Numerical Methods for Pricing Energy Derivatives, including Swing Options, in the Presence of Jumps

Stelios Kourouvakalis, Senior Quantitative Analyst

• An electricity or gas **SUPPLIER** needs to be capable, at any point in time, to deliver the electricity or gas demanded by its customers.

- An electricity or gas **SUPPLIER** needs to be capable, at any point in time, to deliver the electricity or gas demanded by its customers.
- Demand for electricity or gas by households usually depends on temperature

- An electricity or gas **SUPPLIER** needs to be capable, at any point in time, to deliver the electricity or gas demanded by its customers.
- Demand for electricity or gas by households usually depends on temperature
 - How cold it is in winter so that radiators (electric or gas-fired) are turned on.

- An electricity or gas **SUPPLIER** needs to be capable, at any point in time, to deliver the electricity or gas demanded by its customers.
- Demand for electricity or gas by households usually depends on temperature
 - How cold it is in winter so that radiators (electric or gas-fired) are turned on.
 - How warm it is in the summer so that air-conditioning turns on.

- An electricity or gas **SUPPLIER** needs to be capable, at any point in time, to deliver the electricity or gas demanded by its customers.
- Demand for electricity or gas by households usually depends on temperature
 - How cold it is in winter so that radiators (electric or gas-fired) are turned on.
 - How warm it is in the summer so that air-conditioning turns on.
- Temperature cannot be predicted long in advance. Suppliers may have to deliver more or less **VOLUME** of electricity or gas, than what they have accounted for.

- An electricity or gas **SUPPLIER** needs to be capable, at any point in time, to deliver the electricity or gas demanded by its customers.
- Demand for electricity or gas by households usually depends on temperature
 - How cold it is in winter so that radiators (electric or gas-fired) are turned on.
 - How warm it is in the summer so that air-conditioning turns on.
- Temperature cannot be predicted long in advance. Suppliers may have to deliver more or less **VOLUME** of electricity or gas, than what they have accounted for.
- The, unaccounted for, electricity or gas, has to be produced or purchased from the market and there is always a **PRICE** associated.

- An electricity or gas **SUPPLIER** needs to be capable, at any point in time, to deliver the electricity or gas demanded by its customers.
- Demand for electricity or gas by households usually depends on temperature
 - How cold it is in winter so that radiators (electric or gas-fired) are turned on.
 - How warm it is in the summer so that air-conditioning turns on.
- Temperature cannot be predicted long in advance. Suppliers may have to deliver more or less **VOLUME** of electricity or gas, than what they have accounted for.
- The, unaccounted for, electricity or gas, has to be produced or purchased from the market and there is always a **PRICE** associated.
- This dependence on both **PRICE** and **VOLUME** is what lies at the heart of a Swing Option.

• A tree (or grid) is constructed that discretizes the price movements of the underlying (gas or electricity), at each time-step throughout the duration of the contract.

- A tree (or grid) is constructed that discretizes the price movements of the underlying (gas or electricity), at each time-step throughout the duration of the contract.
- The cumulative volume, V(i), purchased up to time t_{i-1} , i = 1, ..., n, is the key variable.

- A tree (or grid) is constructed that discretizes the price movements of the underlying (gas or electricity), at each time-step throughout the duration of the contract.
- The cumulative volume, V(i), purchased up to time t_{i-1} , i = 1, ..., n, is the key variable.
- One tree is used for **EVERY** possible value of the cumulative volume, V(i).

- A tree (or grid) is constructed that discretizes the price movements of the underlying (gas or electricity), at each time-step throughout the duration of the contract.
- The cumulative volume, V(i), purchased up to time t_{i-1} , i = 1, ..., n, is the key variable.
- One tree is used for **EVERY** possible value of the cumulative volume, V(i).
- Pricing is done using the backward induction method.

- A tree (or grid) is constructed that discretizes the price movements of the underlying (gas or electricity), at each time-step throughout the duration of the contract.
- The cumulative volume, V(i), purchased up to time t_{i-1} , i = 1, ..., n, is the key variable.
- One tree is used for **EVERY** possible value of the cumulative volume, V(i).
- Pricing is done using the backward induction method.
- A grid that incorporates both jumps and mean-reversion is needed.

- A tree (or grid) is constructed that discretizes the price movements of the underlying (gas or electricity), at each time-step throughout the duration of the contract.
- The cumulative volume, V(i), purchased up to time t_{i-1} , i = 1, ..., n, is the key variable.
- One tree is used for **EVERY** possible value of the cumulative volume, V(i).
- Pricing is done using the backward induction method.
- A grid that incorporates both jumps and mean-reversion is needed.
 - We will use the model by Geman and Roncoroni, Journal of Business (2006)

- A tree (or grid) is constructed that discretizes the price movements of the underlying (gas or electricity), at each time-step throughout the duration of the contract.
- The cumulative volume, V(i), purchased up to time t_{i-1} , i = 1, ..., n, is the key variable.
- One tree is used for **EVERY** possible value of the cumulative volume, V(i).
- Pricing is done using the backward induction method.
- A grid that incorporates both jumps and mean-reversion is needed.
 - We will use the model by Geman and Roncoroni, Journal of Business (2006)
 - At each time-step, t_i , the density of the price of the underlying needs to be efficiently discretized: Bally, V., Pagès, G. & Printems, J., *Mathematical Finance* (2005)

- A tree (or grid) is constructed that discretizes the price movements of the underlying (gas or electricity), at each time-step throughout the duration of the contract.
- The cumulative volume, V(i), purchased up to time t_{i-1} , i = 1, ..., n, is the key variable.
- One tree is used for **EVERY** possible value of the cumulative volume, V(i).
- Pricing is done using the backward induction method.
- A grid that incorporates both jumps and mean-reversion is needed.
 - We will use the model by Geman and Roncoroni, Journal of Business (2006)
 - At each time-step, t_i , the density of the price of the underlying needs to be efficiently discretized: Bally, V., Pagès, G. & Printems, J., *Mathematical Finance* (2005)
 - Compare results obtained from the grid with Monte Carlo simulations.

- A tree (or grid) is constructed that discretizes the price movements of the underlying (gas or electricity), at each time-step throughout the duration of the contract.
- The cumulative volume, V(i), purchased up to time t_{i-1} , i = 1, ..., n, is the key variable.
- One tree is used for **EVERY** possible value of the cumulative volume, V(i).
- Pricing is done using the backward induction method.
- A grid that incorporates both jumps and mean-reversion is needed.
 - We will use the model by Geman and Roncoroni, Journal of Business (2006)
 - At each time-step, t_i , the density of the price of the underlying needs to be efficiently discretized: Bally, V., Pagès, G. & Printems, J., *Mathematical Finance* (2005)
 - Compare results obtained from the grid with Monte Carlo simulations.
 - Swing Options pricing by Monte Carlo simulations: Barrera-Esteve, C., Bergeret, F., Dossal, C., Gobet, E., Meziou, A., Munos, R. & Reboul- Salze, D: *Methodology and Computing in Applied Probability* (2006).

Mathematical model for the spot electricity price under an equivalent martingale measure Q:

$$dE(t) = \theta_1[\tilde{m}(t) - E(t^{-})] dt + \sigma(t)dW(t) + h(t^{-})\ln(J) dq(t)$$
 (1)

where

$$\widetilde{m}(t) = \frac{1}{\theta_1} D\mu(t) + \mu(t)$$
(2)

- *D* denotes the derivative with respect to time
- $\mu(t)$ is a deterministic function and drives the seasonal part of the process
- $heta_1$ is the speed of mean reversion of the diffusion part
- $\sigma(t)$ is the volatility of the diffusion part
- $\ln(J)$ defines the size of the jump
- W(t) is a Q-Brownian motion
- q(t) is a Poisson counter under Q, with intensity $\lambda_J(t) = \theta_2 s(t)$

A closer look at the jump part of the process

• The function h(t) is defined as

$$h(t) = \mathbf{1}_{\{E(t) < \mathcal{T}(t)\}} - \mathbf{1}_{\{E(t) \ge \mathcal{T}(t)\}}$$

- If at the time of a jump τ , $E(\tau^{-})$ is below the threshold $\mathcal{T}(\tau^{-})$, then h will be equal to 1, producing a jump in the upwards direction
- If $E(\tau^{-})$ is above the threshold, then h will be equal to -1, producing a downward directed jump
- $\mathcal{T}(t) = \mu(t) + \Delta$
- The function $\ln(J)$ defines the size of the jump and has density:

$$p(x,\theta_3,\psi) = \frac{\theta_3 e^{-\theta_3 x}}{1 - e^{-\theta_3 \psi}} \quad , \ 0 \le x \le \psi.$$
(3)

- $heta_3$ is a parameter ensuring that p is a probability density function
- ψ is the maximum jump size

Mean reversion and spikes in the Threshold Model

The solution of the model under Q

$$E(T) = D(t,T) + J(t,T)$$
(4)

where

$$D(t,T) = \mu(T) + \left(E(t) - \mu(t)\right)e^{-\theta_1(T-t)} + \int_t^T \sigma(y)e^{-\theta_1(T-y)} dW(y)$$
(5)

 and

$$J(t,T) = e^{-\theta_1 T} \sum_{i=1}^{N(T-t)} e^{\theta_1 \tau_i} h(\tau_i^-) [\ln J]_i$$
(6)

• Choose a particular measure derived from the market prices of futures contracts.

Approximation of the continuous-time process

- The time interval [t,T] is partitioned into n distinct subintervals using $n+1 \ {\rm knots} \ t_i$
- $t =: t_0 < t_1 < \dots < t_{n-1} < t_n := T$
- $t_{i+1} t_i = \delta t$, for all i
- Start by $\widetilde{E}(t_0) := E(t_0)$
- Construct an approximating process that tracks the original process in each sub-interval

• At most one jump allowed in each time interval

- At most one jump allowed in each time interval
- Size of the jump: the same as the size of the first jump of the continuoustime process

- At most one jump allowed in each time interval
- Size of the jump: the same as the size of the first jump of the continuoustime process
- Direction of the jump: Depends on the value of the underlying at the CENTER of the interval, if it moves SOLELY by mean-reversion from the beginning of the interval.

- At most one jump allowed in each time interval
- Size of the jump: the same as the size of the first jump of the continuoustime process
- Direction of the jump: Depends on the value of the underlying at the CENTER of the interval, if it moves SOLELY by mean-reversion from the beginning of the interval.
- Direction of jump in the original process: Depends on the value of the underlying at a RANDOM time within the interval, if it moves SOLELY by mean-reversion + noise from the beginning of the interval.

The jump part of the approximating process

• Jump part of the original process

$$J(t_{u-\kappa}, t_{u-\kappa+1}) = e^{-\theta_1 t_{u-\kappa+1}} \sum_{i=1}^{N[\Delta t(u-\kappa)]} e^{\theta_1 \tau_i} h(\tau_i^-) [\ln J]_i$$
(7)

• Jump part of the approximating process

$$\widetilde{J}(t_{m-\kappa}, t_{m-\kappa+1}) := e^{-\theta_1 t_{m-\kappa+1}} e^{\theta_1 (t_{m-\kappa} + (\delta t/2))} h'(t_{m-\kappa} + \frac{\delta t}{2}) \times [\ln J]_1 \mathbf{1}_{\{N[\Delta t(m-\kappa)] \ge 1\}}$$
(8)

• The function $h'(\alpha)$, for any $\alpha \in (t_{m-\kappa}, t_{m-\kappa+1}]$, is defined as:

$$h'(\alpha) := \mathbf{1}_{\{D_c(t_{m-\kappa},\alpha) < \mathcal{T}(\alpha)\}} - \mathbf{1}_{\{D_c(t_{m-\kappa},\alpha) \ge \mathcal{T}(\alpha)\}}$$
(9)

where $D_c(t_{m-\kappa}, \alpha)$ is defined as:

$$D_c(t_{m-\kappa},\alpha) = \mu(\alpha) + \left(\tilde{E}(t_{m-\kappa}) - \mu(t_{m-\kappa})\right) e^{-\theta_1(\alpha - t_{m-\kappa})}$$
(10)

9

The approximating process under Q

$$\widetilde{E}\Big[(t_i+\delta t)\,\big|\,\widetilde{E}(t_i)\Big] = \widetilde{D}\Big[(t_i,\ t_i+\delta t)\,\big|\,\widetilde{E}(t_i)\Big] + \widetilde{J}\Big[(t_i,\ t_i+\delta t)\,\big|\,\widetilde{E}(t_i)\Big] \quad (11)$$

where

$$\widetilde{D}\Big[(t_i, t_i + \delta t) \,\big|\, \widetilde{E}(t_i)\Big] = \mu(t_i + \delta t) + \Big(\widetilde{E}(t_i) - \mu(t_i)\Big) e^{-\theta_1 \delta t}$$

$$+ \sigma(t_i + \delta t) \ e^{-\theta_1(t_i + \delta t)} \int_{t_i}^{t_i + \delta t} e^{\theta_1 y} \ dW(y)$$
(12)

 and

$$\widetilde{J}\Big[(t_i, t_i + \delta t) \,\big|\, \widetilde{E}(t_i)\Big] = e^{-\theta_1 \frac{\delta t}{2}} \,h'(t_i + \frac{\delta t}{2}) \,[\ln J]_1 \,\mathbf{1}_{\{N[\Delta t(i)] \ge 1\}}$$
(13)

Density of the components of the approximating process

• normal distribution with calculable mean and variance for the process

$$\widetilde{D}\Big[(t_i, t_i + \delta t) \,\big|\, \widetilde{E}(t_i)\Big] = \mu(t_i + \delta t) + \Big(\widetilde{E}(t_i) - \mu(t_i)\Big) e^{-\theta_1 \delta t}$$

$$+ \sigma(t_i + \delta t) \ e^{- heta_1(t_i + \delta t)} \int_{t_i}^{t_i + \delta t} e^{ heta_1 y} \ dW(y)$$

• Conditional on the occurrence of at least one jump, the approximating jump process

$$\widetilde{J}\Big[(t_i, t_i + \delta t) \,\big|\, \widetilde{E}(t_i)\Big] = e^{-\theta_1 \frac{\delta t}{2}} h'(t_i + \frac{\delta t}{2}) \,[\ln J]_1 \,\mathbf{1}_{\{N[\Delta t(i)] \ge 1\}}$$
(14)

has a density given by

$$f_Y(y) = f_Xig(g^{-1}(y)ig) \; \left|rac{d}{dy}g^{-1}(y)
ight|$$

where $g(x) = h'(t_i + \frac{\delta t}{2})e^{-\theta_1\frac{\delta t}{2}} x$, and f_X is the density of the jump size.

Density of the approximating process

• Conditioning on an initial value $\widetilde{E}(t_i)$:

$$\widetilde{E}\Big[(t_i+\delta t)\,\big|\,\widetilde{E}(t_i)\Big] = \widetilde{D}\Big[(t_i,\,t_i+\delta t)\,\big|\,\widetilde{E}(t_i)\Big] + \widetilde{J}\Big[(t_i,\,t_i+\delta t)\,\big|\,\widetilde{E}(t_i)\Big]$$

- If no jump occurs then its density is defined from the density of

$$\widetilde{D}\Big[(t_i, t_i + \delta t) \mid \widetilde{E}(t_i)\Big]$$

If at least one jump occurs its density is defined by the *convolution* of the densities of

$$\widetilde{D}\Big[(t_i, t_i + \delta t) \mid \widetilde{E}(t_i)\Big]$$
$$\widetilde{J}\Big[(t_i, t_i + \delta t) \mid \widetilde{E}(t_i)\Big]$$

and

Discretization of the density of a stochastic process one time-step ahead

- The density is divided into sections
- The probability mass within a section is assigned to the transition probability from the starting node to the node in the middle of the section.
- A probability threshold Π prevents movements to sections with very low probability mass.

First step on the tree

Second step: A different conditional probability distribution

Third step: Mean reversion starts influencing the conditional distribution

Fourth step: Strong mean reversion pull

Some of the up movements have very low probability

Mean reversion: Only downward movements

Arrival probability

A full one-year grid, time changing parameters

A full one-year grid, time changing parameters, "filtering" on

22

Grid applications: European style options, time changing parameters

				$Strike = e^2$	$Strike = e^3$	$Strike = e^4$
Option	Parameter values		running			
matures on	at maturity	method	time (sec)	option price	option price	option price
	$\mu = 2.99$	Monte Carlo	40	13.77	1.93	0
31 Jan 2009	$\lambda_J = 0.0042$	Grid, all nodes included	0.8	13.76	1.95	0
	$\sigma = 1.3821$	Grid, filtering on	0.5	13.76	1.95	0
	$\mu = 3.65$	Monte Carlo	180	20.73	8.53	2.01
30 Apr 2009	$\lambda_J = 3.58$	Grid, all nodes included	10	20.75	8.51	2.06
	$\sigma = 1.4559$	Grid, filtering on	5.5	20.71	8.47	2.04
	2.05		050	04.10	00.10	
	$\mu = 3.25$	Monte Carlo	250	94.18	82.10	57.39
30 Jun 2009	$\lambda_J = 35.76$	Grid, all nodes included	24	93.86	81.49	57.23
	$\sigma = 1.5$	Grid, filtering on	13	93.80	81.43	57.19
	$\mu = 3.13$	Monte Carlo	325	35.75	23.36	11.01
31 Aug 2009	$\lambda_J = 12.52$	Grid, all nodes included	30	35.19	23.02	10.64
	$\sigma = 1.4410$	Grid, filtering on	17	35.16	22.99	10.63
	$\mu = 2.99$	Monte Carlo	430	12.30	1.36	0
31 Dec 2009	$\lambda_J = 0.0035$	Grid, all nodes included	37	12.31	1.35	0
	$\sigma = 1.3827$	Grid, filtering on	23	12.29	1.35	0

• Both methods: Optimal transaction decisions and prices needed for each combination of:

- Both methods: Optimal transaction decisions and prices needed for each combination of:
 - admissible cumulative volume,

- Both methods: Optimal transaction decisions and prices needed for each combination of:
 - admissible cumulative volume,
 - value of the underlying,

- Both methods: Optimal transaction decisions and prices needed for each combination of:
 - admissible cumulative volume,
 - value of the underlying,
 - time-step

- Both methods: Optimal transaction decisions and prices needed for each combination of:
 - admissible cumulative volume,
 - value of the underlying,
 - time-step
- Monte Carlo method (Longstaff Schwartz)

- Both methods: Optimal transaction decisions and prices needed for each combination of:
 - admissible cumulative volume,
 - value of the underlying,
 - time-step
- Monte Carlo method (Longstaff Schwartz)
 - possible values of the underlying are generated from $1,000\ {\rm paths}$

- Both methods: Optimal transaction decisions and prices needed for each combination of:
 - admissible cumulative volume,
 - value of the underlying,
 - time-step
- Monte Carlo method (Longstaff Schwartz)
 - possible values of the underlying are generated from $1,000\ {\rm paths}$
- Grid method

- Both methods: Optimal transaction decisions and prices needed for each combination of:
 - admissible cumulative volume,
 - value of the underlying,
 - time-step
- Monte Carlo method (Longstaff Schwartz)
 - possible values of the underlying are generated from 1,000 paths
- Grid method
 - Possible values of the underlying are represented by the nodes of the grid at each time-step (about 200 nodes)

Storage contract			parameters		Price	
Valuation date	Start date	End date	min	max	Grid	Monte Carlo
			$\mu = 2.99$	$\mu = 3.11$		
01-Jan-09	01-Jan-09	31-Mar-09	$\sigma = 1.38$	$\sigma = 1.43$	392.3	[375, 410]
			$\lambda_J = 10^{-4}$	$\lambda_J = 1.60$		
			$\mu = 3.18$	$\mu = 3.25$		
01-May-09	01-Jun-09	31-Jul-09	$\sigma = 1.46$	$\sigma = 1.5$	7214	[6972, 7736]
			$\lambda_J = 6.70$	$\lambda_J = 56$		

Storage contract			parameters		Price	
Valuation date	Start date	End date	min	max	Grid	Monte Carlo
			$\mu = 2.99$	$\mu = 3.11$		
01-Jan-09	01-Jan-09	31-Mar-09	$\sigma = 1.38$	$\sigma = 1.43$	392.3	[375, 410]
			$\lambda_J = 10^{-4}$	$\lambda_J = 1.60$]	
			$\mu = 3.18$	$\mu = 3.25$		
01-May-09	01-Jun-09	31-Jul-09	$\sigma = 1.46$	$\sigma = 1.5$	7214	[6972, 7736]
			$\lambda_J = 6.70$	$\lambda_J = 56$		

• A lot more paths are needed for the Monte Carlo method to produce smaller confidence intervals

Storage contract			parameters		Price	
Valuation date	Start date	End date	min	max	Grid	Monte Carlo
			$\mu = 2.99$	$\mu = 3.11$		
01-Jan-09	01-Jan-09	31-Mar-09	$\sigma = 1.38$	$\sigma = 1.43$	392.3	[375, 410]
			$\lambda_J = 10^{-4}$	$\lambda_J = 1.60$]	
			$\mu = 3.18$	$\mu = 3.25$		
01-May-09	01-Jun-09	31-Jul-09	$\sigma = 1.46$	$\sigma = 1.5$	7214	[6972, 7736]
			$\lambda_J = 6.70$	$\lambda_J = 56$		

- A lot more paths are needed for the Monte Carlo method to produce smaller confidence intervals
- For European options, 50,000 paths were needed in order to achieve narrow confidence intervals.

Storage contract			parameters		Price	
Valuation date	Start date	End date	min	max	Grid	Monte Carlo
			$\mu = 2.99$	$\mu = 3.11$		
01-Jan-09	01-Jan-09	31-Mar-09	$\sigma = 1.38$	$\sigma = 1.43$	392.3	[375, 410]
			$\lambda_J = 10^{-4}$	$\lambda_J = 1.60$		
			$\mu = 3.18$	$\mu = 3.25$		
01-May-09	01-Jun-09	31-Jul-09	$\sigma = 1.46$	$\sigma = 1.5$	7214	[6972, 7736]
			$\lambda_J = 6.70$	$\lambda_J = 56$		

- A lot more paths are needed for the Monte Carlo method to produce smaller confidence intervals
- For European options, 50,000 paths were needed in order to achieve narrow confidence intervals.
- For European options the grid method worked very well with only 200 nodes, without filtering.

Storage contract			parameters		Price	
Valuation date	Start date	End date	min	max	Grid	Monte Carlo
			$\mu = 2.99$	$\mu = 3.11$		
01-Jan-09	01-Jan-09	31-Mar-09	$\sigma = 1.38$	$\sigma = 1.43$	392.3	[375, 410]
			$\lambda_J = 10^{-4}$	$\lambda_J = 1.60$		
			$\mu = 3.18$	$\mu = 3.25$		
01-May-09	01-Jun-09	31-Jul-09	$\sigma = 1.46$	$\sigma = 1.5$	7214	[6972, 7736]
			$\lambda_J = 6.70$	$\lambda_J = 56$		

- A lot more paths are needed for the Monte Carlo method to produce smaller confidence intervals
- For European options, 50,000 paths were needed in order to achieve narrow confidence intervals.
- For European options the grid method worked very well with only 200 nodes, without filtering.
- The grid presents a very promising approach, achieving a good balance between accuracy and calculation time.

Thank you for your attention.