6972, T736]
Ay=06.70 | Aj=056
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Swing option prices: Time varying parameters

Storage contract parameters Price
Valuation date | Start date | End date min max Grid | Monte Carlo
= 2.99 uw=3.11
01-Jan-09 01-Jan-09 | 31-Mar-09 | o = 1.38 o=1.43 | 392.3 [375, 410]
)\J:10_4 Ay =1.60
uw=3.18 = 3.25
01-May-09 01-Jun-09 | 31-Jul-09 o = 1.46 oc=1.5 7214 | [6972, T736]
Ay=06.70 | Aj=056

e A lot more paths are needed for the Monte Carlo method to produce smaller confidence
intervals

e For European options, 50,000 paths were needed in order to achieve narrow confidence
Intervals.
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Swing option prices: Time varying parameters

Storage contract parameters Price
Valuation date | Start date | End date min max Grid | Monte Carlo
= 2.99 uw=3.11
01-Jan-09 01-Jan-09 | 31-Mar-09 | o = 1.38 o=1.43 | 392.3 [375, 410]
)\J:10_4 Ay =1.60
uw=3.18 = 3.25
01-May-09 01-Jun-09 | 31-Jul-09 o = 1.46 oc=1.5 7214 | [6972, T736]
Ay=06.70 | Aj=056

e A lot more paths are needed for the Monte Carlo method to produce smaller confidence
intervals

e For European options, 50,000 paths were needed in order to achieve narrow confidence
Intervals.

e For European options the grid method worked very well with only 200 nodes, without
filtering.
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Swing option prices: Time varying parameters

Storage contract parameters Price

Valuation date | Start date | End date min max Grid | Monte Carlo
= 2.99 uw=3.11
01-Jan-09 01-Jan-09 | 31-Mar-09 | o = 1.38 o=1.43 | 392.3 (375, 410]
)\J:10_4 Ay = 1.60
p=3.18 w=3.25
01-May-09 01-Jun-09 | 31-Jul-09 o =1.46 oc=1.5 7214 | [6972, T736]
Ay=6.70 | A;j=056

e A lot more paths are needed for the Monte Carlo method to produce smaller confidence
intervals

e For European options, 50,000 paths were needed in order to achieve narrow confidence
intervals.

e For European options the grid method worked very well with only 200 nodes, without
filtering.

e The grid presents a very promising approach, achieving a good balance between
accuracy and calculation time.
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Thank you for your attention.
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