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Motivation: Swing Options
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Motivation: Swing Options

• An electricity or gas SUPPLIER needs to be capable, at any point in time, to deliver

the electricity or gas demanded by its customers.

• Demand for electricity or gas by households usually depends on
temperature
– How cold it is in winter so that radiators (electric or gas-fired) are turned on.

– How warm it is in the summer so that air-conditioning turns on.

• Temperature cannot be predicted long in advance. Suppliers may have
to deliver more or less VOLUME of electricity or gas, than what they
have accounted for.

• The, unaccounted for, electricity or gas, has to be produced or purchased
from the market and there is always a PRICE associated.

• This dependence on both PRICE and VOLUME is what lies at the
heart of a Swing Option.
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Swing Option Pricing by “Forest of trees”

• A tree (or grid) is constructed that discretizes the price movements of the underlying
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– We will use the model by Geman and Roncoroni, Journal of Business (2006)

– At each time-step, ti, the density of the price of the underlying needs to be efficiently

discretized: Bally, V., Pagès, G. & Printems, J., Mathematical Finance (2005)

– Compare results obtained from the grid with Monte Carlo simulations.

– Swing Options pricing by Monte Carlo simulations: Barrera-Esteve, C., Bergeret, F.,

Dossal, C., Gobet, E., Meziou, A., Munos, R. & Reboul- Salze, D: Methodology and
Computing in Applied Probability (2006).
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Mathematical model for the spot electricity price under
an equivalent martingale measure Q:

dE(t) = θ1[m̃(t)− E(t
−

)] dt + σ(t)dW (t) + h(t
−

) ln(J) dq(t) (1)

where

m̃(t) =
1

θ1

Dµ(t) + µ(t) (2)

• D denotes the derivative with respect to time

• µ(t) is a deterministic function and drives the seasonal part of the process

• θ1 is the speed of mean reversion of the diffusion part

• σ(t) is the volatility of the diffusion part

• ln(J) defines the size of the jump

• W (t) is a Q-Brownian motion

• q(t) is a Poisson counter under Q, with intensity λJ(t) = θ2s(t)
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A closer look at the jump part of the process

• The function h(t) is defined as

h(t) = 1{E(t)<T (t)} − 1{E(t)≥T (t)}

– If at the time of a jump τ , E(τ−) is below the threshold T (τ−), then h will be

equal to 1, producing a jump in the upwards direction

– If E(τ−) is above the threshold, then h will be equal to -1, producing a downward

directed jump

– T (t) = µ(t) + ∆

• The function ln(J) defines the size of the jump and has density:

p
(
x, θ3, ψ

)
=

θ3e
−θ3x

1− e−θ3ψ
, 0 ≤ x ≤ ψ. (3)

– θ3 is a parameter ensuring that p is a probability density function

– ψ is the maximum jump size
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Mean reversion and spikes in the Threshold Model
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The solution of the model under Q

E(T ) = D(t, T ) + J(t, T ) (4)

where

D(t, T ) = µ(T ) +
(
E(t)− µ(t)

)
e
−θ1(T−t)

+

∫ T

t

σ(y)e
−θ1(T−y)

dW (y) (5)

and

J(t, T ) = e
−θ1T

N(T−t)∑
i=1

e
θ1τi h(τ

−
i ) [ln J]i (6)

• Choose a particular measure derived from the market prices of futures contracts.

6



Stelios Kourouvakalis Energy & Finance conference, Universität Duisburg-Essen, 06-Oct-10

Approximation of the continuous-time process

• The time interval [t, T ] is partitioned into n distinct subintervals using
n+ 1 knots ti

• t =: t0 < t1 < · · · < tn−1 < tn := T

• ti+1 − ti = δt, for all i

• Start by Ẽ(t0) := E(t0)

• Construct an approximating process that tracks the original process in
each sub-interval
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• At most one jump allowed in each time interval
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The approximating jump process: properties

• At most one jump allowed in each time interval

• Size of the jump: the same as the size of the first jump of the continuous-
time process

• Direction of the jump: Depends on the value of the underlying at the
CENTER of the interval, if it moves SOLELY by mean-reversion from
the beginning of the interval.

• Direction of jump in the original process: Depends on the value of the
underlying at a RANDOM time within the interval, if it moves SOLELY
by mean-reversion + noise from the beginning of the interval.
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The jump part of the approximating process

• Jump part of the original process

J(tu−κ, tu−κ+1) = e
−θ1tu−κ+1

N [∆t(u−κ)]∑
i=1

e
θ1τi h(τ

−
i ) [ln J]i (7)

• Jump part of the approximating process

J̃(tm−κ, tm−κ+1) := e
−θ1tm−κ+1 e

θ1(tm−κ+(δt/2))
h
′
(tm−κ + δt

2 )

× [ln J]1 1{N [∆t(m−κ)]≥1} (8)

• The function h′(α), for any α ∈ (tm−κ, tm−κ+1], is defined as:

h
′
(α) := 1{Dc(tm−κ,α)<T (α)} − 1{Dc(tm−κ,α)≥T (α)} (9)

where Dc(tm−κ, α) is defined as:

Dc(tm−κ, α) = µ(α) +
(
Ẽ(tm−κ)− µ(tm−κ)

)
e
−θ1(α−tm−κ)

(10)
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The approximating process under Q

Ẽ
[
(ti + δt)

Ẽ(ti)
]

= D̃
[
(ti, ti + δt)

Ẽ(ti)
]

+ J̃
[
(ti, ti + δt)

Ẽ(ti)
]

(11)

where

D̃
[
(ti, ti + δt)

Ẽ(ti)
]

= µ(ti+δt) +
(
Ẽ(ti)− µ(ti)

)
e
−θ1δt

+ σ(ti+δt) e
−θ1(ti+δt)

∫ ti+δt

ti

e
θ1y dW (y) (12)

and

J̃
[
(ti, ti + δt)

Ẽ(ti)
]

= e
−θ1

δt
2 h

′
(ti + δt

2 ) [ln J]1 1{N [∆t(i)]≥1} (13)
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Density of the components of the approximating process

• normal distribution with calculable mean and variance for the process

D̃
[
(ti, ti + δt)

Ẽ(ti)
]

= µ(ti+δt) +
(
Ẽ(ti)− µ(ti)

)
e
−θ1δt

+ σ(ti+δt) e
−θ1(ti+δt)

∫ ti+δt

ti

e
θ1y dW (y)

• Conditional on the occurrence of at least one jump, the approximating jump process

J̃
[
(ti, ti + δt)

Ẽ(ti)
]

= e
−θ1

δt
2 h

′
(ti + δt

2 ) [ln J]1 1{N [∆t(i)]≥1} (14)

has a density given by

fY (y) = fX
(
g
−1

(y)
) ∣∣∣∣ ddyg−1

(y)

∣∣∣∣
where g(x) = h′(ti + δt

2 )e−θ1
δt
2 x, and fX is the density of the jump size.
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Density of the approximating process

• Conditioning on an initial value Ẽ(ti):

Ẽ
[
(ti + δt)

Ẽ(ti)
]

= D̃
[
(ti, ti + δt)

Ẽ(ti)
]

+ J̃
[
(ti, ti + δt)

Ẽ(ti)
]

– If no jump occurs then its density is defined from the density of

D̃
[
(ti, ti + δt)

Ẽ(ti)
]

– If at least one jump occurs its density is defined by the convolution of the densities

of

D̃
[
(ti, ti + δt)

Ẽ(ti)
]

and

J̃
[
(ti, ti + δt)

Ẽ(ti)
]
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Discretization of the density of a stochastic process one
time-step ahead

• The density is divided into sections

• The probability mass within a section is assigned to the transition probability from the

starting node to the node in the middle of the section.

• A probability threshold Π prevents movements to sections with very low probability

mass.
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First step on the tree
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Second step: A different conditional probability
distribution
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Third step: Mean reversion starts influencing the
conditional distribution
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Fourth step: Strong mean reversion pull
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Some of the up movements have very low probability
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Mean reversion: Only downward movements
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Arrival probability
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A full one-year grid, time changing parameters
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A full one-year grid, time changing parameters,
“filtering” on
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Grid applications: European style options, time changing
parameters

Strike = e2 Strike = e3 Strike = e4

Option Parameter values running

matures on at maturity method time (sec) option price option price option price

µ = 2.99 Monte Carlo 40 13.77 1.93 0

31 Jan 2009 λJ = 0.0042 Grid, all nodes included 0.8 13.76 1.95 0

σ = 1.3821 Grid, filtering on 0.5 13.76 1.95 0

µ = 3.65 Monte Carlo 180 20.73 8.53 2.01

30 Apr 2009 λJ = 3.58 Grid, all nodes included 10 20.75 8.51 2.06

σ = 1.4559 Grid, filtering on 5.5 20.71 8.47 2.04

µ = 3.25 Monte Carlo 250 94.18 82.10 57.39

30 Jun 2009 λJ = 35.76 Grid, all nodes included 24 93.86 81.49 57.23

σ = 1.5 Grid, filtering on 13 93.80 81.43 57.19

µ = 3.13 Monte Carlo 325 35.75 23.36 11.01

31 Aug 2009 λJ = 12.52 Grid, all nodes included 30 35.19 23.02 10.64

σ = 1.4410 Grid, filtering on 17 35.16 22.99 10.63

µ = 2.99 Monte Carlo 430 12.30 1.36 0

31 Dec 2009 λJ = 0.0035 Grid, all nodes included 37 12.31 1.35 0

σ = 1.3827 Grid, filtering on 23 12.29 1.35 0
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Grid and Monte Carlo methods for pricing swing options
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Grid and Monte Carlo methods for pricing swing options

• Both methods: Optimal transaction decisions and prices needed for each
combination of:

– admissible cumulative volume,
– value of the underlying,
– time-step

• Monte Carlo method (Longstaff - Schwartz)

– possible values of the underlying are generated from 1, 000 paths

• Grid method

– Possible values of the underlying are represented by the nodes of the
grid at each time-step (about 200 nodes)
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Swing option prices: Time varying parameters

Storage contract parameters Price

Valuation date Start date End date min max Grid Monte Carlo
µ = 2.99 µ = 3.11

01-Jan-09 01-Jan-09 31-Mar-09 σ = 1.38 σ = 1.43 392.3 [375, 410]
λJ = 10−4 λJ = 1.60
µ = 3.18 µ = 3.25

01-May-09 01-Jun-09 31-Jul-09 σ = 1.46 σ = 1.5 7214 [6972, 7736]
λJ = 6.70 λJ = 56
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Storage contract parameters Price

Valuation date Start date End date min max Grid Monte Carlo
µ = 2.99 µ = 3.11

01-Jan-09 01-Jan-09 31-Mar-09 σ = 1.38 σ = 1.43 392.3 [375, 410]
λJ = 10−4 λJ = 1.60
µ = 3.18 µ = 3.25

01-May-09 01-Jun-09 31-Jul-09 σ = 1.46 σ = 1.5 7214 [6972, 7736]
λJ = 6.70 λJ = 56

• A lot more paths are needed for the Monte Carlo method to produce smaller confidence

intervals

• For European options, 50,000 paths were needed in order to achieve narrow confidence

intervals.
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Swing option prices: Time varying parameters

Storage contract parameters Price

Valuation date Start date End date min max Grid Monte Carlo
µ = 2.99 µ = 3.11

01-Jan-09 01-Jan-09 31-Mar-09 σ = 1.38 σ = 1.43 392.3 [375, 410]
λJ = 10−4 λJ = 1.60
µ = 3.18 µ = 3.25

01-May-09 01-Jun-09 31-Jul-09 σ = 1.46 σ = 1.5 7214 [6972, 7736]
λJ = 6.70 λJ = 56

• A lot more paths are needed for the Monte Carlo method to produce smaller confidence

intervals

• For European options, 50,000 paths were needed in order to achieve narrow confidence

intervals.

• For European options the grid method worked very well with only 200 nodes, without

filtering.
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Swing option prices: Time varying parameters

Storage contract parameters Price

Valuation date Start date End date min max Grid Monte Carlo
µ = 2.99 µ = 3.11

01-Jan-09 01-Jan-09 31-Mar-09 σ = 1.38 σ = 1.43 392.3 [375, 410]
λJ = 10−4 λJ = 1.60
µ = 3.18 µ = 3.25

01-May-09 01-Jun-09 31-Jul-09 σ = 1.46 σ = 1.5 7214 [6972, 7736]
λJ = 6.70 λJ = 56

• A lot more paths are needed for the Monte Carlo method to produce smaller confidence

intervals

• For European options, 50,000 paths were needed in order to achieve narrow confidence

intervals.

• For European options the grid method worked very well with only 200 nodes, without

filtering.

• The grid presents a very promising approach, achieving a good balance between

accuracy and calculation time.
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Thank you for your attention.
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