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Introduction

Liquidity is a key variable for assets manager

- It enlarges the capacity of the market to accommodate order flows

- It guarantees the ability to quickly buy/sell sufficient quantities of an asset
without significantly affecting its price

- Portfolios can easily be converted into cash

Two important issues about liquidity

- How to measure liquidity : unobserved variable that embeds several dimension
( volume, depth, resiliency,...)

- Effect on the pricing of financial contract
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Introduction

Energy trading on power exchanges:

- Exceptional volatility of electricity makes derivatives particularly relevant

- Even though volumes are increasing, the market is still less liquid than for
other commodities

Review and analysis of EU wholesale energy markets (source: DG-TREND)

- Regardless of liquidity problems, the pricing of financial power derivatives is
challenging
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Introduction

We analyze illiquidity through equilibrium based models

- Pioneer paper of Bessembinder and Lemon(2002)

- Agents (risk-averse) want to hedge their stochastic profit
=> Prices are determined by an equilibrium among players

=> Optimal position in financial contracts

- Methodology widely used
=> Impact of power derivatives on investment (Willems and Morbee, 2008)

=> Extension to dynamic equilibrium (Büller and Müller-Merbach, 2008)

=> Pricing of weather derivatives in a multi-commodity setting (Lee and Oren, 2008)

=> ...

- All research concludes to very high hedge ratios

Perspective of the analyzis

- Insufficient liquidity restricts the construction of portfolios

⇒ liquidity constraints in agents optimization
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Forward Equilibrium

Two stage forward equilibrium

- (Ω,P) finite probability space

- N : set of players (producer, retailer,..)

- C: set of financial contracts (futures, options, FTRs,...)

- The seller of a contract c gets the following pay-off (P f
c − P s

c,ω).

- πspot
ν,ω spot profit (at t = 1) of market participant ν

- Agent hedges profit by concluding financial contracts

Πν,ω =
�

c

xν
c (P

f
c − P s

c,ω) + πspot
ν,ω
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Forward Equilibrium

Agents hedging optimization :

- We assume perfect competition ⇒ price taking agents.

The spot market equilibrium is not influenced by the forward equilibrium

Financial contracts are pure hedge tools

Strategic behavior: stochastic equilibrium program with equilibrium constraints

(Zhang, Xu and Wu, 2008)

- We model risk aversion by risk function ρ(X) : Z → R
ex: mean-variance, exponential utility function, VaR, CVaR, ...

Optimal hedging in a liquid market

Pν(P f
c ) ≡ max

xν
c

ρν(Πν)

Πν,ω =
�

c xν
c (P

f
c − P s

c,ω) + πspot
ν,ω
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Forward Equilibrium

Equilibrium in a liquid market

A forward equilibrium, is a tuple [(xν
c )N

ν=1, (P
f
c )C

c=1] such that:

� ∀ν ∈ N,xν
c is an optimal solution of Pν(P f

c )

� it satisfies the market clearing conditions: ∀c ∈ C,
�

ν∈N xν
c = 0

Existence : compactness of strategies

- yes, if monetary concave risk function

Uniqueness? : strong monotonicity in the gradient map of the risk function

- All research concludes to high hedge ratio (ex: Bessembinder-Lemon:
from 0.7 to 1.2)

- Such level of trades have never been observed

- Some contracts are known to be illiquid (ex: explicit auctions)
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Liquidity modeling

- We model the liquidity on the basis of the total volume traded
- We impose some liquidity bounds

�

ν∈N

|xν
c | ≤ LIQc

- Insufficient liquidity restricts the construction of the agent’s portfolio

Optimal hedging in a market with liquidity bounds

Pν(P f
c , x−ν

c ) ≡ max
xν

c

ρν(Πν)

Πν,ω =
�

c xν
c (P

f
c − P s

c,ω) + πspot
ν,ω

|xν
c |+

�
−ν |x−ν

c | ≤ LIQc

� The agent’s hedging problem depends on the strategies of other players
x−ν

c

� The problem becomes a Generalized Nash Equilibrium Problem
(GNEP) whit shared constraints
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Forward Equilibrium with Liquidity
constraints

Generalized Nash Equilibrium in an illiquid market

A forward equilibrium, is a tuple [(xν
c )N

ν=1, (P
f
c )C

c=1] such that:

� ∀ν ∈ N,xν
c is an optimal solution of Pν(P f

c , x−ν
c )

� it satisfies the market clearing conditions: ∀c ∈ C,
�

ν∈N xν
c = 0

- GNEP may have multiple, possibly infinite solution (continuum)

- Concept criticized by economist for a meaningful game

- Insufficient liquidity is a market failure (as externalities)

- Practically, find a large set of equilibria to illustrate the type of
inefficiency arising from illiquidity

- Numerically, heuristic have been developed recently (Fukushima, 2008)
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Liquidity, concavity and arbitrage

In a liquid market, no arbitrage is guaranteed in the equilibrium solution if:
1 Risk aversion is modeled through concave risk function (i.e. concavity,

monotonicity, cash invariance)

Any concave risk function can be represented as (Föllmer et al., 2002):

ρν(Πν) = inf
Q∈P

�
EQ[Πν ] + α(Q)

�

The investor’s problem becomes

Pν ≡ max
xν

c∈Rc

�
inf

Q∈P
EQ[πspot

ν ] +
�

c

xν
c (P

f
c − EQ[P s

c ]) + α(Q)

�

By duality theory, it can be restated as

Pν ≡ min
Q∈P

�
EQ[πspot

ν ] + α(Q)
�

s.t. P f
c = EQ[P s

c ] (xν
c )

2 Q is equivalent to P (share the same set of measure zero)
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Liquidity, concavity and arbitrage

- In an illiquid market, the equilibrium solution may contain arbitrage,
even if agents have concave risk function :

Pν(P f
c , x−ν

c ) ≡ min
λν

c≥0
µν

c≥0

max
xν

c∈Rc

�
inf

Q∈P
EQ[πspot

ν ] + α(Q)

+
�

c∈C

�
xν

c EQ[P f
c − P s

c ] + λν
c (LIQc − xν

c − |x−ν
c |)

+µν
c (LIQc + xν

c − |x−ν
c |)

��

- The optimality conditions give P f
c = EQ[P s

c ] + λν
c − µν

c
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Illustration : spot market model

- Perfectly competitive environment ; Organized as a stylized US-like
market

- Market participants:
Producers : unlimited capacity, bid their marginal cost of supply Cν

CT
ν (qν) = aνqν + bν

q2
ν

2
; Cν(qν) = aν + bνqν

Retailers : serve consumers at a fixed price, bid their inverse demand function Pν(qν)

Pν(qν) = aν − bνqν

System Operator collects the bids and maximizes total Welfare leading to

max
qν∈RN

+

2

4
X

ν∈Nr

Z qν

0
Pν(ξν)dξν −

X

ν∈Np

Z qν

0
Cν(ξν)dξν

3

5

s.t.
X

ν∈N

qν = 0

−K� ≤
X

ν∈N

PTDFν,� qν ≤ K�

(1)
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Illustration : spot market model

- Uncertainty and spot scenarios (#250)
Demand sensitive to weather variation (αν)

Transmission line outage (line 1-6)

Gas, coal, and carbon emission prices (not treated here)

6 nodes example

- Risk exposure:

E
�
πspot

ν
�

vol
�
πspot

ν
�

CVaR75%

1 2197 11% 1517
4 652 75% -83
6 1979 87% -309

- Price (nodal & transmission)

E
�
P s

�
Var

�
P s

�

1 24.72 3.08
6 53.05 76.7
1→6 28.3 85.2
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llustration : market perfectly liquid

6 nodes example

- Type of derivatives : Energy futures and FTRs

- Risk function used :

ρν(Πν) = (1− β) E
ˆ
Πν

˜
+ β CVaRα

`
Πν

´

- Important reduction of risk

E
ˆ
πspot

˜
vol

`
πspot

´
E

ˆ
Π

˜
vol

`
Π

´

1 2197 11% 2198 1.8%
6 1979 87% 1890 48%

Agents hedge ratio :

1 2 3 4 5 6
Hedge ratio 0.92 0.82 0.26 0.63 0.6 1.4
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Illustration: illiquid market

- We impose liquidity constraints on energy futures and on total volume of FTRs
• 66% of expected spot quantities for the FUTURE

• Total of available network capacities for FTRs

- For illustrating the impact of liquidity constraints, we aim at finding the largest set
of equilibria (# 5000)

� Range of risk premia:

P f
c − E

ˆ
P s

c

˜

FUTURE 6
ˆ
− 1.85 , 0.65

˜

FTR 1→6
ˆ
− 1.52 , 0.78

˜

� Range of profit distribution

E
ˆ
Πν

˜
vol

`
Πν

´
Volume

1 [2116 , 2226] [1.8% , 22%] [1 , 712]

6 [1860 , 2502] [41% , 48%] [113 , 677]
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Illustration: liquidity in FTR and future
market

- Insufficient liquidity in the FTR market impacts the futures market

Volume FTRs Volume Futures P f
c

`
FUTURE 6

´

960 570 (92%)
ˆ
52.9, 53.6

˜

720 478 (69%)
ˆ
52.9, 53.7

˜

480 320 (56%)
ˆ
52.9, 53.8

˜

240 269 (39%)
ˆ
53.5, 54.0

˜

0 152 (22%) 54.8

Table: Induced energy futures volume for a given liquidity bounds on FTRs
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