< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Risk-Neutral Pricing of Financial Instruments in Emission Markets

Daniel C. Schwarz¹

University of Oxford and Oxford-Man Institute

Conference Energy Finance / INREC 2010 Essen, 07 October 2010

¹Joint work with Sam Howison.

Introduction

rom Electricity to CO₂ Emissions

Allowance Pricing

Option Pricing

Conclusion

Introduction

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Need for Emission Reduction

Which Policy Options Should we Use?

Aim is to reduce emission of atmospheric gases such as carbon dioxide, methane, ozone and water vapour.

Different policy options:

- Emission norm (direct regulation),
- Emission tax (market based),
- Emissions trading (market based).

The Need for Emission Reduction

Which Policy Options Should we Use?

Aim is to reduce emission of atmospheric gases such as carbon dioxide, methane, ozone and water vapour.

Different policy options:

- Emission norm (direct regulation),
- Emission tax (market based),
- Emissions trading (market based).

Realisation of emission target?

		Yes	No
Cost	Yes	Emissions trading	Emission Tax
minimisation?	No	Emission cap	-

Conclusion

The Need for Emission Reduction

Which Policy Options Should we Use?

Aim is to reduce emission of atmospheric gases such as carbon dioxide, methane, ozone and water vapour.

Different policy options:

- Emission norm (direct regulation),
- Emission tax (market based),
- Emissions trading (market based).

Realisation of emission target?

		Yes	No
Cost	Yes	Emissions trading	Emission Tax
minimisation?	No	Emission cap	-

Emissions Trading

How Does it Work?

For each country that participates in an emissions trading scheme

- Impose binding limit (*cap*) on the cumulative emissions during one year (*compliance period*) and penalise excess emissions (monetary *penalty*).
- Divide cap into equal amounts, which define one unit (AAU).
- Print paper certificates (*allowances*) representing one AAU and distribute to firms (*initial allocation*).
- Trade allowances.

Emissions Trading

How Does it Work?

For each country that participates in an emissions trading scheme

- Impose binding limit (*cap*) on the cumulative emissions during one year (*compliance period*) and penalise excess emissions (monetary *penalty*).
- Divide cap into equal amounts, which define one unit (AAU).
- Print paper certificates (*allowances*) representing one AAU and distribute to firms (*initial allocation*).
- Trade allowances.
- \hookrightarrow Leads to a liquid market and price formation.

Modelling Approaches

Full equilibrium models:

- 1. R. Carmona et al., Market design for emission trading schemes, 2009
- 2. R. Carmona et al., Optimal stochastic control and carbon price formation, 2009

Purely risk-neutral models:

- 1. R. Carmona et al., Risk-neutral models for emission allowance prices and option valuation, 2010.
- 2. K. Borovkov et al., Jump-diffusion modelling in emission markets, 2010.
- 3. J. Hinz et al., On fair pricing of emission-related derivatives, 2010.

Hybrid approach:

- 1. M. Coulon, Modelling Price Dynamics Through Fundamental Drivers in Electricity and Other Energy Markets, 2009
- 2. S. Howison and D. Schwarz, Risk-neutral pricing of financial instruments in emission markets, 2010.

Modelling Approaches

Full equilibrium models:

- 1. R. Carmona et al., Market design for emission trading schemes, 2009
- 2. R. Carmona et al., Optimal stochastic control and carbon price formation, 2009 Purely risk-neutral models:

1. R. Carmona et al., Risk-neutral models for emission allowance prices and option

- R. Carmona et al., Risk-neutral models for emission allowance prices and option valuation, 2010.
- 2. K. Borovkov et al., Jump-diffusion modelling in emission markets, 2010.
- 3. J. Hinz et al., On fair pricing of emission-related derivatives, 2010.

Hybrid approach:

- 1. M. Coulon, Modelling Price Dynamics Through Fundamental Drivers in Electricity and Other Energy Markets, 2009
- 2. S. Howison and D. Schwarz, Risk-neutral pricing of financial instruments in emission markets, 2010.

Aim: to explain the price of allowances and of derivatives written on them as a function of demand for a pollution-causing good and cumulative emissions . Introduction

From Electricity to CO₂ Emissions

Conclusion

From Electricity to CO₂ Emissions

Conclusion

Market Setup

Introducing the Key Drivers of the Pricing Model

- [0, *T*] finite time interval
- $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P}) \longrightarrow (\mathcal{F}_t)$ generated by $(W_t) \in \mathbb{R}^2$
- (ξ_t) aggregate supply of electricity $(0 \le \xi_t \le \xi_{max})$
- (D_t) aggregate demand for electricity $(0 \le D_t \le \xi_{\max})$ Walrasian equilibrium assumption,

$$D_t = \xi_t.$$

- (E_t) cumulative emissions up to time t
- (A_t) allowance certificate price

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Bid- and Emissions Stack

Price Setting and Emission Measurement in Electricity Markets

Assumption

The market administrator arranges generators' bids in increasing order of price (merit order).

The Bid- and Emissions Stack

Price Setting and Emission Measurement in Electricity Markets

Assumption

The market administrator arranges generators' bids in increasing order of price (merit order).

Definition

The **business-as-usual bid stack** is given by $b^{BAU} : [0, \xi_{max}] \rightarrow \mathbb{R}_+$,

$$\frac{\mathrm{d}\boldsymbol{b}^{\mathsf{BAU}}}{\mathrm{d}\boldsymbol{\xi}}(\boldsymbol{\xi}) > \mathbf{0}.$$

▶ Bid Stack

The Bid- and Emissions Stack

Price Setting and Emission Measurement in Electricity Markets

Assumption

The market administrator arranges generators' bids in increasing order of price (merit order).

Definition

The **business-as-usual bid stack** is given by $b^{BAU} : [0, \xi_{max}] \rightarrow \mathbb{R}_+$,

$$\frac{\mathrm{d}\boldsymbol{b}^{\mathsf{BAU}}}{\mathrm{d}\boldsymbol{\xi}}(\boldsymbol{\xi}) > \mathbf{0}.$$

▶ Bid Stack

 \hookrightarrow Allows us to deduce the generation order.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Bid- and Emissions Stack

Price Setting and Emission Measurement in Electricity Markets

Definition

The marginal emissions stack is given by $e : [0, \xi_{max}] \to \mathbb{R}_+$.

Assume that e has at most a finite number of minima and maxima.

Emissions Stack

The Bid- and Emissions Stack

Price Setting and Emission Measurement in Electricity Markets

Definition

The marginal emissions stack is given by $e : [0, \xi_{max}] \to \mathbb{R}_+$.

Assume that e has at most a finite number of minima and maxima.

Emissions Stack

 \hookrightarrow To obtain the business-as-usual *instantaneous emissions*, $\mu_E^{\text{BAU}} : [0, \xi_{\text{max}}] \to \mathbb{R}_+$, integrate the marginal emissions stack up to current level of demand:

$$\mu_E^{\mathsf{BAU}}(D) := \int_0^D e(u) \, \mathrm{d}u.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion

Load Shifting

The Effects of Emissions Trading on the BAU Economy

With emissions trading, bids increase by

(cost of carbon) \times (marginal emissions rate).

Conclusion

Load Shifting

The Effects of Emissions Trading on the BAU Economy

With emissions trading, bids increase by

(cost of carbon) \times (marginal emissions rate).

Given an allowance price $A \ge 0$, the bid stack now becomes

$$b(\xi; A) := b^{\mathsf{BAU}}(\xi) + Ae(\xi).$$

For A > 0 this function may no longer be monotonic!

SOG

Introduction

rom Electricity to CO₂ Emissions

Conclusion

Allowance Pricing

Market Assumptions

Applying the Risk-Neutral Pricing Methodology

Traded assets in the market are

- Allowance certificates
- Derivatives written on the certificate
- Riskless money market account

Assumption

There exists an equivalent (risk-neutral) martingale measure $\tilde{\mathbb{P}}$, under which, for $0 \leq t \leq T$, the discounted price of any tradable asset is a martingale.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Market Assumptions

Concretising the Demand and Emissions Process

Demand evolves according to a time-homogeneous Itô diffusion; i.e. for $0 \le t \le T$,

$$\mathrm{d} D_t = \mu_D(D_t)\mathrm{d} t + \sigma_D(D_t)\mathrm{d} ilde{W}^1_t, \qquad D_0 = d \in (0,\xi_{\mathsf{max}}),$$

with $\sigma_D(0) = \sigma_D(\xi_{\max}) = 0.$

Market Assumptions

Concretising the Demand and Emissions Process

Demand evolves according to a time-homogeneous Itô diffusion; i.e. for $0 \le t \le T$,

$$\mathrm{d} D_t = \mu_D(D_t)\mathrm{d} t + \sigma_D(D_t)\mathrm{d} ilde{W}^1_t, \qquad D_0 = d \in (0,\xi_{\mathsf{max}}),$$

with $\sigma_D(0) = \sigma_D(\xi_{\max}) = 0.$

Cumulative emissions have drift μ_E and we allow for uncertainty by adding a volatility term σ_E . Then, for $0 \le t \le T$,

$$\mathrm{d}E_t = \mu_E(A_t, D_t)\mathrm{d}t + \sigma_E(E_t)\mathrm{d}\tilde{W}_t^2, \quad E_0 = 0,$$

with $\sigma_E(0) = 0$.

Market with One Compliance Period

Characterising the Allowance Price at t = T

- $\bullet \ \ \Gamma_{cap} \geq 0 \qquad \ \ \ \ \, inital \ allocation \ of \ certificates$
- $\pi \ge 0$ monetary penalty
- ${E_T \ge \Gamma_{cap}}$ non-compliance event

Terminal value of the allowance certificate is

$$A_{\mathcal{T}} = \pi \mathbb{I}_{\{E_{\mathcal{T}} \ge \Gamma_{\mathsf{cap}}\}}.$$

Market with One Compliance Period

Characterising the Allowance Price at t = T

- $\bullet \ \ \Gamma_{cap} \geq 0 \qquad \ \ \text{inital allocation of certificates}$
- $\pi \ge 0$ monetary penalty
- ${E_T \ge \Gamma_{cap}}$ non-compliance event

Terminal value of the allowance certificate is

$$A_{\mathcal{T}} = \pi \mathbb{I}_{\{E_{\mathcal{T}} \ge \Gamma_{\mathsf{cap}}\}}.$$

As a traded asset, A_t is given by

$$A_t = e^{-r(T-t)} \pi \tilde{\mathbb{E}} \left[\left. \mathbb{I}_{\{E_T \geq \Gamma_{cap}\}} \right| \mathcal{F}_t \right], \quad \text{for } 0 \leq t \leq T.$$

Martingale Representation Theorem:

$$\mathrm{d}\left(e^{-\mathit{rt}} A_t\right) = Z_t^1 \mathrm{d} \tilde{W}_t^1 + Z_t^2 \mathrm{d} \tilde{W}_t^2, \quad \text{for } 0 \leq t \leq T$$

and some \mathcal{F}_t -adapted process $(Z_t) := (Z_t^1, Z_t^2)$.

Conclusion

Market with One Compliance Period FBSDE Formulation of the Pricing Problem

Combining the processes for demand, cumulative emissions and the allowance certificate leads to the FBSDE

$$\begin{cases} \mathrm{d}D_t = \mu_D(D_t)\mathrm{d}t + \sigma_D(D_t)\mathrm{d}\tilde{W}_t^1, & D_0 = d \in (0, \xi_{\max}), \\ \mathrm{d}E_t = \mu_E(A_t, D_t)\mathrm{d}t + \sigma_E(E_t)\mathrm{d}\tilde{W}_t^2, & E_0 = 0, \\ \mathrm{d}A_t = rA_t\mathrm{d}t + Z_t^1\mathrm{d}\tilde{W}_t^1 + Z_t^2\mathrm{d}\tilde{W}_t^2, & A_T = \pi\mathbb{I}_{\{E_T \ge \Gamma_{\mathsf{cap}}\}}. \end{cases}$$

- (D_t, E_t) forward part
- (A_t) backward part
- (Z_t) generator

Market with One Compliance Period PDE Representation of the FBSDE Solution

Let $A_t = \alpha(t, D_t, E_t)$, then

$$\frac{\partial \alpha}{\partial t} + \frac{1}{2} \sigma_D^2(D) \frac{\partial^2 \alpha}{\partial D^2} + \frac{1}{2} \sigma_E^2(E) \frac{\partial^2 \alpha}{\partial E^2} + \mu_D(D) \frac{\partial \alpha}{\partial D} + \mu_E(\alpha, D) \frac{\partial \alpha}{\partial E} - r\alpha = 0,$$

with terminal condition

$$\alpha(T, D, E) = \pi \mathbb{I}_{\{E \ge \Gamma_{cap}\}}, \quad 0 \le D \le \xi_{max}, \ E \ge 0.$$

The solution α also satisfies

$$\lim_{E\to\infty}\alpha(t,D,E)=e^{-r(T-t)}\pi,\quad 0\leq t\leq T,\ 0\leq D\leq \xi_{\max}.$$

Market with One Compliance Period PDE Representation of the FBSDE Solution

Let $A_t = \alpha(t, D_t, E_t)$, then

$$\frac{\partial \alpha}{\partial t} + \frac{1}{2} \sigma_D^2(D) \frac{\partial^2 \alpha}{\partial D^2} + \frac{1}{2} \sigma_E^2(E) \frac{\partial^2 \alpha}{\partial E^2} + \mu_D(D) \frac{\partial \alpha}{\partial D} + \frac{\mu_E(\alpha, D)}{\partial E} \frac{\partial \alpha}{\partial E} - r\alpha = 0,$$

with terminal condition

$$\alpha(T, D, E) = \pi \mathbb{I}_{\{E \ge \Gamma_{cap}\}}, \quad 0 \le D \le \xi_{max}, \ E \ge 0.$$

The solution α also satisfies

$$\lim_{E\to\infty}\alpha(t,D,E)=e^{-r(T-t)}\pi,\quad 0\leq t\leq T,\ 0\leq D\leq \xi_{\max}.$$

Market with Multiple Compliance Periods Generalising the Pricing Problem

 $[0, T_1], \dots, [T_{N_{cp}-1}, T_{N_{cp}}(=T)]$: N_{cp} compliance periods.

Subsequent compliance periods joint by connecting mechanisms:

- 1. banking
- 2. withdrawal
- 3. borrowing
- \hookrightarrow Terminal condition $A^{i}_{T_{i}}$:
 - path-dependant
 - more expensive

Market with Multiple Compliance Periods

Banking: an additional incentive to reduce emissions.

In the event of compliance, a number $(\hat{\Gamma}_{cap}^{i} - E^{i})$ of certificates with price $A_{T_{i}}^{i}$ are exchanged for certificates valid during the next compliance period, with price $A_{T_{i}}^{i+1}$.

Market with Multiple Compliance Periods Withdrawal

Withdrawal: additional punishment for excess emissions.

In the event of non-compliance, a number min $\left(E^{i} - \hat{\Gamma}_{cap}^{i}, \Gamma_{cap}^{i+1}\right)$ of certificates with price $A_{T_{i}}^{i+1}$ are subtracted from Γ_{cap}^{i+1} .

From Electricity to CO₂ Emissions

Allowance Pricing

ヘロン 人間 とくほど 人ほとう

э

Conclusion

Introduction

rom Electricity to CO₂ Emissions

Allowance Pricing

Option Pricing

Conclusion

Option Pricing

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion

The European Call on the Allowance Certificate Formulating the Pricing Problem

Our example of choice is a European call $(C_t(\tau))_{t\in[0,\tau]}$ with maturity τ , where $0 \le \tau \le T$, and strike $K \ge 0$. Its payoff is

$$C_{\tau}(\tau) := (A_{\tau} - K)^+ \, .$$

The European Call on the Allowance Certificate Formulating the Pricing Problem

Our example of choice is a European call $(C_t(\tau))_{t\in[0,\tau]}$ with maturity τ , where $0 \le \tau \le T$, and strike $K \ge 0$. Its payoff is

$$\mathcal{C}_{\tau}(\tau) := (\mathcal{A}_{\tau} - \mathcal{K})^+$$
.

- Require knowledge of $A_t \Rightarrow$ need to solve problem for A_t and for C_t in parallel.
- The option price does not affect the rate at which firms emit
 ⇒ expect the option pricing problem to be linear.

The European Call on the Allowance Certificate The Pricing PDE

Letting $C_t = v(t, D_t, E_t)$,

$$\frac{\partial v}{\partial t} + \frac{1}{2}\sigma_D^2(D)\frac{\partial^2 v}{\partial D^2} + \frac{1}{2}\sigma_E^2(E)\frac{\partial^2 v}{\partial E^2} + \mu_D(D)\frac{\partial v}{\partial D} + \mu_E(\alpha(t, D, E), D)\frac{\partial v}{\partial E} - rv = 0,$$

with terminal condition

$$v(T,D,E)=(A_{ au}-K)^+\,,\quad 0\leq D\leq \xi_{\max},\,\,E\geq 0.$$

Further, v satisfies

$$\lim_{E\to\infty} v(t,D,E) = e^{-r(T-t)} \left(\pi - e^{r(T-\tau)} \mathcal{K}\right)^+, \quad 0 \le t \le \tau, \ 0 \le D \le \xi_{\max}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

The European Call on the Allowance Certificate The Pricing PDE

Letting $C_t = v(t, D_t, E_t)$,

$$\frac{\partial v}{\partial t} + \frac{1}{2}\sigma_D^2(D)\frac{\partial^2 v}{\partial D^2} + \frac{1}{2}\sigma_E^2(E)\frac{\partial^2 v}{\partial E^2} + \mu_D(D)\frac{\partial v}{\partial D} + \mu_E(\alpha(t, D, E), D)\frac{\partial v}{\partial E} - rv = 0,$$

with terminal condition

$$v(T,D,E)=\left(A_{ au}-K
ight) ^{+}, \hspace{1em} 0\leq D\leq \xi_{\max}, \hspace{1em} E\geq 0.$$

Further, v satisfies

$$\lim_{E\to\infty} v(t,D,E) = e^{-r(T-t)} \left(\pi - e^{r(T-\tau)} \mathcal{K}\right)^+, \quad 0 \le t \le \tau, \ 0 \le D \le \xi_{\max}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ(?)

Introduction

rom Electricity to CO₂ Emissions

Option Pricing

Conclusion

Conclusion

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Conclusion

Current work shows:

- Bid stack \rightarrow which generators are active in the market \rightarrow rate at which market emits CO₂.
- Allowances \rightarrow derivatives on demand for polluting goods and cumulative emissions.
- Borrowing, banking and withdrawal → impact the allowance price in multi-period setting.
- Options on allowances \rightarrow can be priced in this hybrid framework.

Conclusion

Current work shows:

- Bid stack \rightarrow which generators are active in the market \rightarrow rate at which market emits CO_2.
- Allowances \rightarrow derivatives on demand for polluting goods and cumulative emissions.
- Borrowing, banking and withdrawal \rightarrow impact the allowance price in multi-period setting.
- Options on allowances \rightarrow can be priced in this hybrid framework.

Future work:

- Impact of large abatement project.
- Impact of cost of carbon on demand.
- FBSDEs with degeneracy in forward part.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you for your attention. Questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○