

Components of the Forward Premium in Electricity

Christian Redl¹ and Derek W. Bunn²

¹Energy Economics Group, Vienna University of Technology ²Energy Markets Group, London Business School

Energy Finance / INREC 2010, Essen, 7 October 2010

AGENDA

- 1. Introduction: Economic theory; Data
- 2. Realised month-ahead forward premia
- 3. Multifactor Propositional Framework
- 4. Modelling of the month-ahead forward premium
- 5. Conclusions

(1) Introduction

Theories on futures pricing:

o Theory of storage for storable commodities:

$$F_{t,T} = S_t e^{(r+s-cy)(T-t)}$$

- Electricity is not storable \rightarrow Keynes (1930) relates *futures prices* $F_{(t,T)}$ to *expected spot prices* $E_t(S_{(T)})$ and a *risk premium*
 - $\circ~~E_t(S_{(T)})$ are (?) built on expectations of fundamental market conditions during delivery
 - Translated to forward prices by applying risk or forward premia (compensation for price risks)
 - Discounted to account for opportunity costs
- *Ex post forward premium* key variable assessed in the (empirical) literature:

$$F_{t,T} - S_T = \underbrace{F_{t,T} - E_t(S_T)}_{T} + \underbrace{E_t(S_T) - S_T}_{T} = e^{e} FP_{t,T} + \varepsilon_{t,T}$$

 Ex post premium equals *ex ante premium* plus *random error* of (rational) price forecast

(1) Introduction: Motivation

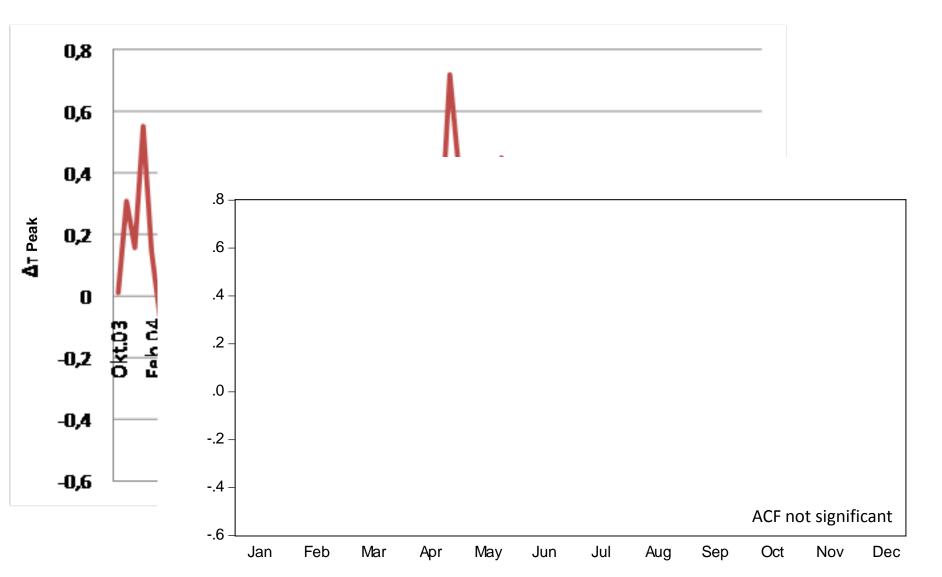
- Trading volume significantly higher than physical demand
- o Questions of *efficiency and determinants* of realised premia arise
- Resulting *transaction costs* (i.e. premia) may *erode* some of the *potential benefits* of forward markets (risk management, potential greater competitive behaviour on spots)
- Our *analysis* focuses on *month-ahead futures*:
 - Most liquid contract and most price data available
 - Due to shorter and subsequent delivery period forecast errors lowest
 - Prices on the last trading day are considered
 - Monthly averaging of futures prices yields autocorrelation in residuals
 - Considering full price history of a specific contract: Results may not be robust due to the increased time to delivery – and lack of trading;
 - Lacking fundamental data on a daily basis (e.g. reserve margin)

(1) Introduction: Aim of analysis

- Aim to provide more complete multi-factor analysis of empirical determinants of forward premium
 - Literature focuses on risk aversion (variance, skewness) and shocks in generation (hydro) and demand
 - We assess forward pricing at the biggest regional European power market: the Western European power market. Leading power exchange: *EEX*, Germany.
- Two main streams of *equilibrium modeling* of forward markets:
 - Risk aversion in a competitive market environment; *Bessembinder and Lemmon (2002)*: Result depends on utility function, price process and second order Taylor series expansion: VAR (-) and SKEW (+) determine forward premium;
 - Strategic effects of contracts in oligopolistic risk neutral environment; *Allaz ('92), Allaz & Villa ('93)*: Cournot producers end up short on forward market and prices decrease
 - \circ Pro-competitive effect of forward markets
 - Both issues not resolved by empirical literature
 - Our aim to give further insights

(2) Realised month-ahead forward premia

• Relative ex-post difference between forward prices in the trading period and spot prices in the delivery period (%-forward premia):


$$\Delta_T = \frac{F_{T-1,T} - S_T}{S_T}$$

(40,1102 to 4,1140)	EEX				
(10/'03 to 1/'10)	Base	load	Peak load		
	Monthly average	Last trading day	Monthly average	Last trading day	
Mean	9%	5%	12%	7%	
Standard dev.	21%	15%	26%	20%	
Minimum	-38%	-38%	-50%	-50%	
Maximum	87%	65%	98%	72%	
Skewness	0.79	0.47	0.58	0.24	
Kurtosis	4.88	5.47	3.98	4.80	
t-statistic	3.66*	2.96*	4.04*	3.16*	

(2) Realised month-ahead forward premia

(3) Multifactor Propositional Framework

- (Realised) forward premia affected by market assessment and corresponding risk behaviour
 - Stochastics of spot price (caused by convex supply function and inelastic demand)
 - o Fundamentals (electricity derived commodity)
 - Fuel prices (and corresponding hedging decisions)
 - Scarcity in supply system
 - Behavioural biases (e.g. adaptive heuristics, anchoring)
 - Market power in forward premium (highly concentrated industry)
 - Shocks (Distinction between effects on forward price and shocks to spot drivers)
- Taxonomy of forward premia determinants:
 - Fundamental influences
 - o Behavioral effects
 - Market conduct
 - o Dynamic effects
 - Shock effects

(3) Multifactor Propositional Framework

- Taxonomy of forward premia determinants and corresponding propositions:
 - Fundamental influences:
 - o Fuels and their risk premia (gas): Increases in gas premia increase electricity premia
 - o <u>Scarcity</u>: Negative relationship between observed margin and forward premium
 - Behavioural effects:
 - We postulate adaptive/myopic expectation formation w.r.t. risk/market assessments
 - <u>Higher moments:</u> VAR(+)/SKEW(+)/KURT(+) are of importance for risk assessment of market actors
 - o Spikes: Forward premium increases due to spikes in the spot market
 - o Oil market volatility: Oil market volatility increases electricity premium
 - Market conduct:
 - o Market power: Exercise of spot market power positively affects premium
 - **Dynamic effects:**
 - \circ <u>Basis:</u> Increasing basis increases forward premium
 - Shock effects: Margin shocks positively influence forward premium

(3) Multifactor Propositional Framework

o Summary of forward premia determinants:

λŧ		Effect on forward premium	Proxy variable
ng day	Fundamentals*	•	•
radii	Premia in fuels	+	Month ahead gas forward premium
rd t	Scarcity	-	Reserve margin: Ratio generation/consumption in the regional market
forwa	Behavioural effects*		
uo s	Variance	+	Coefficient of variation of spot price
ants	Skewness	+	Skewness of spot price
ticip	Kurtosis	+	Kurtosis of spot price
part	Spikes	+	Count spikes outside 1, 1.5, 2, 2.5, 3 standard deviations of mean spot
rket	Oil volatility	+	Coefficient of variation of Brent oil spot price
Observable for market participants on forward trading	<i>Conduct*</i> Spot market power	+	Fundamental cost mark up estimate for regional spot market
ervable	Dynamics*	I	
bsdC	Basis	+	Difference of forward price and spot price average in trading month
0	Shocks		
	Margin shocks	+	Change in supply margin during delivery month

(4) Modelling of the month-ahead forward premium

• Base load:

$F_{t,T} - S_T$	$b_1 = b_1 + b_2$	$b_2 c_v(S_t) +$	$b_3 c_v (Bren$	$nt_t) + b_4 F_1$	$P_{Gas,t-1,t} + b_5 N$	$A \arg in_t +$	$-b_6Basis_t$
-----------------	-------------------	------------------	-----------------	-------------------	-------------------------	-----------------	---------------

$+b_7M$	$\arg in_T$	$+ \mathcal{E}_{t,T}$
---------	-------------	-----------------------

*, **, *** denotes significance on the 10%, 5% and 1%-level

Coefficient	Variable	Baseload	Elasticity
b_1	Constant	9.06 (.18)	
b_2	Coeff. of var. (Spot _t)	26.77 (5.00)***	4
b ₃	Coeff. of var. (Brent _t)	97.47 (3.54)***	2.4
b ₄	Forward premium gas t	0.26 (1.51)	
b ₅	Margin t	-238.73 (-2.60)**	
b ₆	Basis t	0.39 (2.77)***	0.4
<u>b</u> ₇	Margin T	220.92 (2.89)***	
$R^2 (R^2_{corr})$		0.30 (0.23)	
DW		1.99	
F-statistic		4.73	
Serial correlation	χ^2_{12} (p-value)	0.231	
Functional form	χ^2_1 (p-value)	0.691	
Normality	JB (p-value)	0.000	
Heteroscedasticity	χ^{2}_{6} (p-value)	0.361	
Observations		74; 11/03-12/09	

(4) Modelling of the month-ahead forward premium

 $\circ \text{ Peak load:} F_{t,T} - S_T = b_1 + b_2 Skew(S_t) + b_3 Spike_{2sd,t} + b_4 FP_{Gas,t-1,t} + b_5 Marketpower_t + b_6 Basis_t$

 $+b_7 Basis_t + b_8 M \arg in_T + \varepsilon_{t,T}$

*, **, *** denotes significance on the 10%, 5% and 1%-level

Coefficient	Coefficient Variable		Elasticity
b ₁	Constant	86.00 (0.44)	
b ₂	Skew spot t	2.84 (2.11)**	0.4
b ₃	Spike spot 2sd t	-4.98 (-2.06)**	
b ₄	Forward premium gas t	1.18 (3.02)***	0.15
b ₅	Market power spot t	20.99 (3.86)***	0.9
b ₆	Margin t	-459.33 (-2.62)**	
b ₇	Basis t	0.39 (2.87)***	0.3
<u>b₈</u>	Margin T	379.38 (2.89)***	
$R^2 (R^2_{corr})$		0.25 (0.17)	
DW		1.96	
F-statistic		3.18	
Serial correlation	χ^2_{12} (p-value)	0.483	
Functional form	χ^2_1 (p-value)	0.285	
Normality	JB (p-value)	0.000	
Heteroscedasticity	χ^2_7 (p-value)	0.668	
Observations		74; 11/03-12/09	

(5) Conclusions

• Multifactor analysis of electricity forward premia determinants shows several new effects:

- Ex post nature of analysis is controlled by (significant) margin shock
- As derived commodity electricity translates fair amount of underlying fuel's market price of risk
- o As part of energy commodity bundle, oil sentiments spill over
- Market concentration has double effect on prices
 - $\circ\,$ Besides potential effect on spot prices it increases forward premium
 - Forward may make spot more competitive though compensated through premium
- Significant effects of scarcity, spot vola and skewness → Consistent with risk aversion
- Premium complex function of fundamental, behavioural, dynamic, market conduct, shock components
- o Analysis in terms of stochastic properties of spots is oversimplification
- o Market concentration translates market power effects into premium
 - Market monitoring implications since forwards have been considered procompetitive
- Reserve margin plays crucial role → Reduction implies double hit for consumers
- o Premia should be considered key elements of transaction cost view of market efficiency

Thank you for your attention!

For questions / remarks etc. ...

- Email: redl@eeg.tuwien.ac.at
- Tel.: +43-1-58801-37361