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 Optimization methods used for short-term generation and trading planning to deter-
mine unit commitment and marketing of units at spot markets for electrical energy

 Commitment problem is subject to time coupling constraints with various time horizons

 e.g. minimum up- and down-times (short-term)

 e.g. primary energy constraints (long-term)

 Consideration of complete time horizon for day-ahead commitment decision necessary

 Parameters determining optimal unit commitment are partially uncertain

 price uncertainties

 uncertainties of quantity

 Optimal day-ahead decision influenced by uncertain parameters in the future

 Stochastic optimization methods based on scenario trees allow consideration of 
uncertainties in planning process

 Practical applications show benefit of stochastic optimization opposed to deterministic

 Investigations on factors influencing operational benefit by performing a day-by-day 
simulation of day-ahead unit commitment and marketing decision process

Motivation
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 Day ahead planning requires high modeling accuracy and performance of results

 Use of mathematical exact, closed-form method preferred

 Formulation of unit commitment problem as mixed-integer quadratic program

 Objective function: maximization of expectation value of contribution margin
(example of one thermal unit marketed solely at spot market)

Stochastic Optimization of Generation and Trading 
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Considered cost components:

 down-time (in-) dependent start-up costs

 stationary costs (esp. primary energy)

 Maximization subject to:

 minimum and maximum power output

 minimum up- and down-times

 maximum ramp-rates

 primary energy constraints

 Extensions: interconnected hydro plants, 
reserve markets (provision power / energy)
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Modelling of Planning Uncertainties (I)
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 Relevant planning uncertainties

 Price uncertainties

• spot market, reserve market, primary energy prices, emission certificates

 Uncertainties of quantity

• natural inflow, request of reserve energy, outages

 Modeling of uncertainties as stochastic processes

 Example of electricity price model as most complex uncertainty

seasonality residuals

stochastic process

price level fly-ups

stochastic
component

deterministic
component

- historic  price level
- expected value of

price level based on
future prices

- trigonometric 
function

- day categories

- separate processes
for positive and 
negative fly-ups
( distribution)

- ARMA process
(short-term uncertainty)
- Random Walk
(long-term uncertainty)



Modelling of Planning Uncertainties (II)

Basis:

 Multitude of realizations of stochastic process

Scenario tree generation method:

 Separation of appropriate segments

 Pairwise distance calculation (Kantorovič distance)

 Elimination of scenario with smallest probability metric

 Probability added to closest scenario

 Scenario tree with a defined approximation accuracy

 Maintain original characteristics

 Reduction of scenario tree to tractable size

 Result of deterministic start segment gives desired
day-ahead unit commitment decision
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 Evaluation of deterministic and stochastic day-ahead optimization using a day-by-day
simulation of day-ahead unit commitment and marketing decision process

Methodology of Investigations
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 Comparison of results also to ex-post optimal unit commitment as reference
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Model System
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 Historic year of 2009 considered

 Power Plant: Combined-cycle gas turbine (CCGT)

 installed capacity: 800 MW (minimum output: 320 MW)

 efficiency: 58 % (at maximum capacity)

 minimum up-/down-times (5h / 8h)

 energy restriction on natural gas
minimum: 17,204 TJ
maximum: 19,354 TJ

 natural gas price: based on TTF
(monthly adjusted)

 CO2-emission certificate price 
monthly adjusted

 Only marketing at day-ahead spot market 
(no hedging strategy considered)

 Spot prices for electricity considered 
as uncertainty

 Scenario tree already anticipates low price
developments
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 Results from day-by-day simulation 
compared to ex-post optimal 
day-ahead marketing

 Stochastic optimization yields higher
contribution margin of 2.2 % (590 TEUR)

 Gap to reference due to several effects

 suboptimal use of scarce 
of resources (primary energy)

 suboptimal day-ahead spot
prognosis

 suboptimal start-up / shut-down 
decisions 

 Day-ahead spot prognosis not focus
of stochastic process

 Separation of this effect by using perfect 
information on day-ahead prices

Comparison of Stochastic and Determinsitic Day-Ahead Planning

Exemplary Investigations 7

0 %

80 %

85 %

90 %

95 %

100 %
stochastic optimization

deterministic optimization

co
n

tr
ib

u
ti

o
n

 m
ar

gi
n

re
la

ti
ve

 t
o

 r
ef

er
en

ce

perfect spot price information
without with

 Perfect information on day-ahead spot 
prices not sufficient for optimal results 
in system with time-coupling constraints

 Stochastic optimization allows for higher 
contribution margin of 2.7 % (850 TEUR) 
also with perfect spot information



 Scenario tree based on stochastic process consisting of two factors

 Short-term uncertainties modeled by ARMA-process (parameterized by spot prices)

 Long-term uncertainties modeled by random walk (RW) 
(parameterized by future prices)

Influence of Stochastic Process
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 Both factors contribute significantly to benefit of stochastic optimization

 Negligence of short-term stochastics compensates benefits of stochastic optimization
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deterministic optimization

stochastic optimization only ARMA
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 Investigated model system consists of different time-coupling constraints

 minimum up- and down-times (short-term)

 take-or-pay restriction on natural gas (long-term)

 Investigation on the influence of time-coupling constraints by ceteris paribus dropping 
long- and/or short-term constraints and comparing to accordingly adjusted reference

Influence of Model System (Time-Coupling Constraints)
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 Without time-coupling con-
straints no benefit from perfect
information on future

 Without long-term coupling
constraints no benefit from 
stochastic optimization

 Combination of long- and short-
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disproportionally high influence 
on benefit from stochastic 
optimization



 Day-ahead marketing of power plants has to consider time-coupling constraints and is 
subject to uncertainties

 Stochastic optimization methods based on scenario trees allow consideration of 
uncertainties in planning process and promise higher contribution margins in 
operational use

 Investigations on operational benefit by performing a day-by-day simulation of day-
ahead unit commitment and marketing decision process

 Exemplary simulation of historic year 2009 for a combined-cycle gas turbine with take-
or-pay restriction on natural gas and uncertain prices for electricity

 Significant higher contribution margin with stochastic optimization even with perfect 
information on next day’s spot market prices

 Modeling of short- and long-term stochastics of electricity prices necessary to fully 
utilize potential of stochastic optimization

 Combination of long- and short-term time-coupling constraints with disproportionally 
high influence on benefit of stochastic optimization

 Future investigations on broader basis of historic situations and consideration of 
further uncertainties, particular primary energy prices and emission certificates

Conclusions and Outlook

Summary 10


