LIQUIDITY RISKS ON POWER EXCHANGE

G. de MAERE Y. SMEERS

gauthier.demaere@uclouvain.be

School of engineering and CORE Université catholique de Louvain, Belgium

October 7, 2010

Energy Finance / INREC 2010

Liquidity is a key variable for assets manager

- It enlarges the capacity of the market to accommodate order flows
- It guarantees the ability to quickly buy/sell sufficient quantities of an asset without significantly affecting its price
- Portfolios can easily be converted into cash

Two important issues about liquidity

- How to measure liquidity : unobserved variable that embeds several dimension (volume, depth, resiliency,...)
- Effect on the pricing of financial contract

Energy trading on power exchanges:

- Exceptional volatility of electricity makes derivatives particularly relevant
- Even though volumes are increasing, the market is still less liquid than for other commodities

Review and analysis of EU wholesale energy markets (source: DG-TREND)

- Regardless of liquidity problems, the pricing of financial power derivatives is challenging

We analyze illiquidity through equilibrium based models

- Pioneer paper of Bessembinder and Lemon(2002)
- Agents (risk-averse) want to hedge their stochastic profit
 - => Prices are determined by an equilibrium among players
 - => Optimal position in financial contracts
- Methodology widely used
 - => Impact of power derivatives on investment (Willems and Morbee, 2008)
 - => Extension to dynamic equilibrium (Büller and Müller-Merbach, 2008)
 - => Pricing of weather derivatives in a multi-commodity setting (Lee and Oren, 2008) => \dots
- All research concludes to very high hedge ratios

Perspective of the analyzis

- Insufficient liquidity restricts the construction of portfolios
- \Rightarrow liquidity constraints in agents optimization

FORWARD EQUILIBRIUM

Two stage forward equilibrium

- (Ω, \mathcal{P}) finite probability space
- N : set of players (producer, retailer,..)
- C: set of financial contracts (futures, options, FTRs,...)

- The seller of a contract c gets the following pay-off $(P^f_c-P^s_{c,\omega}).$
- $\pi_{\nu,\omega}^{\text{spot}}$ spot profit (at t=1) of market participant ν
- Agent hedges profit by concluding financial contracts

$$\Pi_{\nu,\omega} = \sum_{c} x_c^{\nu} (P_c^f - P_{c,\omega}^s) + \pi_{\nu,\omega}^{\text{spot}}$$

Agents hedging optimization :

- We assume perfect competition \Rightarrow price taking agents.
 - The spot market equilibrium is not influenced by the forward equilibrium
 - Financial contracts are pure hedge tools
 - Strategic behavior: stochastic equilibrium program with equilibrium constraints (Zhang, Xu and Wu, 2008)
- We model risk aversion by risk function $\rho(X): \mathcal{Z} \to \mathbb{R}$
 - ex: mean-variance, exponential utility function, VaR, CVaR, ...

Optimal hedging in a liquid market

$$\mathcal{P}^{\nu}(P_{c}^{f}) \equiv \max_{\substack{x_{c}^{\nu} \\ \Pi_{\nu,\omega}}} \rho_{\nu}(\Pi_{\nu})$$
$$\Pi_{\nu,\omega} = \sum_{c} x_{c}^{\nu}(P_{c}^{f} - P_{c,\omega}^{s}) + \pi_{\nu,\omega}^{\text{spot}}$$

Equilibrium in a liquid market

A forward equilibrium, is a tuple $[(x_c^{\nu})_{\nu=1}^N, (P_c^f)_{c=1}^C]$ such that:

 $\diamond \ \forall \nu \in N, x_c^\nu$ is an optimal solution of $\mathcal{P}^\nu(P_c^f)$

 \diamond it satisfies the market clearing conditions: $\forall c \in C, \sum_{\nu \in N} x_c^\nu = 0$

Existence : compactness of strategies

- yes, if monetary concave risk function

Uniqueness? : strong monotonicity in the gradient map of the risk function

- All research concludes to high hedge ratio (ex: Bessembinder-Lemon: from 0.7 to 1.2)
- Such level of trades have never been observed
- Some contracts are known to be illiquid (ex: explicit auctions)

LIQUIDITY MODELING

- We model the liquidity on the basis of the total volume traded
- We impose some liquidity bounds

$$\sum_{\nu \in N} |x_c^{\nu}| \le LIQ_c$$

- Insufficient liquidity restricts the construction of the agent's portfolio

Optimal hedging in a market with liquidity bounds

$$\mathcal{P}^{\nu}(P_c^f, x_c^{-\nu}) \equiv \max_{\substack{x_c^{\nu}}} \rho_{\nu}(\Pi_{\nu})$$
$$\Pi_{\nu,\omega} = \sum_c x_c^{\nu}(P_c^f - P_{c,\omega}^s) + \pi_{\nu,\omega}^{\text{spot}}$$
$$|x_c^{\nu}| + \sum_{-\nu} |x_c^{-\nu}| \le LIQ_c$$

- $\diamond\,$ The agent's hedging problem depends on the strategies of other players $x_c^{-\nu}$
- The problem becomes a Generalized Nash Equilibrium Problem (GNEP) whit shared constraints

FORWARD EQUILIBRIUM WITH LIQUIDITY CONSTRAINTS

GENERALIZED NASH EQUILIBRIUM IN AN ILLIQUID MARKET

A forward equilibrium, is a tuple $[(x_c^\nu)_{\nu=1}^N,(P_c^f)_{c=1}^C]$ such that:

- $\diamond \ \forall \nu \in N, x_c^{\nu} \text{ is an optimal solution of } \mathcal{P}^{\nu}(P_c^f, x_c^{-\nu})$
- \diamond it satisfies the market clearing conditions: $\forall c \in C, \sum_{\nu \in N} x_c^\nu = 0$

- GNEP may have multiple, possibly infinite solution (continuum)
- Concept criticized by economist for a meaningful game
- Insufficient liquidity is a market failure (as externalities)
- Practically, find a large set of equilibria to illustrate the type of inefficiency arising from illiquidity
- Numerically, heuristic have been developed recently (Fukushima, 2008)

LIQUIDITY, CONCAVITY AND ARBITRAGE

In a liquid market, no arbitrage is guaranteed in the equilibrium solution if:

- Risk aversion is modeled through concave risk function (i.e. concavity, monotonicity, cash invariance)
 - Any concave risk function can be represented as (Föllmer et al., 2002):

$$\rho_{\nu}(\Pi_{\nu}) = \inf_{\mathbb{Q}\in\mathcal{P}} \left(\mathbb{E}_{\mathbb{Q}}[\Pi_{\nu}] + \alpha(\mathbb{Q}) \right)$$

• The investor's problem becomes

$$\mathcal{P}^{\nu} \equiv \max_{x_c^{\nu} \in \mathbb{R}^c} \left\{ \inf_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\mathbb{Q}}[\pi_{\nu}^{\text{spot}}] + \sum_{c} x_c^{\nu}(P_c^f - \mathbb{E}_{\mathbb{Q}}[P_c^s]) + \alpha(\mathbb{Q}) \right\}$$

• By duality theory, it can be restated as

$$\mathcal{P}^{\nu} \equiv \min_{\mathbb{Q}\in\mathcal{P}} \left(\mathbb{E}_{\mathbb{Q}}[\pi_{\nu}^{\text{spot}}] + \alpha(\mathbb{Q}) \right)$$

s.t. $P_{c}^{f} = \mathbb{E}_{\mathbb{Q}}[P_{c}^{s}]$ (x_{c}^{ν})

9 \mathbb{Q} is equivalent to \mathbb{P} (share the same set of measure zero)

- In an **illiquid** market, the equilibrium solution may contain arbitrage, even if agents have concave risk function :

$$\mathcal{P}^{\nu}(P_c^f, x_c^{-\nu}) \equiv \min_{\substack{\lambda_c^{\nu} \ge 0 \\ \mu_c^{\nu} \ge 0 \\ \nu_c^{\nu} \ge 0 \\ + \sum_{c \in C} \left(x_c^{\nu} \mathbb{E}_{\mathbb{Q}}[P_c^f - P_c^s] + \lambda_c^{\nu}(LIQ_c - x_c^{\nu} - |x_c^{-\nu}|) \right)$$

- The optimality conditions give $P^f_c = \mathbb{E}_{\mathbb{Q}}[P^s_c] + \lambda^{
u}_c - \mu^{
u}_c$

ILLUSTRATION : SPOT MARKET MODEL

- Perfectly competitive environment ; Organized as a stylized US-like market
- Market participants:

 q_1

• Producers : unlimited capacity, bid their marginal cost of supply $C_{
u}$

$$C_{\nu}^{T}(q_{\nu}) = a_{\nu}q_{\nu} + b_{\nu}\frac{q_{\nu}^{2}}{2}$$
; $C_{\nu}(q_{\nu}) = a_{\nu} + b_{\nu}q_{\nu}$

• Retailers : serve consumers at a fixed price, bid their inverse demand function $P_{\nu}(q_{\nu})$

$$P_{\nu}(q_{\nu}) = a_{\nu} - b_{\nu}q_{\nu}$$

System Operator collects the bids and maximizes total Welfare leading to

$$\max_{\substack{\nu \in \mathbb{R}^N_+}} \left[\sum_{\nu \in N_r} \int_0^{q_\nu} P_\nu(\xi_\nu) d\xi_\nu - \sum_{\nu \in N_p} \int_0^{q_\nu} C_\nu(\xi_\nu) d\xi_\nu \right]$$

s.t.
$$\sum_{\substack{\nu \in N \\ -K_\ell}} q_\nu = 0$$
$$-K_\ell \le \sum_{\nu \in N} \text{PTDF}_{\nu,\ell} \ q_\nu \le K_\ell$$
(1)

Illustration : Spot Market Model

- Uncertainty and spot scenarios (#250)

- Demand sensitive to weather variation ($\alpha_{
 u}$)
- Transmission line outage (line 1-6)
- Gas, coal, and carbon emission prices (not treated here)

- Risk exposure:

	$\mathbb{E}[\pi_{\nu}^{spot}]$	$vol(\pi^{spot}_{ u})$	$CVaR_{75\%}$
1	2197	11%	1517
4	652	75%	-83
6	1979	87%	-309

- Price (nodal & transmission)

	$\mathbb{E}[P^s]$	$\mathbb{V}\mathrm{ar}[P^s]$	
1 24.72		3.08	
6	53.05	76.7	
1→6	28.3	85.2	

LLUSTRATION : MARKET PERFECTLY LIQUID

6 nodes example

- Type of derivatives : Energy futures and FTRs
- Risk function used :

 $\rho_{\nu}(\Pi_{\nu}) = (1 - \beta) \mathbb{E}[\Pi_{\nu}] + \beta \operatorname{CVaR}_{\alpha}(\Pi_{\nu})$

- Important reduction of risk

	$\mathbb{E}[\pi^{spot}]$	$vol(\pi^{spot})$	$\mathbb{E}[\Pi]$	$vol(\Pi)$
1	2197	11%	2198	1.8%
6	1979	87%	1890	48%

Agents hedge ratio :

	1	2	3	4	5	6
Hedge ratio	0.92	0.82	0.26	0.63	0.6	1.4

Illustration: Illiquid Market

- We impose liquidity constraints on energy futures and on total volume of FTRs
 - 66% of expected spot quantities for the FUTURE
 - Total of available network capacities for FTRs
- For illustrating the impact of liquidity constraints, we aim at finding the largest set of equilibria (# 5000)

◊ Range of risk premia:

	$P_c^f - \mathbb{E}[P_c^s]$
FUTURE 6	$\left[-1.85, 0.65 ight]$
FTR 1→6	[-1.52, 0.78]

◊ Range of profit distribution

	$\mathbb{E}[\Pi_{\nu}]$	$volig(\Pi_ uig)$	Volume
1	[2116 , 2226]	[1.8% , $22%]$	[1 , 712]
6	[1860, 2502]	[41% , $48%]$	[113 , 677]

- Insufficient liquidity in the FTR market impacts the futures market

Volume FTRs	Volume Futures	P_c^f (FUTURE 6)
960	570 (92%)	[52.9, 53.6]
720	478 (69%)	[52.9, 53.7]
480	320 (56%)	[52.9, 53.8]
240	269 (39%)	[53.5, 54.0]
0	152 (22%)	54.8

 $\operatorname{TABLE:}$ Induced energy futures volume for a given liquidity bounds on FTRs