Expected Utility and Performance Measures

Aleš Černý

Energy & Finance Seminar, Essen
25th November 2009
Goals of the talk

Investors’ preferences
Optimal portfolio selection
Existence of optimal portfolios
Performance measurement
Problems with Sharpe ratio
References
Goals of the talk

- Understand basic paradigms in optimal portfolio selection
Goals of the talk

- Understand basic paradigms in optimal portfolio selection
- Expected utility maximization
Goals of the talk

- Understand basic paradigms in optimal portfolio selection
 - Expected utility maximization
 - Standard measurement of attitude to risk
Goals of the talk

- Understand basic paradigms in optimal portfolio selection
 - Expected utility maximization
 - Standard measurement of attitude to risk
 - Effect of risk aversion on optimal portfolio selection
Goals of the talk

- Understand basic paradigms in optimal portfolio selection
 - Expected utility maximization
 - Standard measurement of attitude to risk
 - Effect of risk aversion on optimal portfolio selection
- Understand basic issues in performance measurement
Goals of the talk

- Understand basic paradigms in optimal portfolio selection
 - Expected utility maximization
 - Standard measurement of attitude to risk
 - Effect of risk aversion on optimal portfolio selection

- Understand basic issues in performance measurement
 - Certainty equivalent growth rate
Goals of the talk

- Understand basic paradigms in optimal portfolio selection
 - Expected utility maximization
 - Standard measurement of attitude to risk
 - Effect of risk aversion on optimal portfolio selection

- Understand basic issues in performance measurement
 - Certainty equivalent growth rate
 - Investment potential
Goals of the talk

- Understand basic paradigms in optimal portfolio selection
 - Expected utility maximization
 - Standard measurement of attitude to risk
 - Effect of risk aversion on optimal portfolio selection

- Understand basic issues in performance measurement
 - Certainty equivalent growth rate
 - Investment potential
 - Sharpe ratio and its shortcomings
Goals of the talk

Investors’ preferences
Optimal portfolio selection
Existence of optimal portfolios
Performance measurement
Problems with Sharpe ratio

References
Goals of the talk

Investors’ preferences
Optimal portfolio selection
Existence of optimal portfolios
Performance measurement
Problems with Sharpe ratio
References

Textbook, chapter 3: Černý 2009

“Aleš Černý’s new edition of Mathematical Techniques in Finance is an excellent master’s-level treatment of mathematical methods used in financial asset pricing. By updating the original edition with methods used in recent research, Černý has once again given us an up-to-date first-class textbook treatment of the subject.”

—Darrell Duffie, Stanford University
Investors’ preferences I

Investors’ preferences

Utility function
Certainty equivalent
Risk aversion

Optimal portfolio selection
Existence of optimal portfolios
Performance measurement
Problems with Sharpe ratio
References

Assumption #1: Investors prefer more to less
Assumption #2: Investors are risk averse

Definition: An investor is risk averse when positive deviations from her average wealth do not compensate for equally large and equally probable negative deviations.

The two assumptions are captured by a concave and increasing function U, commonly called a utility function.
Investors’ preferences I

- Assumption #1: Investors prefer more to less
Investors’ preferences

- Assumption #1: Investors prefer more to less
- Assumption #2: Investors are risk averse
Investors’ preferences I

- Assumption #1: Investors prefer more to less
- Assumption #2: Investors are risk averse

Definition

An investor is **risk averse** when positive deviations from her average wealth do not compensate for equally large and equally probable negative deviations.
Investors’ preferences I

- Assumption #1: Investors prefer more to less
- Assumption #2: Investors are risk averse

Definition

An investor is **risk averse** when positive deviations from her average wealth do not compensate for equally large and equally probable negative deviations.

- The two assumptions are captured by a concave and increasing function \(U \), commonly called a **utility function**.
Utility function
Utility function

Utility of Wealth $U(V)$ vs Wealth V

Concave and increasing utility function
Utility function

Concave and increasing utility function

Utility of Wealth

U(V)

U(V_0)

Wealth V

V_0

V_{up}

V_{down}
Utility function

Concave and increasing utility function

Utility of Wealth

$U(V)$

$U(V_0)$

V_0

V_{up}

V_{down}

Wealth V

$U(V_{down})$

$U(V_{up})$
Utility function

- Utility function: Concave and increasing
- Utility of Wealth
 - $U(V)$
 - $U(V_0)$
 - $U(V_{up})$
 - $U(V_{down})$
- Wealth V
- V_0, V_{up}, V_{down}
Utility function

Concave and increasing utility function

Utility of Wealth

\[U(V) \]

\[U(V_{up}) \]

\[U(V_{0}) \]

\[V_{down} \]

\[V_{0} \]

\[V_{up} \]

Wealth V
Goals of the talk
Investors’ preferences
Utility function
Certainty equivalent
Risk aversion
Optimal portfolio selection
Existence of optimal portfolios
Performance measurement
Problems with Sharpe ratio
References

Utility function

- Utility of Wealth
- Concave and increasing utility function
- $U(V)$
- $U(V_0)$
- $U(V_{up})$
- $U(V_{down})$
- V_{down}
- V_0
- V_{up}
- Wealth V

Graph showing concave and increasing utility function.
Examples of utility functions

Examples of utility functions

Two important parametric forms (power and exponential)

CRRA class (Constant Relative Risk Aversion, one parameter)

\[\text{CRRA}(V) = V^{1/n} \]

CARA utility (Constant Absolute Risk Aversion, one parameter)

\[\text{CARA}(V) = e^{\alpha V} \text{ with } \alpha > 0 \]

Their generalization

HARA class (Hyperbolic Absolute Risk Aversion, two parameters)

\[\text{HARA}(V) = \left(V + V_0 \right)^{-1} \]

\[\text{HARA}(V) = \left(V^j V_0 \right)^{-1} \text{ with } j < 0 \]
Examples of utility functions

- Two important parametric forms (power and exponential)
Examples of utility functions

- Two important parametric forms (power and exponential)
 - CRRA class (Constant Relative Risk Aversion, one parameter)
Examples of utility functions

- Two important parametric forms (power and exponential)
 - CRRA class (Constant Relative Risk Aversion, one parameter)
 \[CRRA_\gamma(V) = \frac{V^{1-\gamma}}{1-\gamma} \]
 - CARA utility (Constant Absolute Risk Aversion, one parameter)
Examples of utility functions

- Two important parametric forms (power and exponential)
 - CRRA class (Constant Relative Risk Aversion, one parameter)
 \[
 \text{CRRA}_\gamma(V) = \frac{V^{1-\gamma}}{1-\gamma}
 \]
 - CARA utility (Constant Absolute Risk Aversion, one parameter)
 \[
 \text{CARA}_a(V) = -e^{-av} \text{ with } a > 0
 \]
- Their generalization
Examples of utility functions

- Two important parametric forms (power and exponential)
 - CRRA class (Constant Relative Risk Aversion, one parameter)
 \[
 \text{CRRA}_\gamma(V) = \frac{V^{1-\gamma}}{1-\gamma}
 \]
 - CARA utility (Constant Absolute Risk Aversion, one parameter)
 \[
 \text{CARA}_a(V) = -e^{-aV} \text{ with } a > 0
 \]
- Their generalization
 - HARA class (Hyperbolic Absolute Risk Aversion, two parameters)
Examples of utility functions

- Two important parametric forms (power and exponential)
 - CRRA class (Constant Relative Risk Aversion, one parameter)
 \[CRRA_\gamma(V) = \frac{V^{1-\gamma}}{1-\gamma} \]
 - CARA utility (Constant Absolute Risk Aversion, one parameter)
 \[CARA_a(V) = -e^{-aV} \text{ with } a > 0 \]

- Their generalization
 - HARA class (Hyperbolic Absolute Risk Aversion, two parameters)
 \[HARA_{\gamma,\nu}(V) = \frac{(\tilde{V} + V)^{1-\gamma}}{1-\gamma} \text{ with } \gamma > 0, \]
 \[HARA_{\gamma,\nu}(V) = \frac{|\tilde{V} - V|^{1-\gamma}}{1-\gamma} \text{ with } \gamma < 0 \]
Assumption #3: Risky distribution of wealth is valued by the certainty equivalent of its expected utility:

\[\text{CE} \text{ its certainty equivalent} \]

\[U(\text{CE}) = E[U(V)] \]
Assumption #3: Risky distribution of wealth is valued by the certainty equivalent of its expected utility
Assumption #3: Risky distribution of wealth is valued by the certainty equivalent of its expected utility

V risky distribution of wealth
Assumption #3: Risky distribution of wealth is valued by the certainty equivalent of its expected utility

- V risky distribution of wealth
- $E[U(V)]$ its expected utility
Assumption #3: Risky distribution of wealth is valued by the certainty equivalent of its expected utility

- V risky distribution of wealth
- $E[U(V)]$ its expected utility
- CE its certainty equivalent
Investors’ preferences II

- Assumption #3: Risky distribution of wealth is valued by the certainty equivalent of its expected utility
- \(V \) risky distribution of wealth
- \(E[U(V)] \) its expected utility
- \(CE \) its certainty equivalent

\[
U(CE) = E[U(V)]
\]
Expected utility and certainty equivalent wealth
Expected utility and certainty equivalent wealth
Expected utility and certainty equivalent wealth

Performance Measures
A. Černý

Goals of the talk
Investors’ preferences
Utility function
Certainty equivalent
Risk aversion
Optimal portfolio selection
Existence of optimal portfolios
Performance measurement
Problems with Sharpe ratio
References
Expected utility and certainty equivalent wealth
Expected utility and certainty equivalent wealth

- Goals of the talk
- Utility function
- Certainty equivalent
- Risk aversion
- Optimal portfolio selection
- Performance measurement
- Problems with Sharpe ratio
- References
Expected utility and certainty equivalent wealth
An investor who is highly averse to risk will naturally invest less in risky assets.
An investor who is highly averse to risk will naturally invest less in risky assets.

Suppose investor’s preferences are generated by a given utility function $U(V)$.

We call $A(v) := U_0'(v) U_0''(v)$ the coefficient of local absolute risk aversion.
An investor who is highly averse to risk will naturally invest less in risky assets.

Suppose investor’s preferences are generated by a given utility function $U(V)$.

Question: How can we quantify risk aversion of this particular investor?
Measurement of risk aversion I

- An investor who is highly averse to risk will naturally invest less in risky assets
- Suppose investor’s preferences are generated by a given utility function $U(V)$
- Question: How can we quantify risk aversion of this particular investor?
- Take a small additive risk ϵ with zero mean and small variance σ^2
Measurement of risk aversion I

- An investor who is highly averse to risk will naturally invest less in risky assets
- Suppose investor’s preferences are generated by a given utility function $U(V)$
- Question: How can we quantify risk aversion of this particular investor?
- Take a small additive risk ϵ with zero mean and small variance σ^2
- Initial wealth is risk-free and equals v
An investor who is highly averse to risk will naturally invest less in risky assets.

Suppose investor’s preferences are generated by a given utility function $U(V)$.

Question: How can we quantify risk aversion of this particular investor?

Take a small additive risk ε with zero mean and small variance σ^2.

Initial wealth is risk-free and equals v.

Terminal wealth is $v + \varepsilon$.
An investor who is highly averse to risk will naturally invest less in risky assets.

Suppose investor’s preferences are generated by a given utility function $U(V)$.

Question: How can we quantify risk aversion of this particular investor?

Take a small additive risk ϵ with zero mean and small variance σ^2.

Initial wealth is risk-free and equals v.

Terminal wealth is $v + \epsilon$.

Observe how CE varies with σ^2.

Measurement of risk aversion I
An investor who is highly averse to risk will naturally invest less in risky assets.

Suppose investor’s preferences are generated by a given utility function $U(V)$.

Question: How can we quantify risk aversion of this particular investor?

Take a small additive risk ϵ with zero mean and small variance σ^2.

Initial wealth is risk-free and equals v.

Terminal wealth is $v + \epsilon$.

Observe how CE varies with σ^2.

$$CE - v = \frac{1}{2} \frac{U''(v)}{U'(v)} \sigma^2 + o(\sigma^2)$$

We call $A(v) := -\frac{U''(v)}{U'(v)}$ the coefficient of local absolute risk aversion.
Measurement of risk aversion II

- Derivation: write down 2nd order Taylor expansion

\[U(v + \epsilon) = U(v) + U'(v)\epsilon + \frac{1}{2}U''(v)\epsilon^2 + o(\epsilon^2) \]

- Take expectations on both sides

\[E[U(v + \epsilon)] = U(v) + \frac{1}{2}U''(v)\sigma^2 + o(\sigma^2) \]

- Write down 1st order expansion for the certainty equivalent

\[U(CE) = U(v + CE - v) = U(v) + U'(v)(CE - v) + o(CE - v) \]

- From \(U(CE) = E[U(v + \epsilon)] \) we find

\[CE - v = \frac{1}{2} \frac{U''(v)}{U'(v)} \sigma^2 + o(\sigma^2). \]

- The difference \(CE - v \) is the risk premium
Now assume the shock is multiplicative
Now assume the shock is multiplicative
i.e. terminal wealth equals $(1 + \epsilon)V$
Now assume the shock is multiplicative
i.e. terminal wealth equals \((1 + \epsilon)V\)
After similar derivation we find
Now assume the shock is multiplicative
i.e. terminal wealth equals \((1 + \epsilon)V\)
After similar derivation we find

\[
\frac{CE - v}{v} = \frac{1}{2} \frac{vU''(v)}{U'(v)} \sigma^2 + o(\sigma^2)
\]

We call \(R(v) := -\frac{vU''(v)}{U'(v)}\) the coefficient of local relative risk aversion
Basics of optimal portfolio selection

Performance Measures

A. Černý

Goals of the talk
Investors' preferences
Optimal portfolio selection
Existence of optimal portfolios
Performance measurement
Problems with Sharpe ratio
References

By portfolio allocation we mean 2 things:
- allocation of wealth across risky assets
- allocation of wealth between safe and risky assets

In this talk we will study mainly the second aspect.

Optimal portfolio selection is about balancing risk and reward. Mathematically this is achieved by maximizing expected utility of terminal wealth.
By portfolio allocation we mean 2 things
By portfolio allocation we mean 2 things
- allocation of wealth across risky assets
Basics of optimal portfolio selection

- By portfolio allocation we mean 2 things
 - allocation of wealth across risky assets
 - allocation of wealth between safe and risky assets
Basics of optimal portfolio selection

- By portfolio allocation we mean 2 things
 - allocation of wealth across risky assets
 - allocation of wealth between safe and risky assets

- In this talk we will study mainly the second aspect
Basics of optimal portfolio selection

By portfolio allocation we mean 2 things
- allocation of wealth across risky assets
- allocation of wealth between safe and risky assets

In this talk we will study mainly the second aspect

Optimal portfolio selection is about balancing risk and reward
Basics of optimal portfolio selection

- By portfolio allocation we mean 2 things
 - allocation of wealth across risky assets
 - allocation of wealth between safe and risky assets
- In this talk we will study mainly the second aspect
- Optimal portfolio selection is about balancing risk and reward
- Mathematically this is achieved by maximizing expected utility of terminal wealth
Expected utility maximization - numerical example

- See example 3.1 in the book
Expected utility maximization - numerical example

- See example 3.1 in the book
- Imagine you have £1,000,000 in savings and £200,000 of annual income (receivable at the end of the year)
Expected utility maximization - numerical example

- See example 3.1 in the book
- Imagine you have £1,000,000 in savings and £200,000 of annual income (receivable at the end of the year)
- You wish to invest your savings for a year
Expected utility maximization - numerical example

- See example 3.1 in the book
- Imagine you have £1,000,000 in savings and £200,000 of annual income (receivable at the end of the year)
- You wish to invest your savings for a year
- You can invest either in safe account with rate of return 2% p.a.
Expected utility maximization - numerical example

- See example 3.1 in the book
- Imagine you have £1,000,000 in savings and £200,000 of annual income (receivable at the end of the year)
- You wish to invest your savings for a year
- You can invest either in safe account with rate of return 2% p.a.
- Or a risky stock, returning either 20% or −10% with equal probability
Expected utility maximization - numerical example

- See example 3.1 in the book
- Imagine you have £1,000,000 in savings and £200,000 of annual income (receivable at the end of the year)
- You wish to invest your savings for a year
- You can invest either in a safe account with a rate of return 2% p.a.
- Or a risky stock, returning either 20% or -10% with equal probability
- **Your task:**
 1. Write down how much (out of your £1 million) you would invest in the stock
 2. Calculate how much a person with utility function $U(V) = -V^{-4}/4$ should invest in the stock
Existence of optimal portfolios I
Existence of optimal portfolios

- The effective domain of U is the set of points where U is finite.
The effective domain of U is the set of points where U is finite,

$$\text{dom } U := \{ x \in \mathbb{R} : U(x) > -\infty \}.$$
The effective domain of U is the set of points where U is finite,

$$\text{dom } U := \{x \in \mathbb{R} : U(x) > -\infty\}.$$

We require continuity as we move from inside $\text{dom } U$ to its boundary. Mathematically,

$$\limsup_{y \to x} U(y) = U(x) \text{ for all } x \in \mathbb{R},$$
The effective domain of U is the set of points where U is finite,

$$ \text{dom } U := \{ x \in \mathbb{R} : U(x) > -\infty \}. $$

We require continuity as we move from inside $\text{dom } U$ to its boundary. Mathematically,

$$ \lim_{y \to x} \sup U(y) = U(x) \text{ for all } x \in \mathbb{R}, $$

function U with this property is called closed or upper semi-continuous.
Existence of optimal portfolios I

- The effective domain of U is the set of points where U is finite,
 \[\text{dom } U := \{ x \in \mathbb{R} : U(x) > -\infty \}. \]

- We require continuity as we move from inside \(\text{dom } U \) to its boundary. Mathematically,
 \[\lim_{y \to x} \sup U(y) = U(x) \text{ for all } x \in \mathbb{R}, \]

- function U with this property is called closed or upper semi-continuous

- Example of a discontinuous but closed concave function
 \[U(x) = \begin{cases} \sqrt{x} & \text{for } x \geq 0, \\ -\infty & \text{for } x < 0, \end{cases} \]
Existence of optimal portfolios II

Performance Measures
A. Černý

Goals of the talk
Investors’ preferences
Optimal portfolio selection
Existence of optimal portfolios
Performance measurement
Problems with Sharpe ratio
References
Concave functions need not be differentiable at every interior point x of dom U but they always possess left and right derivatives

$$U'_+(x) : = \lim_{h \to 0^+} \frac{U(x + h) - U(x)}{h},$$

$$U'_-(x) : = \lim_{h \to 0^-} \frac{U(x + h) - U(x)}{h}.$$
Concave functions need not be differentiable at every interior point x of $\text{dom } U$ but they always possess left and right derivatives

$$U_+(x) : = \lim_{h \to 0^+} \frac{U(x + h) - U(x)}{h},$$
$$U_-(x) : = \lim_{h \to 0^-} \frac{U(x + h) - U(x)}{h}.$$

Outside the effective domain we set:

$$U_-(x) = U_+(x) = \infty \text{ for } x < \inf \text{ dom } U,$$
$$U_-(x) = U_+(x) = -\infty \text{ for } x > \sup \text{ dom } U.$$
Theorem (Černý et al. 2008)

Suppose $U : \mathbb{R} \to [-\infty, \infty)$ is a closed concave function and there is an open interval $\text{dom}_+ U$ on which U is strictly increasing. Assume

$$\frac{U'(\infty)}{U'(-\infty)} \leq 0,$$

where we adopt the convention $\frac{-\infty}{\infty} \leq 0$.

Let X be an \mathbb{R}^n-valued bounded random variable and suppose there exists a probability measure Q such that $E^Q[X] = 0$. Then for any $\nu \in \text{dom}_+ U$ the maximizer in

$$\sup_{W \in \mathbb{R}^n} E[U(\nu + WX)]$$

exists.
Dependence of optimal investment on risk aversion

- We expect the amount of risky investment to fall with increasing aversion to risk.
- But at what rate?
- We can examine this dependence numerically by plotting the optimal investment α as a function of relative risk tolerance $1/R(v) = 1/\gamma$.

![Graph showing the dependence of optimal investment on risk aversion](image)
Normalized portfolio and investment potential

- Similarly we can examine the dependence of the certainty equivalent on the risk aversion.
- This dependence again turns out to be close to linear.

Definition

1. For a given utility U, reference level v and risky asset with excess return X we define **normalized optimal portfolio** β as the optimal risky investment $\hat{\alpha}$ per unit of local relative risk tolerance at the reference wealth:

 $$\beta := A(v) \hat{W} = R(v) \hat{\alpha}.$$

2. We define a normalized certainty equivalent gain, which we call the **investment potential**, as the percentage increase in certainty equivalent wealth per unit of risk tolerance,

 $$\text{IP} := A(v)(\text{CE}(\hat{\alpha}) - v) = R(v) \frac{\text{CE}(\hat{\alpha}) - v}{v}.$$
Definition

Consider \(v \) such that \(U'(v) > 0 \) and \(U''(v) < 0 \). We say that \(f \) given by the formula

\[
f(z) := c_1 U \left(v + \frac{z}{A(v)} \right) + c_2
\]

(3)

with

\[
c_1 := \frac{A(v)}{U'(v)}, \quad c_2 := -c_1 U(v),
\]

(4)

is a **normalized utility** to \(U \) at \(v \).

- The normalized utility \(f \) maps risk-free wealth \(v \) to 0 in such a way that we achieve unit risk aversion at 0,

\[
- \frac{f''(0)}{f'(0)} = 1.
\]
This is true regardless of the value c_1 and c_2. We pick c_1 and c_2 conveniently to obtain $f(0) = 0$ and $f'(0) = 1$.

It transpires that the normalized quantities can be computed by means of a normalized utility which we define next.

Proposition (Brooks et al. 2006)

Consider a utility function U and the corresponding normalized utility f. In the absence of arbitrage

$$\hat{\beta}(X) = \arg \max_{\beta \in \mathbb{R}^n} \mathbb{E}[f(\beta X)],$$

$$\text{IP}(X) = f^{-1}(\mathbb{E}[f(\hat{\beta} X)]).$$
Normalized HARA utility

Proposition

The normalized utility is independent of \(\bar{V} \) and \(v \) and it is given by

\[
 f_\gamma(z) := \begin{cases}
 \frac{(1+z/\gamma)^{1-\gamma}-1}{1/\gamma-1} & \text{for } \gamma > 0, \gamma \neq 1, \\
 \ln(1+z) & \text{for } \gamma = 1, \\
 \frac{|1+z/\gamma|^{1-\gamma}-1}{1/\gamma-1} & \text{for } \gamma < 0.
 \end{cases}
\]

The function \(f_\gamma(z) \) has a pointwise limit

\[
 f_\infty(z) := \lim_{|\gamma| \to \infty} f_\gamma(z) = 1 - e^{-z}, \text{ which is the normalized utility of } \text{CARA}_a \text{ for any } a > 0 \text{ and any } v \in \mathbb{R}.
\]

- Consequence: (normalized) optimal investment from CRRA\(\gamma\) is very similar to optimal investment from CARA when \(|\gamma|\) is large
- The same is true for the investment potential
Numerical example revisited

- In Matlab, enter:
  ```
  gama = 5;
  X = [0.18 -0.12];
  Xdistr = [0.5 0.5];
  ```

- Run the command:
  ```
  [IP beta] = HARAmx(X, XDistr, gama);
  ```

- This produces $\hat{\beta}(X) = 1.362$, $IP(X) = 0.020253$.

- To recover optimal investment and certainty equivalent for CRRA utility with $\gamma = 5$ we convert:

 \[
 \hat{\alpha} = \frac{\hat{\beta}}{R(v)} = \frac{1.362}{5} = 0.2724,
 \]

 \[
 CE = (1 + IP/R(v)) v
 = (1 + 0.020253/5) \times 1,220,000 = 1,224,942.
 \]
Consider our numerical example

- Compute IP and $\hat{\beta}$ for different values of γ
- Investment potential is a robust measure

<table>
<thead>
<tr>
<th>γ</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>15</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}_\gamma$</td>
<td>1.389</td>
<td>1.389</td>
<td>1.375</td>
<td>1.362</td>
<td>1.355</td>
<td>1.352</td>
</tr>
<tr>
<td>IP$_\gamma$</td>
<td>0.0208</td>
<td>0.0206</td>
<td>0.0204</td>
<td>0.0203</td>
<td>0.0202</td>
<td>0.0201</td>
</tr>
</tbody>
</table>
Quadratic utility I

- Special case of HARA utility with $\gamma = -1$

 \[\text{HARA}_{-1, \bar{V}}(V) = -\frac{(\bar{V} - V)^2}{2} \]

- It is the only utility that does not require numerical solutions when the market is incomplete

- Quadratic utility has a **bliss point** at \bar{V}

- Local relative risk aversion

 \[R(v) = (\bar{V}/v - 1)^{-1} \]

- Investment potential

 \[\text{IP}_{-1}(X) = \max_{\beta} 1 - \sqrt{\mathbb{E}[(1 - \beta X)^2]} \]
Quadratic utility II

- Normalized optimal investment
 \[\hat{\beta}_{-1} = \frac{E[X]}{E[X^2]} . \]

- Numerically, in our example
 \[
 \hat{\beta}_{-1}(X) = \frac{E[X]}{E[X^2]} = \frac{0.5 \times (0.18 - 0.12)}{0.5 \times (0.18^2 + 0.12^2)} = 1.282,
 \]

- The investment potential generated by quadratic utility is
 \[
 \text{IP}_{-1}(X) = 1 - \sqrt{1 - \frac{(E[X])^2}{E[X^2]}} = 0.0194
 \]
Investment potential and Sharpe ratio

- A simple manipulation yields \(1 - \frac{(E[X])^2}{E[X^2]} = \frac{1}{1 + SR^2(X)}\)
- Consequently

\[
IP_{-1}(X) = 1 - \sqrt{\frac{1}{1 + SR^2(X)}}
\]

- This works specifically for quadratic utility
- We can also try asymptotic analysis for small Sharpe ratio

\[
\frac{CE - \nu}{\nu} \approx \frac{1}{2} \frac{SR^2(X)}{R(\nu)}
\]

- The asymptotics work for any utility function
Problems with Sharpe ratio

- Because of the bliss point on the quadratic utility Sharpe ratio may underestimate true investment potential.
- This will happen when the wealth of optimal portfolio reaches beyond the bliss point:
 \[1 - \beta_{-1} X < 0 \]
- Depending on the sign of \(\beta_{-1} \) this will happen when:
 \[X_{\text{max}} > \frac{1}{\beta_{-1}} \quad \text{for} \quad \beta_{-1} > 0 \]
 \[X_{\text{min}} < \frac{1}{\beta_{-1}} \quad \text{for} \quad \beta_{-1} < 0 \]
- In such case one can increase the SR by throwing money away in good states.
Arbitrage-adjusted Sharpe ratio

- Consider excess returns of two assets, A and B

<table>
<thead>
<tr>
<th>Probability</th>
<th>1/6</th>
<th>1/2</th>
<th>1/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess return of Asset A</td>
<td>-1%</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Excess return of Asset B</td>
<td>-1%</td>
<td>1%</td>
<td>11%</td>
</tr>
</tbody>
</table>

- We find $\text{SR}_A > \text{SR}_B$
- However, asset B stochastically dominates asset A!
- The solution is to separate the excess return into 2 parts
 - Part with maximum Sharpe ratio
 - Pure arbitrage excess return (wealth we have set aside)
- We keep disposing of wealth in good states until the bliss point condition is just met
- See book 3.6.2-3.6.5
