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Electricity Data and Mathematical
Price Models

What model for such a
behavior ?

6 years of data: AESO SP
prices (Alberta, Canada),
Apr. 7 2001 - Apr. 6 2007,
including electricity
demand.

Figure 1: Prices and demand in the Alberta
power market: 5 years from Apr-7-2001 to
Apr-6-2007, time in hours; a) prices, b) demand
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Simple Model, Complex Behaviour
A model that:

includes energy demand
in continuous time supports spikes without
jumps
has a rich phenomenology, as that seen in
data
has some microeconomic foundations
in discrete time belongs to a standard class of
models (SETARX) and preserves its continuous
time properties
is analyzed in a nonstandard way
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Data
Alberta (Canada) wholesale power market (now
also retail), a voluntary pool (not all energy is traded
here).

Data from AESO site:
1 energy prices in Canadian dollars
2 demand (load) in Megawatt-hour (MWh)

Players:
1 gencos
2 grid (Transmission System Operator, TSO):

AESO
3 Independent System Operator (ISO) and

Exchange: AESO
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Electricity Prices:
Spikes Have a Structure

Discrete i-time prices p̂i
available for each hour.

Hourly demand data is
available.

Spikes appear only
during demand crests,
but not always.

Figure 2: Alberta power market: one week from
Mon Jan-08-2007 to Sun Jan-14-2007, time in
hours; a) system prices in C$, b) demand in
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Spikes and Baseline

Spikes originate from a
first mean reversion
mechanism.

In their baselines, prices
follow smoothly the
demand daily seasonality
- a second mean
reversion type.

Figure 3: Alberta power market: one month
from Jan-1-2007 to Jan-31-2007, time in hours;
a) prices, b) demand
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Logprices and Antispikes

Prices p show spikes,
logprices x = log p show
spikes and antispikes,
with a mean reversion
similar to the spikes mean
reversion.

Logprices baseline has
yearly periodicity. Third
mean reversion type.

Figure 4: Alberta power market; a) one year of
prices, from hour 1 of Apr-07-2006 to hour 24
of Apr-07-2007; b) logprices, same scale; c)
detail of b): 3 weeks of logprices from hour 1 of
Aug-14 to hour 24 of Sep-3.
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Periodic Parossistic Phases

There are seasons in
which demand triggers
higher frequency spiking
(e.g. winter)

This is a second type of
seasonality: spikes don’t
change in structure but
become more frequent

Fourth mean reversion
type.

Figure 5: Prices and demand in the Alberta
power market: 5 years from Apr-7-2001 to
Apr-6-2007, time in hours; a) prices, b) demand
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Modelling Approaches

Top-down: the standard financial way.
Bottom-up: agents on networks.
Hybrid: take in consideration microeconomics,
use few degrees of freedom.
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Power Markets as Tight Markets
Features that make power markets different from
stock markets:

A Rigid Periodic demand d(t) drives prices p:
p = p(d(t))

Capacity constraints affect prices
Grid constraints affect prices
Anticipated constrained times are the best times
to game the system...

Being potentially constrained, the power market
sometimes becomes a tight market
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The Threshold

Technical constraints
introduce a threshold in
the price formation
mechanism

Below the threshold
prices react smoothly
to demand variations
Above the threshold
prices can react in a
non-smooth way. Figure 6: Threshold effects
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Some Stochastic Financial Models
Continuous-Time (from high frequency finance):

Jump-diffusion: compound Poisson, Lévy.
Nonlinear pure diffusion: Resonating Market
Models, Lucheroni 2007.

Discrete-Time (more natural, since data are
discrete):

ARX: driven linear autoregressions.
Switching ARX.
TARX: SETARX models for spikes and
antispikes Lucheroni 2010.
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SETARX Models

Discrete-Time
AR(M)X: Lhxi = xi−h, φM(L) = 1− . . .− φMLM

{
φM(L) xi = σ εi + di−1

Switching ARX: 2 regimes R, 1 threshold T{
φ2

I (L) xi = σ εi + di−1, u(i) ≥ T (R = I)
φ2

II(L) xi = σ εi + di−1, u(i) < T (R = II)

u(i) = U(xi)→ SETARX
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The McKean Oscillator
Discrete or continous-time. Two coupled nonlinear
diffusions x and y . 2 thresholds DL and DR, then 3
regimes. Forcing f . Noise ξ = dW/dt .

εẋ = gR(x ; a)− y
ẏ = x − γb y + b + f (t) + σ(d) ξ(t)

where gR(x ; DL,DR) = −βL(x + DL)− γ0DL, −∞ < x ≤ −DL (I)
γ0x , −DL < x < DR (II)

−βR(x − DR) + γ0DR, DR ≤ x < +∞ (III)
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f = 0: No Forcing

For forcing f = 0, no
seasonality is included.

Logprice x(t).

Price p(t) = ex(t).

Spikes with different
heights and widths,
springing from a constant
baseline mean reversion
level.

Figure 7: McKean model (from new form).
Parameters: ε = 0.3, d = 0.1, a = 1,
b = −0.5, γb = 1. a) logprice x(t) dynamics,
b) price p(t) = exp x(t) dynamics.
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McKean Oscillator at f = 0
Phase space
{x(t), y(t)}.

Nullclines:
x for ẋ = 0, y
for ẏ = 0.

Logprice x(t).

Auxiliary
coordinate y(t).

0 << ε < 1
(soft regime)
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Dynamically-Critical Points
The McKean model undergoes a subcritical Hopf
transition as b changes. Spikes can be formed close
to b2, subthreshold, as stochastic orbits.

Figure 8: FNS model, x dynamic range
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f 6= 0: SRS

Forcing f (t) = A sin(ωt),
to include daily baseline
seasonality.

Stochastically
resonating spiking -
SRS (second mean
reversion type).

Figure 9: McKean model. ε = 0.3, d = 0.1,
b = 0, γb = 1, A = 0.5, ω = π/2. a)
phase-space, b) logprice x(t), c) forcing f (t), d)
price.
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Movie: Resonating Power Market
Stable, unstable, metastable regions.
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Two Frequencies: Parossistic Phases

periodic ‘fountains’ of spikes
demand: only 2 frequencies (more can be
added), no trend
fourth mean reversion type

f (t) = u
(

v sin(
ωf

365
t) + sin(ωf t)

)
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Real and Simulated Series

Figure 10: Prices and demand in the Alberta
power market: 5 years from Apr-7-2001 to
Apr-6-2007, time in hours; a) prices, b)
demand.

Figure 11: Simulation of 6 years of power
market prices, extended model for ε = 0.15,
κ = 1, λ = 1, b = 0, γ = 1, ξ = 2, c = −1, f
with u = 2, v = 0.06, ωf = 4, d = 0.1,
∆t = 0.035; a) price process ; b) forcing: the
smaller yearly ωf /365 frequency modulates the
much higher daily ωf frequency, which cannot
be resolved in the picture.
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Antispikes: SAS McKean
Spike-AntiSpike McKean Model (SAS): 5 regimes
plus forcing (L for left, R for right).

εẋ = gSAS
R (x ; CL,CR)− y

ẏ = x − γb y + b + f (t) + σ(d) ξ(t)

where gSAS
R (x ; CL,CR) =

−αL(x + CL), −∞ < x ≤ −CL (I)
βL(x + CL), −CL < x < −DL = − βL

γ0+βL
CL (II)

−γ0x , −DL ≤ x ≤ DR = βR
γ0+βR

CR (III)
βR(x − DR), DR < x < CR (IV )
−αR(x − DR), CR ≤ x < +∞ (V )
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SAS McKean Dynamics

Figure 12: SAS McKean model phase-space
for f = 0. Other parameters: αL = αR = 1,
βL = βR = 1, γ0 = 1, CL = 1/2, CR = 3/2,
b = −1/2, γb = 1.

Figure 13: SAS McKean model for f 6= 0.
Parameters: ε = 0.3, s = 0.1, αL = αR = 1,
βL = βR = 1, γ0 = 1, CL = 1/2, CR = 3/2,
b = −1/2, γb = 1, A = 0.5, ω0 = π/2.
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Changes of Baseline



−βL(x + DL)− γ0DL + βLΣ(t),
−∞ < x ≤ −DL + Σ(t),
R = R1
γ0x − γ0Σ(t),
−DL + Σ(t) < x < DR + Σ(t),
R = R2
−βR(x − DR) + γ0DR + βRΣ(t),
DR + Σ(t) ≤ x < +∞,
R = R3.

Third mean reversion
type.

Figure 14: Floating McKean model for f = 0.
Parameters: ε = 0.5, s = 0.4, βL = 1, βR = 1,
γ0 = 1, DL = DR = ∆ = 1, b = 1, γb = 1,
As = 1, ωs = 2π/250, dt = 0.01. a) logprice
x(t) dynamics, b) regime dynamics, d) price
dynamics.
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Calibration for f = 0

L = −N − 1
2

ln(2πσ2/∆t)− ∆t
2σ2

N∑
n=2

(ΩR(n + 1,n))2 ;

ΩR(n + 1,n) =
3∑

i=1

ΩRi (n + 1,n)1I[x̂n ∈ Ri ];

ΩRi (n + 1,n) = εẑn+1 + εẑn(1− 1/∆t)+

A1
R(n) βL + A2

R(n) γ0 + A3
R(n) βR + A4

R(n) γb + A5
R(n) b;

CΘ = −V

Θ = {βL, γ0, βR, γb,b}; C j
k = (

N∑
n=2

Ak
RAj

R);

V j = (εẑn+1 + εẑn(1− 1/∆t))
N∑

n=2

Aj
R(n)
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Summary 1

The model set includes complex mean reversion
for:

1 spikes and antispikes (Hopf bifurcations)
2 baseline prices daily periodicity (forcing at daily

frequency)
3 baseline prices yearly seasonality (rigid

displacement)
4 frequency seasonality (second lower frequency

in forcing)
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Summary 2
A model for prices of spot power markets is
discussed, that

takes into account fundamental market
microeconomic features
incorporates naturally an intrinsic threshold
uses a single mechanism to model short and
long term mean reversion
exploits critical point analysis
uses only one source of noise
can be easily calibrated at hour scales
consists actually of a set of models
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Thank you

The most exciting phrase to hear in Science is not
“Eureka”, but “That’s funny” !

Isaac Asimov
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