

Understanding the Price Dynamics

of Emission Permits: A Model for Multiple Trading Periods

by Steffen Hitzemann and Marliese Uhrig-Homburg

Marliese Uhrig-Homburg, Energy & Finance, INREC 2010 | October 6, 2010

INSTITUTE OF FINANCE, BANKING, AND INSURANCE



《曰》 《圖》 《문》 《문》 문

1. Introduction

- Cap-and-trade systems for greenhouse gases established in many different countries all over the world
- Emission market is characterized by a set of regulatory rules.

 \Longrightarrow How does the regulatory framework affect price dynamics?

- Understanding the price dynamics crucially important for
 - pricing derivatives
 - sound risk management
 - energy-related operating and investment decisions
 - \implies We propose long-term equilibrium model under uncertainty with and without abatement possibilities

Introduction

Our equilibrium model for permit prices takes into account

- sequence of consecutive trading periods
- inter-period banking, no inter-period borrowing
- penalty costs and later delivery of lacking permits

 \implies How does additional consideration of consecutive trading periods change finite period view?

- We identify option analogy of emission permits
 - permit $\hat{=}$ strip of binary options written on net cumulative emissions
 - underlying not exogenously given but derived endogenously through abatement

INREC 2010

Stylized facts of EU ETS have changed

- initially two trading periods: 2005 2007 and 2008 2012
 - within trading periods EUAs are storable (bankable)
 - banking and borrowing not allowed between 2007 and 2008
- meanwhile plans for indefinitely ongoing sequence of trading periods
 - third trading period until 2020
 - no inter-period borrowing but inter-period banking
 - presumable figures for permit allocation in following trading periods

l iterature

theoretical models

equilibrium models considering one trading period

- companies choose optimal trading and abatement strategies
 - Seifert et al (2008), Carmona et al (2008), Carmona/Fehr/Hinz (2009)
- companies choose optimal trading strategies only
 - e.g. Chesney/Taschini (2008)
- models considering two trading periods
 - Kijima et al (2009): either banking and borrowing or neither of them
 - Cetin, Verschuere (2009): no banking

empirical studies

- burgeoning literature
- mostly based on data from trial period
 - Daskalakis et al (2009), Paolella, Taschini (2008), Benz, Trück (2009), Uhrig-Homburg, Wagner (2009)

Agenda

- 1. equilibrium model for multiple trading periods
 - takes into account most important features of EU ETS
 - penalty costs and later delivery of lacking permits
 - inter-period banking, no inter-period borrowing
 - both with and without abatement possibilities
- 2. properties of the EUA price dynamics
 - exploit option analogy of EUAs
- 3. implications for derivative pricing
 - appropriate price distributions for option pricing
 - insights into valuation of inter-period futures

2. Equilibrium model

 CO_2 -regulated company

stochastic emission rate (Business As Usual)

$$dy_t = \mu(y_t)dt + \sigma(y_t)dw_t$$

company may

- buy or sell EUAs in market (z_t)
- pay penalty for not complying
- abate u_t of CO₂ emissions with abatement costs $C(u_t)$
- ▶ total expected emissions in [0, T_k] (abatements/trading taken into account)

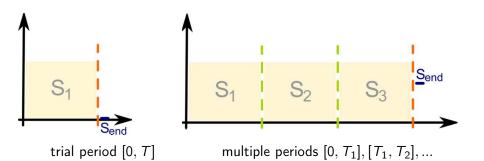
$$x_{t,T_k} = -\int_0^t u_s ds - \int_0^t z_s ds + E_t (\int_0^{T_k} y_s ds)$$

CO₂-regulated company

- ▶ n consecutive trading periods [0, T₁], [T₁, T₂]...[T_{n-1}, T_n] with inter-period banking but no inter-period borrowing
- ▶ initial endowment e_{k-1} of EUAs at beginning of each period [T_{k-1}, T_k]
- penalties are incurred if
 - net realized emissions x_{T_k} from 0 until T_k exceed
 - cumulative amount $e_{T_k} = \sum_{T_i < T_k} e_j$ of permits allocated before T_k ,
 - i.e. remaining permits $R(x_{T_k}) = e_{T_k} x_{T_k} < 0$
- penalty costs at end of each trading period T_k for lacking EUAs

$$P(x_{T_k}) = min[0, pR(x_{T_k})]$$

CO₂-regulated company



company's optimization problem:

$$\max_{u_{t}, z_{t}, t \in [0, T_{n}]} E_{0} \Big(\int_{0}^{T_{n}} e^{-rt} C(u_{t}) dt - \int_{0}^{T_{n}} e^{-rt} S(t) z_{t} dt + \sum_{j=1}^{n} e^{-rT_{j}} P(x_{T_{j}}) + R(x_{T_{n}}) S_{end} \Big)$$

Market equilibrium

Consider market consisting of N companies

- equilibrium consists of
 - trading strategies $z_{it}^*, i = 1 \dots N$
 - abatement rates $u_{it}^*, i = 1 \dots N$
 - EUA spot price S(t)
- solving
 - individual cost problems and
 - market clearing condition $\sum_{i=1}^{N} z_{it} = 0$ for all t

Technically, we

- first consider last trading period $[T_{n-1}, T_n]$ and
- proceed backwards using dynamic programming

Solution without abatement possibilities

- ► Marginal value of an emission allowance consists of two components:
 - $1. \ \mbox{penalty payment saved weighted by probability that penalties arise}$
 - 2. value one additional allowance can be sold for at T_n
- ▶ In equilibrium $E_t \left[\mathbbm{1}_{\{R_n(x_{T_n}^i) < 0\}} \right]$ is equal for all companies i⇒ take global view $(x_{T_n} = \sum x_{T_n}^i)$

• within last trading period
$$[T_{n-1}, T_n]$$
:

$$S(t) = e^{-r(T_n - t)} E_t \left[\mathbb{1}_{\{R(\times_{T_n}) < 0\}} \right] p + e^{rt} S_{end}$$

in prior periods:

$$S(t) = \sum_{T_j > t} e^{-r(T_j - t)} E_t \left[\mathbb{1}_{\{R(\times_{T_j}) < 0\}} \right] p + e^{rt} S_{end}$$

Solution including abatement possibilities

general structure still holds

$$S(t) = \sum_{T_j > t} e^{-r(T_j - t)} E_t \left[\mathbb{1}_{\{R(\times_{T_j}) < 0\}} \right] p + e^{rt} S_{end}$$

- but dynamics of cumulative net expected emissions depends on (endogenous) abatement strategies u_{it}
- from first order condition:

$$S(t) = c_i u_{it}^*, i = 1 \dots N$$

- i.e. spot price \equiv marginal abatement costs
 - if EUA price is above marginal abatement cost, companies may profit by abating cheap and selling higher (and vice versa)
 - all companies have the same marginal abatement costs after trading

Solution including abatement possibilities

abatement strategies

- start with last trading period
 - deduce characteristic PDE with boundary conditions from optimality principle from stochastic optimal control theory
 - solve for strategy value V_n
- step back one period
 - deduce again characteristic PDE
 - solve for strategy value using next period's value (boundary value)
- derive abatement strategy from resulting Hamilton-Jacobi-Bellman equation

3. Properties of allowance prices

- Intra-period martingal property: Discounted spot prices are martingales within each trading period.
 - in particular, no mean-reversion or seasonal behavior
 - due to storability and assumption of risk-neutral agents
- Option characteristics: Emission allowances can be considered as a strip of binary European call options.
 - without abatement: each call is written on non-tradable underlying, the net cumulative emissions until end of given trading period
 - with abatement: market participants can influence underlying through abatement actions
- ► Local volatility: Local volatility is time- and state-dependent.

Properties

From option characteristics of EUA it follows:

- 1. each additional trading period leads to additional value component:
 - current value of binary option with non-negative payoff
- 2. allowance price is bounded above and below
 - lower bound: $S_{lower}(t) = e^{rt}S_{end}$
 - upper bound: $S_{upper}(t) = \sum_{j=1}^{n} e^{-r(T_j-t)} p + e^{rt} S_{end}$
- 3. binary part leads to discontinuity at the end of each trading period
- 4. induced transition from one trading period to the next

$$S(T_1^-) - S(T_1^+) = 1_{\{R(x_{T_1}) < 0\}}p$$

- smooth transition if economy is in surplus
- otherwise price decrease by amount of penalty

Properties

Concrete model setting in accordance with EU ETS:

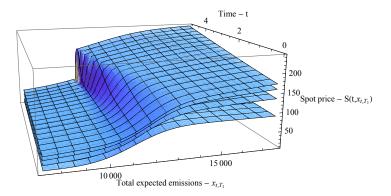
- chosen parameter values:
 - up to four consecutive trading periods
 - first period 5 years, next periods 8 years
 - allocation according to current allocation plans

phase II (2008-2012)	10.400 billion tons
phase III (2013-2020)	14.775 billion tons
phase IV (2021-2028)	12.455 billion tons
phase V (2029-2036)	10.135 billion tons

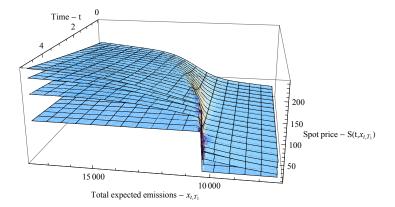
- ▶ penalty costs: $p_j = €100$ in each period j
- time-0 value $S_{end} = 14.11$

consider spot price for first period of each setting

Spot price function $S(t, x_{t,T_1})$



Spot price function $S(t, x_{t,T_1})$ (back)



Value components of current spot price $S(t, x_{t,T_1})$

Emissions	s Scenario	Value Component from				
current	future	period 1	period 2	period 3	period 4	S _{end}
medium	medium	72%	11%	2%	1%	14%
high	high	38%	27%	18%	10%	7%
high	low	65%	14%	5%	5%	11%
low	high	0%	47%	23%	15%	15%
low	low	0%	2%	22%	29%	47%

substantial part of spot price attributable to future trading periods

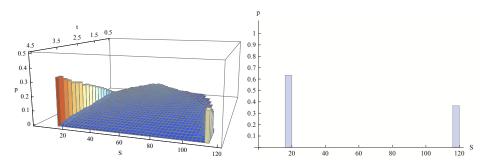
4. Price dynamics and derivative pricing

- Spot EUAs, futures, and options are traded OTC and on exchanges across Europe
 - exchange traded options typically mature in current trading period (intra-period)
 - futures with maturity in next trading period (inter-period) also available
- What do we learn from our long-term equilibrium model for derivative pricing?
 - concerning appropriate price distributions for option pricing
 - concerning valuation of inter-period futures

Intra-period options

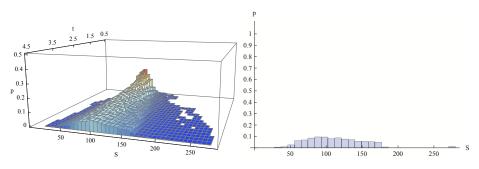
- Pricing of non-linear carbon-related derivatives requires assumptions about probability distributions of EUA prices.
- Which kind of distribution seems appropriate according to our model?
 - for setting with one trading period (trial period)
 - for multiple period setting (current situation)
- Simulation study: consider prices at the end (and during) the first trading period conditioned on time zero information
 - for setting with only one trading period
 - for settings with two, three, and four trading periods

Spot price distribution (one period)



- probability distribution approaches two-point distribution
- standard models (GBM, jump-diffusion...) are obviously not able to capture this property

Spot price distribution (four periods)



final permit price consists of two parts

- binary part
- value component attributed to following trading period
- within trading period standard models more appropriate than before
- at period end binary part still important

Inter-period futures

 Standard cost-of carry relation should hold for intra-period (T < T₁) futures (Uhrig-Homburg/Wagner (2009))

$$F(t,T)=e^{r(T-t)}S(t)$$

Holding current permit has additional benefit compared to holding inter-period future (T > T₁) maturing in next trading period:

$$S(t) - e^{r(T-t)}F(t,T) = e^{-r(T_1-t)}E_t[1_{\{R(\times_{T_1})<0\}}]p$$

In commodity literature: benefit captured by convenience yield

- but standard convenience yield models (such as in Daskalakis et al (2009)) inappropriate due to
- cost-of carry relation for inter-period futures with different maturities

Conclusion

each additional trading period leads to

- additional possible use because of banking possibility
- additional value component in today's spot price
- relative share depends on current and future expected emissions
- ▶ EUAs $\widehat{=}$ strip of binary options written on net cumulative emissions
 - > price bounds naturally depend on number of trading periods considered
 - spot prices do not decline to zero at end of a trading period
 - smooth transition into next trading period if economy is in surplus
- if at all, standard option pricing models useful for intra-period options maturing within trading period (when binary part is not too important)
- standard stochastic convenience yield models are inappropriate for inter-period futures