On Clearing Coupled Day-Ahead Electricity Markets

Johannes C. Müller
Johannes.Mueller@math.uni-erlangen.de

joint work with
Alexander Martin
Sebastian Pokutta

Oct 2010

Friedrich-Alexander-Universität Erlangen-Nürnberg
Electricity Markets

Mixed Integer Quadratic Programm
- Maximization of the Economic Surplus
- Optimality Conditions
- Block Price Condition

Algorithms
- Fast Heuristic
- Exact Algorithm

Results
Day-Ahead Electricity Auctions

Day-Ahead Auction

1. collect demand and supply orders for the following day
2. start auction
 • maximize economic surplus
 • accept/reject orders
 • find clearing price
3. return execution schedule for the following day

Infrastructure

• Market Areas
• Interconnectors
Day-Ahead Electricity Auctions

Day-Ahead Auction

1. collect demand and supply orders for the following day
2. start auction
 • maximize economic surplus
 • accept/reject orders
 • find clearing price
3. return execution schedule for the following day

Infrastructure

- Market Areas
- Interconnectors
Basic elements of energy markets

Bids / Orders are characterized by

- quantity (demand/supply, area, hour)
- price limit
- allow partial execution (yes/no)

Order Types

- Hourly Bids
- Block Bids
- Flexible Bids
Basic elements of energy markets

Bids / Orders are characterized by

- quantity (demand/supply, area, hour)
- price limit
- allow partial execution (yes/no)

Order Types

- Hourly Bids
- Block Bids
- Flexible Bids
Hourly Bids

Aggregation of hourly bid curves provides
- one hourly net curve per area and hour
- bid curve trading quantities depending on the price
- downward sloping curves
Block Bids

A block bid allows for

- trading electricity in several hours
- using only one price limit for all hours:
 \[(\text{net gain}) < 0 \implies \text{don’t execute}\]
Flexible Bids

Flexible bids allow for

- trading electricity without defining the delivery hour
- using a limit price to avoid a loss

\[(\text{gain in hour } t) < 0 \implies \text{don’t execute in hour } t\]
Interconnectors

Function of Interconnectors

- balance net demand of adjacent areas
- harmonize prices

Transmission Constraints

- Available Transmission Capacity (ATC): *limits the flow*
- Ramp Rate: *limits the change of flow*
Interconnectors

Function of Interconnectors

- balance net demand of adjacent areas
- harmonize prices

Transmission Constraints

- Available Transmission Capacity (ATC): *limits the flow*
- Ramp Rate: *limits the change of flow*
Maximization of the Economic Surplus, subject to Transmission Constraints: Overview

\[
\begin{align*}
\max & \quad \sum_{h \in H} \Delta q_h \int_{0}^{\delta_h} p_h(u) \, du + \sum_{b \in B, t \in T} p_b q_b, t \beta_b + K \\
\text{s.t.} & \quad \forall a \in A, t \in T : \sum_{h \in H_a, t} \Delta q_h \delta_h + \sum_{b \in B_a} q_b, t \beta_b = \sum_{c \in C_a^-} \tau_{c, t} - \sum_{c \in C_a^+} \tau_{c, t} \\
& \quad \forall c \in C, t \in T : \tau_{c, t} \leq \tau_{c, t} \leq \bar{\tau}_{c, t} \\
& \quad \forall c \in C, t \in T : -\bar{\tau}_c \leq \tau_{c, t} - \tau_{c, t-1} \leq \bar{\tau}_c \\
& \quad \forall c \in C, t \in T : \tau_{c, t} \in \mathbb{R} \\
& \quad \forall h \in H : \delta_h \in [0, 1] \\
& \quad \forall b \in B : \beta_b \in \{0, 1\}
\end{align*}
\]
Mixed Integer Quadratic Programm

Objective: Economic Surplus

\[
\max \sum_{h \in H} \Delta q_h \int_{0}^{\delta_h} p_h(u) \, du + \sum_{b \in B, t \in T} p_b q_{b,t} \beta_b + K
\]

Notation:

\(\beta_b \in \{0, 1\} \) execution state of block bid \(b \in B \)

\(p_b, q_{b,t} \) price limit; net demand of block \(b \in B \) in hour \(t \in T \)

\(\delta_h \in [0, 1] \) execution state of hourly net curve segment \(h \in H \)

\(p_h(u) \) parametrization of the price of curve segment \(h \in H \)
Mixed Integer Quadratic Programm

Constraints:

1. net demand = net import:

\[\forall a \in A, t \in T \sum_{h \in H_{a,t}} \Delta q_{h} \delta_{h} + \sum_{b \in B_{a}} q_{b,t} \beta_{b} = \sum_{c \in C_{a}^{-}} \tau_{c,t} - \sum_{c \in C_{a}^{+}} \tau_{c,t} \]

2. ATC:

\[\forall c \in C, t \in T \tau_{c,t} \leq \tau_{c,t} \leq \bar{\tau}_{c,t} \]

3. ramp rate:

\[\forall c \in C, t \in T - \bar{\tau}_{c} \leq \tau_{c,t} - \tau_{c,t-1} \leq \bar{\tau}_{c} \]

Notation:

- \(\tau_{c,t} \in \mathbb{R} \): transmission on connector \(c \in C \), hour \(t \in T \)
- \(h \in H_{a,t} \): net curve segments in area \(a \in A \), hour \(t \in T \)
- \(b \in B_{a} \): block bids in area \(a \)
- \(c \in C_{a}^{+} \): connectors leaving area \(a \)
Mixed Integer Quadratic Program

Constraints:

1. net demand = net import:
 \[\forall a \in A, t \in T \quad \sum_{h \in H_{a,t}} \Delta q_h \delta_h + \sum_{b \in B_a} q_{b,t} \beta_b = \sum_{c \in C_a^-} \tau_{c,t} - \sum_{c \in C_a^+} \tau_{c,t} \]

2. ATC:
 \[\forall c \in C, t \in T \quad \bar{\tau}_{c,t} \leq \tau_{c,t} \leq \overline{\tau}_{c,t} \]

3. ramp rate:
 \[\forall c \in C, t \in T \quad -\tilde{\tau}_c \leq \tau_{c,t} - \tau_{c,t-1} \leq \tilde{\tau}_c \]

Notation:

- \(\tau_{c,t} \in \mathbb{R} \): transmission on connector \(c \in C \), hour \(t \in T \)
- \(h \in H_{a,t} \): net curve segments in area \(a \in A \), hour \(t \in T \)
- \(b \in B_a \): block bids in area \(a \)
- \(c \in C_a^+ \): connectors leaving area \(a \)
Mixed Integer Quadratic Programme

Constraints:

1. net demand = net import:

\[\forall a \in A, t \in T \quad \sum_{h \in H_a,t} \Delta q_h \delta_h + \sum_{b \in B_a} q_{b,t} \beta_b = \sum_{c \in C_a^-} \tau_{c,t} - \sum_{c \in C_a^+} \tau_{c,t} \]

2. ATC:

\[\forall c \in C, t \in T \quad \tau_{c,t} \leq \tau_{c,t} \leq \bar{\tau}_{c,t} \]

3. ramp rate:

\[\forall c \in C, t \in T \quad -\bar{\tau}_c \leq \tau_{c,t} - \tau_{c,t-1} \leq \bar{\tau}_c \]

Notation:

- \(\tau_{c,t} \in \mathbb{R} \) transmission on connector \(c \in C \), hour \(t \in T \)
- \(h \in H_{a,t} \) net curve segments in area \(a \in A \), hour \(t \in T \)
- \(b \in B_a \) block bids in area \(a \)
- \(c \in C_a^+ \) connectors leaving area \(a \)
Optimality Conditions

Optimal solution to (MIQP) can be computed with MIQP solvers (e.g. IBM CPLEX 12.1)

Analyze optimal solution:

- fix the combinatorial bid selection
- apply Karush-Kuhn-Tucker-Condition for QPs (cf. [1])
- obtain dual variables, also called shadow prices

Shadow Prices π to (MIQP) satisfy (cf. [3])

- Filling Condition
- Flow Price Condition
Optimality Conditions

Optimal solution to (MIQP) can be computed with MIQP solvers (e.g. IBM CPLEX 12.1)

Analyze optimal solution:

- fix the combinatorial bid selection
- apply Karush-Kuhn-Tucker-Condition for QPs (cf. [1])
- obtain dual variables, also called shadow prices

Shadow Prices π to (MIQP) satisfy (cf. [3])

- Filling Condition
- Flow Price Condition
Filling Condition

Price change is linear in the partial execution of the active segment:

Filling condition is satisfied, if for all segments $h \in H_{a,t}$ in area a, hour t

$$\pi_{a,t} \begin{cases} \leq p_h(\delta_h), & \text{if } \delta_h = 1 \\ = p_h(\delta_h), & \text{if } \delta_h \in (0, 1) \\ \geq p_h(\delta_h), & \text{if } \delta_h = 0 \end{cases}$$ \hspace{1cm} (1)
Flow Price Condition

For adjacent areas it holds:
- Prices deviate \Rightarrow a transmission constraint is active.
- No active transmission constraint \Rightarrow prices coincide.

(π, τ) satisfies simplified flow price condition, if for all connectors $c = (r, s)$, hours t

$$\pi_{r,t} \neq \pi_{s,t} \Rightarrow \begin{cases} \tau_{c,t} \in \{\tau_{c,t} - \tau_{c,t-1}, \tau_{c,t+1} - \tau_{c,t}\} & \text{active ATC} \\ \vee |\tau_{c,t} - \tau_{c,t-1}| = \tilde{\tau}_c & \text{active ramping} \\ \vee |\tau_{c,t} - \tau_{c,t+1}| = \tilde{\tau}_c & \text{active ramping} \end{cases}$$
Block Price Condition

Block can be executed, if it does not incur a loss.

\[\forall a \in A, b \in B_a : \quad \beta_b = 1 \quad \Rightarrow \quad \sum_{t \in T} (p_b - \pi_{a,t}) q_{b,t} \geq 0. \]

Notation:

- \(\pi_{a,t} \) price in area \(a \), time \(t \)
- \(\beta_b \) execution state of block \(b \in B_a \) in area \(a \)
- \(p_b, q_{b,t} \) price limit; net demand in hour \(t \in T \)

Optimal Solution to (MIQP)

For an optimal bid selection \(\beta^* \) of (MIQP) the existence of shadow prices that satisfy all block price conditions is not given.
Block Price Condition

Block can be executed, if it does not incur a loss.

\[\forall a \in A, b \in B_a : \beta_b = 1 \implies \sum_{t \in T} (p_b - \pi_{a,t}) q_{b,t} \geq 0. \]

Notation:

- \(\pi_{a,t} \) price in area \(a \), time \(t \)
- \(\beta_b \) execution state of block \(b \in B_a \) in area \(a \)
- \(p_b, q_{b,t} \) price limit; net demand in hour \(t \in T \)

Optimal Solution to (MIQP)

For an optimal bid selection \(\beta^* \) of (MIQP) the existence of shadow prices that satisfy all block price conditions is not given.
Infeasibility Cut: Bid Cut

Given: bid selection β^*

Assume: no shadow prices exist, satisfying all block price conditions. Define the following cut:

Bid Cut

L: executed blocks incurring a loss at prices π^*.

$$L = \{ b \in B \mid \beta^*_b = 1 \text{ and } \sum_{t \in T} (p_b - \pi^*_{a,t})q_{b,t} < 0 \}$$

Cut (L): prohibits execution of at least one bid of L.

$$\text{Cut}(L) : \sum_{b \in L} \beta_b \leq |L| - 1.$$
Infeasibility Cut: Bid Cut

Given: bid selection β^*

Assume: no shadow prices exist, satisfying all block price conditions. Define the following cut:

Bid Cut

L: executed blocks incurring a loss at prices π^*.

$$L = \{ b \in B \mid \beta_b^* = 1 \text{ and } \sum_{t \in T} (p_b - \pi_{a,t}^*) q_{b,t} < 0 \}$$,

$\text{Cut}(L)$: prohibits execution of at least one bid of L.

$$\text{Cut}(L) : \sum_{b \in L} \beta_b \leq |L| - 1.$$
Bid Cut Heuristic

Algorithm:

1. \((\beta^*, \delta^*, \tau^*) \leftarrow \text{Solve (MIQP)}.\)
2. \((\pi^*, L) \leftarrow \text{Find shadow prices for } (\beta^*, \delta^*, \tau^*).\)
3. \text{if } |L| > 0, \text{ then}
4. \quad \text{Add Cut}(L) \text{ to the model (MIQP).}
5. \quad \text{Go to step 1.}
6. \text{end if}
Bid Cut Heuristic

Algorithm:

1. \((\beta^*, \delta^*, \tau^*) \leftarrow \text{Solve (MIQP)}\).
2. \((\pi^*, L) \leftarrow \text{Find shadow prices for } (\beta^*, \delta^*, \tau^*)\).
3. \text{if } |L| > 0, \text{ then}
4. \quad \text{Add Cut}(L) \text{ to the model (MIQP)}.
5. \quad \text{Go to step 1.}
6. \text{end if}
Bid Cut Heuristic

Algorithm:

1. \((\beta^*, \delta^*, \tau^*) \leftarrow \text{Solve (MIQP)}.\)
2. \((\pi^*, L) \leftarrow \text{Find shadow prices for } (\beta^*, \delta^*, \tau^*).\)
3. \text{if } |L| > 0, \text{ then}
4. \quad \text{Add Cut}(L) \text{ to the model (MIQP).}
5. \quad \text{Go to step 1.}
6. \text{end if}
Bid Cut Heuristic, Discussion

(+): Fast Algorithm (4 seconds for 10 market areas)

(+): Good Relative Gap (1.926×10^{-6})

(o): Bid Cut slightly to strong

(o): Not Optimal in pathological cases (4% of the cases)
Branch-and-Cut Decomposition

Replace Bid Cut by a less restrictive Cut:

Exact Bid Cut (cf. [2])

Exclude only one infeasible bid selection β^*:

$$\text{Cut}(\beta^*) : \sum_{b \in B: \beta_b^* = 0} \beta_b + \sum_{b \in B: \beta_b^* = 1} (1 - \beta_b) \geq 1$$

Improved version:
Branching over the Bid Cut
Branch-and-Cut Decomposition

Replace Bid Cut by a less restrictive Cut:

Exact Bid Cut (cf. [2])

Exclude only one infeasible bid selection β^*:

$$\text{Cut}(\beta^*) : \sum_{b \in B : \beta_b^* = 0} \beta_b + \sum_{b \in B : \beta_b^* = 1} (1 - \beta_b) \geq 1$$

Improved version:
Branching over the Bid Cut
Branch-and-Cut Decomposition, Discussion

(+) Optimal Algorithm
(+) Good Relative Gap (1.924×10^{-6})
(o) Slight improvement of Relative Gap (0.002×10^{-6})
(−) Exact Bid Cut not strong enough
(−) Slow (≥ 10 minutes in 62% of the cases)
Results

79 realistic test cases:
10 market areas, ca. 600 blocks, ca. 31,700 curve segments

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Optimal Bid Selection</th>
<th>Relative Gap</th>
<th>Computing Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bid Cut Heuristic</td>
<td>$\geq 38%$</td>
<td>1.926E-6</td>
<td>≈ 4.1 sec</td>
</tr>
<tr>
<td>B&C Decomposition</td>
<td>$\geq 38%$</td>
<td>1.924E-6</td>
<td>≥ 10 min</td>
</tr>
</tbody>
</table>

Optimal bid selection: relative gap $\leq 1 \times 10^{-12}$ within 10 minutes
Thank you for your attention!
References

