
Pricing of Hourly Exercisable Electricity

Swing Options Using Di�erent Price

Processes

Guido Hirsch

EnBW Trading GmbH
Durlacher Allee 93, 76131 Karlsruhe, Germany

gu.hirsch@enbw.com

Abstract

It this paper fair values of hourly exercisable swing options written on the EEX spot price
as an underlying are calculated using three di�erent two factor models (regime-switching
AR-process, jump-di�usion process with Bernoulli jump-terms and a normal inverse gaus-
sian process). Therefore, an e�cient Least Squares Monte Carlo algorithm (LSM) is in-
troduced and applied to swing options with up to 5000 exercise rights. Finally, the three
models are compared with a focus on their ability to reproduce the characteristics of the
EEX spot prices and the swing option values resulting for di�erent numbers of exercise
rights.

A Bermudan option gives the buyer the right to exercise the option at a speci�ed number
of times. As Bermuda is geographically situated between America and Europe, the name of
this option is a pun � it re�ects that a Bermudan option is intermediate between a European
option (exercise only possible at expiry) and an American option (exercise possible at any time
until expiry). Each of these plain vanilla options may be speci�ed as either a call or a put
option. By contrast, a swing option gives the buyer the right to exercise one and only one call,
which is called up-swing right in this context, or put, named down-swing right in case of a
swing option, at any one of a number of speci�ed exercise dates. Therefore, a swing option is
in turn a generalization of a Bermudan option with multiple exercise rights, combining call and
put properties. Typically, there are J prede�ned swing opportunities � J could for example be
the number of hours in a year, whereas the number of up-swings is restricted to U and the
number of down-swings to D. While analytical pricing formulas exist for European options,
only numerical calculations are possible in case of swing options.
In this paper we concentrate on power markets and as power plants can be seen as swing

options containing only up-swing rights, we deal only with swing options that solely contain
up-swing rights. Nevertheless, the algorithm can also be applied to down-swing rights and an
extension to combinations of both types of rights is possible. This is important for gas storage,
which can be seen as a swing option with up- and down-swing rights.
If there is only one up-swing right contained in the option, i.e. U = 1, the swing option

reduces to a Bermudan call option and if the number of up-swing rights equals the number
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of swing opportunities, i.e. U = J , the swing option is nothing else but a strip of European
call options. In all other cases the exercise strategy for the option is non-trivial, as the choice
to exercise is always a decision between receiving an immediate payo�, which is certain, and
skipping this opportunity in favor of an uncertain, but hopefully larger future payo�. In case of
an option with multiple exercise rights, an immediate exercise can be seen as a decision for an
immediate payo� plus an option with one right less left for later exercises, i.e. a swing option
with less optionality and therefore usually less value.
Over all, the paper is organized as follows: In the �rst section the di�erent price processes as

well as the associated parameter estimation procedures are described. In the second, indepen-
dent section an e�cient Least Squares Monte Carlo algorithm (LSM) is introduced. Finally,
the obtained results are discussed in a third section.

1 Price Processes

Electricity is a very unique �ow commodity, with rather limited storability that requires imme-
diate delivery. On the one hand, the demand shows high variability and dependence on weather
conditions, that can only be reliably forecasted a few days ahead. On the other hand, demand
is very inelastic to price variations in the short term, as only a few large industrial consumers
have the �exibility to change their power consumption in response to market prices. As far
as the supply side is concerned, many power plants are only able to vary their power gener-
ation with a signi�cant time lag and the overall available generation capacity changes due to
maintenance. Finally, power plant outages as well as wind power generation add randomness
and complexity as a reliable wind prognosis is only available a few days ahead. Consequently,
electricity spot prices exhibit a very high volatility and abrupt, extreme price changes called
spikes occur, followed by a reversion back to normal price level within hours or days.
Because of these characteristics, special models for electricity spot prices have been devel-

oped. So far, there are roughly three di�erent model classes existing, which are able to re-
produce the fat tails associated with jumps and spikes, namely jump-di�usion (Clewlow and
Strickland 2000, Geman and Roncoroni 2006, Cartea and Figueroa 2005), regime-switching
(Huisman and Mahieu 2003, Schindelmayr 2005, de Jong 2006) and processes based on general-
ized hyperbolic distributions like the normal inverse gaussian distribution (Benth and Saltyte-
Benth 2004, Benth 2007, Weron and Misiorek 2007). The three models for the German spot
market EEX used in this paper belong to these three model classes and combine as well as
extend the ideas that can be found in the cited literature � especially as an hourly model is
necessary for the valuation of hourly swing options.
The EEX spot market is a day-ahead-market, i.e. every day d hourly power contracts for the

24 hours h of the next day are traded. Therefore two di�erent views on the time series of spot
prices can be taken: It can be regarded as

1. a scalar price process with an hourly granularity that contains a strong auto-correlation
for a 24-hour time lag or

2. a vector process with a daily granularity that consists of 24 correlated components.

In this paper as well as in Schindelmayr (2005), the second point of view is taken and the
spot market price is described by a discrete stochastic two-factor 24-dimensional vector process
Sd,h (d = 1, . . . , T , h = 1, . . . , 24) with a daily granularity, including short and long term price
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variations as stochastic factors:

Sd,h = exp(f(d, h) +Xd,h + Yd,h) . (1)

The stochastic short term factor Xd,h in combination with the deterministic function f(d, h)
generates the short term variations of the spot price, while the factor Yd,h is responsible for the
long term variations. Both factors Xd,h and Yd,h are � as common (Burger, Klar, Müller and
Schindlmayr 2004) � assumed to be stochastically independent.
The short term factor Xd,h is in turn split up into a scalar daily component X̄d describing

the dynamics of the daily average spot price and an additional vector process consisting of the
hourly deviations from the daily average:

Xd,h = X̄d + ∆Xd,h . (2)

In the same way the deterministic function f(d, h) is split up in a daily and an hourly part:

f(d, h) = f̄(d) + ∆f(d, h) . (3)

In the following subsections, models for the short and long term factor as well as for the
deterministic component have to be speci�ed and algorithms for their parameter estimation
have to be introduced. Altogether, three di�erent models for the short-term factor Xd,h are
used and compared in this paper, namely:

Model A: combines a regime-switching approach for the daily average and ARMA-proces-
ses for the hourly deviations.

Model B: consists of a jump-di�usion model with Bernoulli jumps instead of regime-
switching. The hourly deviations are treated as in model A.

Model C: makes � in contrast to the �rst two models � use of the normal inverse gaussian
process. Nevertheless, the hourly deviations are again treated as in model A and
B.

All three models are based on the same deterministic function and the same long term factor.

1.1 Long Term Factor

As we assume a deterministic interest rate framework, it is not necessary to distinguish between
forward and futures prices. Therefore, single hour futures prices at time t for delivery at time
T = (d, h) are conditional expectations under the equivalent martingale measure Q

Ft,T = EQ[ST |Ft] , (4)

where Ft = σ(Ss : s ≤ t) is the natural �ltration generated by the price process. The futures
price for a futures contract with a set H of delivery hours is then given by

Ft,H = EQ
[

1

|H|
∑
T∈H

ST |Ft

]
=

1

|H|
∑
T∈H

Ft,T . (5)

In this equation |H| denotes the number of delivery hours of the futures contracts. In complete
markets the Q-martingale measure is unique, ensuring that only one arbitrage free price for the
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futures contract exists. However, there are no derivatives with an hourly granularity traded on
the electricity market. Therefore it is an incomplete market, the equivalent martingale measure
Q is not unique and we are left to choose an appropriate measure for the examined market
(Cartea and Figueroa 2005).
In our model we assume that the long term process Ỹt follows a random walk with drift given

by

Ỹt+1 = Ỹt + (µt −
1

2
σ2Y ) + σY ε

Y
t , (6)

as also done in Burger et al. (2004). We switch to an equivalent martingale measure Q assuming
a zero market price of risk for the non hedgeable short-term process Xt. The equation for the
long-term process under Q becomes

Ỹt+1 = Ỹt + (µ∗t −
1

2
σ2Y ) + σY ε

Y
t , (7)

where the new µ∗t = µt − λt includes the market price of risk λt. The conditional expectation
of the deterministic function is simply

EQ[exp(f(t))|Ft] = exp(f(t)) . (8)

If T − t is large enough, the conditional distribution can be approximated by the stationary
distribution

EQ[exp(XT )|Ft] ≈ E[exp(XT )] ≈ exp(E[XT ] + Var[XT ]/2) . (9)

Due to the fact that we have assumed a zero price of risk for the short term process Xt, we have
been able to use the statistical expectation instead of the expectation under Q. Neglecting the
previous approximation error, the futures prices can be written as

Ft,T = ŜT · EQ[exp(YT )|Ft] = ŜT exp(Ỹt +
T−1∑
s=t

µ∗s) (10a)

with

ŜT = exp(E[XT ] + Var[XT ]/2 + f(T )) . (10b)

The hourly futures price Ft,T , which is also called hourly price forward curve (HPFC) in the
electricity sector, plays a central role for the pricing of hourly structures in the electricity OTC
and retail markets. As it re�ects both � the actual futures prices as well as today's expectation
for the spot prices at a future time T � it is for example often used for the valuation of �xed
delivery schedules. But, as we will see later, the HPFC can also be used to calculate a lower
boundary for the price of a swing option. A typical approach, that market participants use to
construct such an HPFC, is to extract daily and weekly patterns from historical spot prices (e.g.
using weighted averages) and use these patterns as weights to break down the quoted forward
or futures prices to an hourly granularity. Such an approach is not necessarily consistent with
price processes like the ones used in this paper. As equation (10b) shows, the run of the price
curve is in�uenced by the short term factor XT (and thus the price process used) and not only
by the deterministic component f(T ).

4



Starting with the price forward curve, the futures prices for delivery during a setH of delivery
hours results to

Ft,H =
1

|H|
∑
T∈H

Ft,T

=
1

|H|
∑
T∈H

ŜT · exp

(
Ỹt +

T−1∑
s=t

µ∗s

)
. (11)

We are still free to choose an appropriate functional form for µ∗s (and thus select an equivalent
martingale measure Q). If the time series ŜT is given, Ỹt = 0 is chosen and µ∗s is assumed
to be constant for all delivery hours H, i.e. µ∗s = µ∗H ∀s ∈ H, this nonlinear equation (11)
can be solved using a trust region dogleg algorithm (The MathWorks 2008). So far, no futures
with overlapping delivery periods have been considered. Unfortunately the matter is more
complicated, as base- and peak-futures have to be treated in parallel. This problem can be
solved introducing independent µ∗P,s and µ∗OP,s for peak and o�peak which are zero during
o�peak- or rather peak-hours and constant for the delivery hours of the o�peak or rather peak
futures contract:

µ∗P,s =

{
0, ∀s ∈ HOP

µP,HP
, ∀s ∈ HP

(12a)

and

µ∗OP,s =

{
0, ∀s ∈ HP

µOP,HOP
, ∀s ∈ HOP .

(12b)

This is equivalent to using one time series µ∗s that consists of the sum of µ∗P,s and µ∗OP,s
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Figure 1: Comparison of the di�erent scaling methods for the HPFC namely constant drift (i.e. using
equation (12)) versus scaling the mean (i.e. using equation (14)) for EEX futures prices settled
on 28.04.2008

plus correction terms for the marginal peak hours at the crossover from o�peak as well as the
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marginal o�peak hour at the crossover from peak. Instead of introducing this correction terms,
we prefer to think of two independent time series. As a consequence a system of two equations
per base-peak-pair of futures prices

Ft,HP
=

1

|HP |
∑
T∈HP

ŜT · exp

(
Yt +

T−1∑
s=t

µ∗P,s

)
, (13a)

Ft,HB
=

1

|HB|
∑
T∈HB

ŜT · exp

(
Ỹt +

T−1∑
s=t

(µ∗OP,s + µ∗P,s)

)
(13b)

results, that again can be solved using a trust region dogleg algorithm. Depending on the
relation of the futures prices Ft,HP

, Ft,HB
with subsequent maturities and the level of ŜT , a

more or less pronounced exponential growth or decay of the price forward curve Ft,T during the
di�erent delivery periods of the quoted futures results. It is even possible that strong decay-
and growth-periods alternate, as shown in �gure 1. Altogether, an unrealistic variation of the
price forward curve in time can result. Therefore we prefer another choice of the functional
form of µ∗s. If TP,i and TOP,i are the beginnings of the delivery periods of the i-th peak as well
as o�peak futures, we choose

µ∗P,s =

{
µP,i, if s = TP,i

0, else
(14a)

and

µ∗OP,s =

{
µOP,i, if s = TOP,i

0, else .
(14b)

This choice is equivalent to scaling the mean of the forward curve Ft,T over the delivery period
of each futures contract to the futures price via one factor for each futures contract (peak as
well as base (scaling is done via the o�peak hours)). Using this scaling method, the resulting
price forward curve, which is also shown in �gure 1, is much more smooth and realistic. If FSHP,i

denotes the scaling factor during the delivery hours HP,i of the i-th peak futures contract and
FSHOP,i

during the associated o�peak hours HOP,i (for i = 1, . . . , NF quoted futures), the scaling
factor can be written as

FS(T ) =

NF∑
i=1

(
FSHP,i

1HP,i
(T ) + FSHOP,i

1HOP,i
(T )
)
. (15)

Here 1HP,i
(T ) and 1HOP,i

(T ) denote indicator functions, i.e. for example

1HOP,i
(T ) =

{
1, ∀ T ∈ HOP,i

0, else .
(16)

We have implicitly assumed, that the futures prices are totally arbitrage-free and the redundant
futures prices (e.g. the yearly contract if all four quarterly contracts are also quoted) have been
removed. Using this notation, the price forward curve can be written as

F0,T = FS(T ) · exp(E[XT ] + Var[XT ]/2 + f(T )) , (17)
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the long term process becomes

Yt+1 = Yt −
1

2
σ2Y + σY ε

Y
t (18)

and is assumed to start with Y0 = 0. Finally, the price process can be rewritten based on the
price forward curve and the modi�ed long term process Yd,h:

Sd,h = F0,(d,h) · exp(−E[Xd,h]−Var[Xd,h]/2 +Xd,h + Yd,h) . (19)

Altogether, the introduced one factor dynamic of Yt has enough degrees of freedom to explain
the dynamics of one base futures contract Ft,H as well as all the observed base and peak futures
prices on a particular day t via the choice of the drift function µ∗s.
Burger et al. (2004) show, that only a small error occurs if the parameters of Xt are esti-

mated assuming Yt = 0 � instead of using a Kalman �lter. Independently from this estimation
procedure, the volatility of the long term process can be obtained as intrinsic volatility from
quoted option prices. In this paper we use a yearly volatility of σY = 0.18.
In addition to the long term factor, all price processes used in this paper also have the same

deterministic component in common.

1.2 Deterministic Component

An important input � but not the only one � for the hourly price forward curve (c.f. equations
(10a) and (10b)) is the deterministic component. Starting with the historical spot prices for a
time interval HS , e.g. the last 5 years, a �rst problem occurs as every now and then zero prices
are observed, e.g. on holidays like Christmas. After a replacement of these zero prices by small
values like 0.001e/MWh, the logarithm of the spot price time series Sd,h can be taken. The
resulting time series sd,h = ln(Sd,h) is split up in a daily average and hourly deviations from
this average:

sd,h = s̄d + ∆sd,h, ∀(d, h) ∈ HS . (20)

Now, two regression models are introduced to determine the deterministic component:

1. The daily part f̄(d) of the deterministic function is assumed to consist of Nh harmonic
functions (�rst, second and possibly third harmonics) and dummy variables for the dif-
ferent day types (i.e. each weekday, holidays, vacation periods):

f̄(d) = c0 + c1 · (d− d0) +
7∑
i=2

ciδW (d),i(1− wd) + c8 · wd + c9δd,CN

+

Nh∑
j=1

(c2j+8 sin(2πj · (d− d0)/365) + c2j+9 cos(2πj · (d− d0)/365)) . (21)

Here W (d) denotes the number of the weekday of day d (starting with 1 for Sunday), the
origin d0 is chosen to be the beginning of the �rst year of the historical spot period HS .
wd is the holiday weight of day d:

wd =


0 if d is neither a holiday nor a bridge day

p if d is a holiday (p is the part of the population that has a holiday)

g · p if d is a bridge day and p the population weight of the appropriate holiday

(22)
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and

δd,CN =

{
1 if d is a business day between Christmas and New Year's Eve

0 else .
(23)

In case of NS = 3, 16 coe�cients c0, . . . , c15 have to be �tted. Comparing the R2 of
the resulting models, g = 0.4 is a good choice for the EEX, i.e. a possible and plausible
explanation is that about and around 40% of the population who have got a holiday are
also on holiday on the appropriate bridge day.

2. The hourly part ∆f(d, h) is subdivided into four time series for the quarters of a year
and for each quarter modeled using dummy variables for each hour of the day and each
weekday (Sundays and Holidays are collected in a single dummy variable):

∆f(d, h) = c
Q(d)
1 · (1− δW (d),1 · δh,1) +

7∑
i=1

24∑
j=1

c
Q(d)
24(i−1)+j · δW (d),i · δh,j , (24)

where Q(d) is the number of the quarter that day d belongs to (Q = 1, . . . , 4). Altogether
this hourly model contains 168 coe�cients c1, . . . , c168.

The coe�cients of these two models are �tted using robust regression, which in MATLAB is
nothing else but an iteratively reweighted least squares algorithm that can use di�erent weight-
ing functions � in this paper the Talwar weighting function has been chosen. The advantage
in comparison to normal regression (i.e. ordinary least squares) is that due to the iterative
reweighting scheme of this algorithm in combination with the Talwar weighting function, out-
liers are assigned zero weights and therefore these outliers do not disturb the estimation of the
deterministic component but end up in the short term component Xd,h. As we have seen, they
nevertheless �nd their way into the price forward curve via the expected value and the variance
of the short term component Xd,h (c.f. equation (17)).
After �tting the deterministic function, daily residuals rd as well as hourly residuals ∆rd,h

result which are input for the parameter estimation of the daily and hourly price processes for
the short term factor.

1.3 Short Term Factor

Business and non-business days show a completely di�erent behavior as far as volatility and
occurrence of spikes are concerned. For example a closer look at the spot price history of the
last �ve years reveals, that no positive spikes have been observed on non-business days, whereas
on business days both, positive and negative spikes, can be found. This observation is also the
reason, why in contrast to Schindelmayr (2005) three regimes are used: one is the normal price
regime, one represents the positive spikes and the third one the negative spikes. Of course, in
reality the prices on business and non-business days are correlated and not independent, but
this e�ect is neglected in this paper. Nevertheless, this topic might be worth spending some
time and e�ort in the future.
Fitting the price process involves the following two steps:

1. The daily residuals resulting from regression are the input for the estimation of the daily
part of the short term price processes. The time series of the daily residuals rd is divided
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into business (B) and non-business (NB) days:

rd = 1B(d) · rBd + (1− 1B(t)) · rNBd (25)

Here 1B(d) denotes the indicator function

1B(d) =

{
1, d ∈ B
0, otherwise.

(26)

For either of the processes rBd and rNBd the modeling and estimation procedure is identical.
Thus the superscript is left out in the following for ease of notation and we work with a
time series xt (t = 1, . . . , Nd) observed on days t = dt.

2. Finally, the hourly part of the short term price process is �tted to the hourly residuals.
Once again business and non-business days are approximated as being independent:

∆rd,h = 1B(d) ·∆rBd,h + (1− 1B(t)) ·∆rNBd,h . (27)

Again the superscript is left out and we work with a time series ∆xt,h (t = 1, . . . , Nh,
h = 1, . . . , 24) observed on days t = dt.

In this case the orthogonal transformation of a principal component analysis is used to
decompose the 24-dimensional vector process into 24 factor loads that can in turn be
modeled as independent ARMA(1,1) processes.

In the following subsections the daily price processes for model A to C are described.

1.3.1 Model A: Regime-switching for the Daily Average

In model A the daily average of the spot price is modeled by a regime-switching AR(1)-process
with three regimes (normal price mean-reversion regime M, positive S+ and negative S- spike
regime). We have chosen three regimes, as the resulting likelihood is larger than the one obtained
in case of two regimes. Characteristic for every regime-switching model is, that the transition
between the regimes is described by a Markov chain, i.e. there are always all the regimes existing
in parallel, but at a particular time only one of the regimes is observable:

Regime M with mean-reversion: xt = α1 · xt−1 + µ1 + σ1 · εt , (28a)

negative Spike-Regime S-: xt = α2 · xt−1 + µ2 + σ2 · εt , (28b)

positive Spike-Regime S+: xt = α3 · xt−1 + µ3 + σ3 · εt , (28c)

Markov transition probability matrix: Π =

π11 π12 π13
π21 π22 π23
π31 π32 π33

 . (28d)

In each case εt ∼ N(0, 1) is normally distributed.
Of course the next step after the de�nition of the price process is to estimate the parameters

from historical spot prices.
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Parameter Estimation for Model A: Hamilton Filter

As only one of the regimes is observable at a certain point in time, the Hamilton �lter (Burger,
Graeber and Schindelmayr 2007, Hamilton 1994) is suitable for parameter estimation. All the
parameters that have to be estimated are collected in a vector θ:

θ = (µ1, µ2, µ3, σ1, σ2, σ3, π11, π12, π13, π21, π22, π23, α1, α2, α3) . (29)

An initial point θ0 to start the estimation procedure has to be chosen. If the observed values r̄t
are given and the values of the parameter vector θ are �xed, the likelihood is obtained applying
the Hamilton �lter. Via a maximization of the log-likelihood L(θ) or equivalent a minimization
of the negative log-likelihood eventually the optimal estimated values θ̂ for the parameters of
the price process result, which are shown in table 1 for the regime-switching model.

business days non-business days
Parameter regime regime

1 2 3 1 2 3

µ -0.000 -0.086 0.078 0.007 -0.109 -0.826

α 0.917 1.164 0.570 0.819 0.094 1.420

σ 0.101 0.245 0.154 0.173 0.318 0.833

0.924 0.000 0.370 0.929 0.262 0.000

Π 0.076 0.186 0.516 0.056 0.592 0.926

0.000 0.814 0.114 0.015 0.146 0.074

Table 1: Parameters for the regime-switching model (28.04.2008)

As already mentioned before, the di�erent character of business and non-business days is
re�ected by the parameters. While on business days regime 3 is more responsible for positive
spikes and regime 2 for negative spike as far as the parameter µ is concerned, on non-business
days two negative spike regimes result that show a di�erent mean-reversion as well as volatility.
In any case, the volatility is much higher in the spike-regimes in comparison to the normal
price regime 1. As far as the transition probability matrix is concerned, it is interesting that
on business days the transition from the normal price regime to the positive spike can only
occur via the negative price regime, while a direct jump from the negative spike regime back
to the normal price regime is impossible. On non-business days a direct transition into both
spike-regimes is possible, but the more probable regime 2 shows a very strong mean reversion
as α is quite small for this regime. In each case the probability for staying in the normal price
regime is almost identical.

1.3.2 Model B: Jump-di�usion for the Daily Average

Instead of using di�erent regimes, the up- and down-jumps can also be modeled via special
jump-terms added to a mean-reverting price process. For these jump-terms there are di�erent
possibilities existing (Cartea and Figueroa 2005, Geman and Roncoroni 2006). Usually the
jump-height is assumed to be normally distributed while the arrival of the jumps is described
by a poisson process. Due to the fact, that positive as well as negative spikes are quite rare
events, we use a Bernoulli process in this paper instead of the Poisson process:

xt = αJD · xt−1 + µJD + σJD · εt + κ+ · ν+t + κ− · ν−t (30)
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with

ν+t ∼ Bernoulli(p+JD) , κ+ ∼ N(µ+JD, (σ
+
JD)2) , (31)

ν−t ∼ Bernoulli(p−JD) , κ− ∼ N(µ−JD, (σ
−
JD)2). (32)

The parameters p+JD and p−JD of the Bernoulli distributions are the probabilities for an occurrence
of a positive or negative spike. In comparison to the regime-switching model with three regimes
as introduced in equations (28), the most signi�cant di�erence is, that only one mean-reversion
parameter αJD exists in the jump-di�usion model. Whenever a spike occurs, i.e. ν+t = 1 or
ν−t = 1, the reversion back to the normal price level can only be driven by this single parameter.
By contrast, the regime-switching process inhibits three di�erent mean-reversion rates (one for
each regime) and � even more important � three di�erent means. Whenever a jump from a
spike regime back to the normal price regime occurs, the mean of the process changes � back
to a normal level. This is nothing else but an additional contribution to "mean reversion".

Parameter Estimation for Model B: Recursive Filtering

Because of the Bernoulli distribution used in the model, the parameter estimation is rather
easily done in this case. In a �rst step, recursive �ltering can be used to detect the spikes
(Weron 2006). In this �ltering procedure the following steps are recursively taken

1. Calculate the standard deviation σi of the time series xt.

2. Mark all values greater than 2.5 · σi as positive spikes, all values smaller than −2.5 · σi as
negative spikes � but only, if they have not been marked in an earlier recursion step.

3. If no new spikes are found, �nish the �ltering procedure.

4. Otherwise, extract or replace all marked values. In contrast to what is usually done in
the literature, in this paper we have not simply extracted these outliers out of the time
series or replaced them by a value of 2.5 · σi. Instead they are replaced by values from
a random walk using the σi estimated in the actual recursion step. If for example xt is
detected to be a spike, it is replaced by x̂t = xt−1 + εt, with εt randomly drawn from a
normal distribution εt ∼ N(0, σ2i ). The di�erence xt − x̂t is saved as the jump-height of
the replaced spike.

5. Let i→ i+1 and goto step 1 with the time series obtained after replacement of the spikes.

An AR(1) model can easily be �tted to the time series resulting from this �ltering procedure
using simple linear regression. Thus, the parameters µJD, αJD and σJD are obtained.
Finally, the extracted positive and negative spikes are used to estimate the probabilities p+

and p−, which are approximated by the empirical frequencies of the detected outliers. Moreover,
the mean and standard deviation of the heights of the extracted outliers are used as estimates
for the parameters µ+ and σ+ for the positive outliers as well as for µ− and σ− in case of
negative outliers.
Table 2 shows the parameters found for business and non-business days. For a spot history

that consists of the last �ve years no positive spikes are detected on non-business days and
the negative spikes show a large absolute value of the mean µ−JD, while on business days the
probability for positive and negative spikes are comparable and the absolute values of the
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p+JD µ+JD σ+JD p−JD µ−JD σ−JD µJD αJD σJD

business days 0.015 0.292 0.337 0.017 -0.248 0.416 0.001 0.857 0.146

non-business days 0.000 0.000 0.000 0.035 -1.409 1.311 -0.008 0.648 0.255

Table 2: Parameter estimated for the jump-di�usion model using recursive �ltering (28.04.2008)

means µ+JD, µ
−
JD are much smaller than on non-business days. Therefore it makes very much

sense to use two jump-terms on business days (whereas one term would be enough on non-
business days). Finally, the mean-reversion αJD is comparable to the average one found for the
regime-switching price process and therefore somehow at the same time right and wrong.
In �gure 2 the identi�cation of the spikes via recursive �ltering (jump-di�usion) and via

the Hamilton �lter (regime-switching) are compared. Obviously, the Hamilton �lter identi�es
many more residuals as spikes than recursive �ltering with 2.5 · σ. While the recursive �ltering
procedure only �nds the largest outliers, and even misses some that seem to be spikes, the
Hamilton �lter is able to identify all possible "spikes" � maybe even more than obvious. From
these observations it can be concluded, that both models are based on a di�erent implicit
de�nition of a spike. While in model B a spike is an outlier and therefore de�ned through its
mean and rareness, in model A a spike results from another regime and is characterized by
another volatility, mean as well as mean reversion rate. After all, this is rather di�erent.

1.3.3 Model C: Normal Inverse Gaussian Process for the Daily Average

While the �rst two models are based on the normal distribution and the heavy tails of the
residuals caused by spikes and jumps are reproduced via regime-switching or jump-terms, the
third model uses the normal inverse gaussian distribution � a generalized hyperbolic distribution
that is by itself �exible enough to reproduce heavy tails. In model C we assume, that the short
term factor is NIG distributed:

x̄d ∼ NIG(αnig, βnig, δnig, µnig) (33)

The four parameters αnig, βnig, δnig, and µnig can easily be estimated in MATLAB using the
routine nigest, which uses maximum likelihood estimation and is part of the MFE toolbox
(Weron 2006, Weron 2007).

αnig βnig δnig µnig

business days 5.617 0.197 0.504 -0.017

non-business days 2.752 -1.372 0.351 0.128

Table 3: Parameters resulting for the NIG-process using maximum likelihood estimation (28.04.2008)

In table 3 the results of the parameter estimation are shown. Again, completely di�erent
parameters are obtained for business and non-business days. On business days the distribution
is slightly skewed to the right, while on non-business days strongly to the left. The tail heaviness
is larger on business than on non-business days. Finally, the volatility is comparable to what is
found in case of the other price processes.
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1.3.4 The Hourly Pro�le Process

All three models described so far are daily models. All of them have to be combined with an
hourly model. In each case ARMA(1,1) processes can be used as basis for the hourly model, in
case of model A and B supplemented by sampling historical spike pro�les.

Sampling of Spike Pro�les

An analysis of historical pro�les for spike days reveals, that the daily average on spike days is not
simply higher while the hourly pro�le is the same as on days with normal price levels. In fact,
the pro�les of the hourly deviations from the average can be completely di�erent in comparison
to normal days. Furthermore, seasonal di�erences in the spike behavior can be observed and
therefore the historical pro�les have to be classi�ed as summer and winter pro�les according
to the season during the occurrence of the spike (summer is de�ned as April to September,
winter the rest of the year). Altogether, N+

sum positive and N−sum negative summer pro�les
(psum,+i,h , psum,−i,h with h = 1, . . . , 24) result from this sampling as well as N+

win positive and N
−
win

negative winter pro�les (pwin,+i,h , pwin,−i,h ).
On days where model A is in the positive spike regime, a positive historical winter or summer

spike pro�le is randomly drawn and on days with a negative spike regime a negative historical
pro�le. In case of model B the same is done, if the corresponding Bernoulli term equals 1. Of
course nothing comparable can or has to be done for model C. The historical spike pro�les
result during the parameter estimation of the daily process. Within model A, for every day
of the price history the Hamilton �lter assigns a probability to each regime. Accordingly, the
corresponding hourly pro�le is assumed to be a positive spike if the positive spike regime is
the most probable one. The same is done for negative spikes. In case of model B, the recursive
�ltering procedure automatically classi�es the outliers as positive or negative spikes and the
same can be done for the corresponding hourly pro�les.

ARMA process

For all other days, which have not been classi�ed as spike days, the hourly residuals are collected
in a 24 dimensional time series. The components of this vector process re�ect the volatilities of
each single hour as well as the correlations between the time series' for the di�erent hours. As
already done for the daily average the process is again separated in business and non-business
days:

∆rd = 1B(d) ·∆rBd + (1− 1B(t)) ·∆rNBd . (34)

In order to simplify the notation, only one of these two processes is examined and denoted
∆rk, k = 1, . . . , Nk . As done in a principal component analysis (pca) (Burger et al. 2007)
for each column i, with i = 1, . . . , 24, the mean µ̂pca,i is subtracted and afterwards the row is
divided by its standard deviation σ̂pca,i:

∆r̃ik =
∆rik − µ̂PCA,i

σ̂PCA,i
(35)

14



with:

µ̂PCA,i = 1/Nk

Nk∑
k=1

∆rik , (36)

σ̂PCA,i =

√√√√ 1

Nk

Nk∑
k=1

(∆rik − µ̂PCA,i)2 . (37)

For the calculation of the orthogonal transformation matrix the components of the resulting
normalized vector process are collected in the (Nk × 24)-matrix

∆r̃ =

∆r̃T1
...

∆r̃TNk

 . (38)

The transformation matrix Q is nothing else but the matrix of the eigenvectors of the eigenvalue
problem (

(∆r̃)T ·∆r̃/Nk

)
·Q = Λ ·Q . (39)

After an application of this orthogonal transformation 24 independent processes result which
are collected in the matrix w

w = ∆r̃ ·Q . (40)

For each time series wik with k = 1, . . . , Nk(i = 1, . . . , 24), that can be found in the i-th column
of the matrix w an ARMA(1,1)-process

yit = CiARMA + φiARy
i
t−1 + εit + θiMAε

i
t−1 (41)

with εit ∼ N(0, σ2ARMA,i) is �tted using the GARCH-toolbox in MATLAB. For the scenario
generation the single steps of this transformation have to be run through in reverse order to
obtain correlated scenarios.
Thus, all the models and their parameter estimations are speci�ed � only the variance cor-

rections are still missing.

1.3.5 Variance Corrections for the HPFC

For each model the expected value and variance corrections for the price forward curve have to
be calculated, which are an additional input for the HPFC (c.f. equation (17)).

Model A: In this case the corrections consist of three components, resulting from the mean
and variance of the daily model, the historical spike pro�les and the ARMA
processes. Altogether the following term results if T = (d, h) lies in the summer
half year (superscript "sum")

E[xd,h] + Var[xd,h]/2 =

3∑
i=1

(pi · µi + p2i · σ2i /(1− α2
i )/2) (42)

+ p2 · µsum,+h + p22 · (σ
sum,+
h )2/2 (43)

+ p3 · µsum,−h + p23 · (σ
sum,−
h )2/2 + µh (44)
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Where p = (p1, p2, p3)
T denotes the ergodic probabilities of the three di�erent

regimes (1: mean-reversion, 2,3: spike-regimes) and the pro�le mean and variance
are calculated as follows:

µsum,+h =
1

N sum,+

Nsum,+∑
i=1

psum,+i,h ; (σsum,+h )2 =
Nsum,+∑
i=1

(
psum,+i,h − µsum,+h

)2
N sum,+

(45)

µsum,−h =
1

N sum,−

Nsum,−∑
i=1

psum,−i,h ; (σsum,−h )2 =
Nsum,−∑
i=1

(
psum,−i,h − µsum,−h (p1)

)2
N sum,−

(46)

and the hourly process produces the correction term

µh(p) = p

(
µ̂PCA,h + σ̂PCA,h ·

24∑
l=1

qh,l · C lARMA

)

+ p2 · σ̂2PCA,h ·
24∑
l=1

q2h,l ·
1 + (θlMA)2 + 2φlARθ

l
MA

1− (φlAR)2
· σ2ARMA,l (47)

In this equation qh,l is an Element (row h, column l) of the transformation matrix
Q. Replacing the mean and variance resulting from the historical spike pro�les
by the ones calculated from winter pro�les, an analogue result can be obtained
for the winter half year.

Model B: Again three components result and the third one is the same as shown in equa-
tion (47). Altogether, the following expression results

E[xd,h] + Var[xd,h]/2 = (µJD + p+JD · µ
+
JD + p−JD · µ

−
JD)

+
σ2JD + (p+JD)2 · (σ+JD)2 + (p−JD)2 · (σ−JD)2

2(1− α2
JD)

+ p+JD · µ
sum,+
h + (p+JD)2 · (σsum,+h )2/2

+ p−JD · µ
sum,−
h + (p−JD)2 · (σsum,−h )2/2

+ µh(1− p+JD − p
−
JD) . (48)

As the sampling of historical pro�les is comparable to regime-switching, the
expression (45) for the mean and variance still holds � of course calculated using
di�erent spike pro�les (e.g. the number of spikes detected di�ers).

Model C: In the third model the resulting expression is more simple, as no historical
sampling is used:

E[xd,h] + Var[xd,h]/2 = µnig +
δnig · βnig√
α2
nig − β2nig

+
δnig · α2

nig

2 ·
√

(α2
nig − β2nig)3

+ µh(1)

(49)

Again, the corrections µh resulting from the hourly price process can be calcu-
lated using equation (47), but now with p = 1.
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Figure 3: Corrections for the HPFC on business and non-business days

In each model di�erent corrections for business and non-business days result, which can be
calculated according to the same equations using the parameters estimated for the di�erent
day types. The resulting corrections are shown in �gure 3. Obviously, the corrections in winter
and summer do not di�er very much.

1.4 Generation of price scenarios

Using models A to C as well as the estimated parameters for these models, any given num-
ber of price scenarios can be generated for a delivery period in the future. For example 1000
scenarios have been generated for the year 2009 using the di�erent models, the residuals
rd,h = ln(Sd,h/F0,(d,h)) (starting with eq. (19)) have been calculated and the density has been
estimated using a kernel density with a box kernel and a window width of 0.3. The results are
compared in �gure 4 and they are contrasted to the spot residuals obtained during the �t of
the deterministic component including the variance corrections. Of course the spot residuals
and the ones resulting from the simulation di�er � as they represent periods with di�erent
price levels they should do so. But nevertheless the shape of the density should be the same.
From this criterion model A is the best spot price model � it �ts the quadratic functional form
around zero quite good and it is able to reproduce the fat tails and the asymmetry caused by
negative as well as positive spikes. Model B and C show comparable results - while model C
�ts the quadratic functional form better, model B reproduces the positive spikes better. But
they do not perform as good as model A. In all the models very high spike prices, reaching
10.000 e/MWh and more, result that are extremely unrealistic � no trader is ever willing to
pay such high prices. Therefore, the price generation has been modi�ed by introducing a price
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Figure 4: Scenario generation using the three speci�ed models with and without a price cap. The spot
residuals are taken from the last �ve years while the scenarios are generated for 2009.
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cap, e.g. 3000 e/MWh. In �gure 4 (b) the resulting densities obtained after an introduction
of this price cap are shown. Nevertheless, this analysis is strictly speaking nothing else but an
in-sample analysis. Beyond it, model A has to prove its performance also in an out-of-sample
analysis.

1.5 Out-of-sample Analysis

One important question is the stability of the parameters estimated with the algorithms de-
scribed above. Thus, the parameters for the three models have been estimated for a period of
400 trading days starting with 2.1.2007. In �gure 5 (a)-(c) the resulting parameter values for the
three models are plotted against the trading days. For the purpose of clearness, the parameters
for the non-business days are shown exemplarily for model A. Only two regimes are chosen in
the case of non-business days and therefore the transition matrix contains only 4 elements, the
whole model includes a total of 10 parameters (and not 18 as on business days). Nevertheless
the results for business days have also been examined and are comparable as far as parameter
stability is concerned. Over all, the parameter stability of the three models is comparable and
the parameters �uctuate not too much over time � except for the parameter αNIG in model C
describing the tail heaviness, which varies over a wide range during the examined 400 trading
days. From this point of view none of the three models is really outstanding, only model C falls
slightly back.
In �gure 6 the resulting distribution of price deviations from realized spot prices are shown for

the three models. For this purpose 1000 scenarios have been generated for the period 1.1.2007-
31.12.2008 as resulting from a parameter-estimation based on spot and futures prices up to
28.12.2006 as well as for the period 1.1.2008-31.12.2008 based on spot and futures prices up
to 28.12.2007. For each scenario the observed spot prices (which have not been included in
the parameter estimation) have been subtracted and the density of the price deviations has
been estimated using a kernel density with a box kernel and a window width of 0.3. An ideal
model would show no price deviations from the spot price at all and the density plot would
be a �at line. The closer the models are to the �at line, the better they perform in predicting
the future spot prices. Thus, model A and C perform comparably good, only model B clearly
overemphasizes the high price tail.

1.6 Correlation Structure and Volatilities of Forward Prices

As the models consider the spot price dynamics, another important question is, how well they
explain the volatilities of the forward prices and their correlation structure. Figure 7 shows the
volatilities resulting from model A to C in comparison to option implied volatilities calculated
from option prices quoted at the EEX. In this �gure only the implied volatilities of at-the-
money options are shown, as the models are not able to reproduce volatility smiles (see also
(Kiesel, Schindlmayr and Boerger 2007)). It can be seen that the implied volatilities are quite
well reproduced by model A and even a bit better by model B - in contrast to model C that
underestimates the volatilities. Nevertheless, the correlation structure between forward prices
is not reproduced by any of the three models, as can be seen in table 4. For model B the
correlation between di�erent forwards is mostly close to zero and for model A only for forwards
with delivery far in the future the correlation becomes larger and is closer to the empirical
values. The results for model C are not shown in the table, but they are similar to those for
model A.
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Figure 5: Parameters estimated for the di�erent models over a period of 400 trading days
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Figure 6: Distribution of the price deviations of price scenario generated for a future period from ob-
served spot prices for the three models
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(a) Volatilities of futures prices compared to implied volatilities resulting for
business day 28.12.2006
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Figure 7: Volatilities of the futures prices resulting from the three speci�ed models in comparison to
implied volatilities calculated from option prices.
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(a) model correlation matrix (model A: regime switching)

Jan07 Feb07 Mar07 Q207 Q307 Q407 Cal08

Jan07 1.00 0.26 0.07 0.13 0.12 0.12 0.12

Feb07 0.26 1.00 0.29 0.27 0.26 0.21 0.18

Mar07 0.07 0.29 1.00 0.45 0.34 0.30 0.26

Q207 0.13 0.27 0.45 1.00 0.63 0.58 0.48

Q307 0.12 0.26 0.34 0.63 1.00 0.71 0.61

Q407 0.12 0.21 0.30 0.58 0.71 1.00 0.75

Cal08 0.12 0.18 0.26 0.48 0.61 0.75 1.00

(b) model correlation matrix (model B: jump-di�usion)

Jan07 Feb07 Mar07 Q207 Q307 Q407 Cal08

Jan07 1.00 0.08 0.13 0.05 0.03 0.04 0.01

Feb07 0.08 1.00 0.07 0.17 0.01 0.10 0.07

Mar07 0.13 0.07 1.00 0.24 0.06 0.22 0.18

Q207 0.05 0.17 0.24 1.00 -0.00 0.42 0.41

Q307 0.03 0.01 0.06 -0.00 1.00 -0.04 -0.04

Q407 0.04 0.10 0.22 0.42 -0.04 1.00 0.69

Cal08 0.01 0.07 0.18 0.41 -0.04 0.69 1.00

(c) empirical correlation matrix

Jan07 Feb07 Mar07 Q207 Q307 Q407 Cal08

Jan07 1.00 0.98 0.94 0.93 0.84 0.87 -0.18

Feb07 0.98 1.00 0.94 0.95 0.90 0.88 -0.12

Mar07 0.94 0.94 1.00 0.96 0.94 0.81 0.04

Q207 0.93 0.95 0.96 1.00 0.91 0.83 -0.08

Q307 0.84 0.90 0.94 0.91 1.00 0.80 0.24

Q407 0.87 0.88 0.81 0.83 0.80 1.00 -0.01

Cal08 -0.18 -0.12 0.04 -0.08 0.24 -0.01 1.00

Table 4: Comparison of empirical and model forward correlation matrix (28.12.2006)
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This wrong correlation structure results from the fact that the short and long term factors
are assumed to be uncorrelated. Thus, there is still potential for improvements of the models as
far as this topic is concerned. For example additional factors (as done in a forward model using
a PCA by Koekebakker and Ollmar (2005)) and a correlation between short and long term
factors could be introduced. In this case a parameter estimation is much more complicated and
use of a Kalman �lter would be inevitable.
Over all, model A performs best in-sample as well as out-of-sample and therefore generates

the most realistic price paths among the three examined models. After we are able to generate
realistic price paths, we can turn our attention to the pricing of swing options.

2 Least Squares Monte Carlo

As already mentioned in the introduction, the main issue of pricing American or Bermudan
options is the early exercise decision, which is non-trivial. The optimal exercise decision relies
on the estimation of the continuation value. Longsta� and Schwartz (2001) have proposed to
estimate this continuation value using least squares regression in combination with a Monte
Carlo simulation of the possible price paths. Their method �ts the future cash�ows using for
example simple polynomial basis functions. The resulting Least Squares Monte Carlo (LSM)
algorithm is able to value Bermudan options with a single exercise right, which are an ap-
proximation of an American option and can be seen as a special case of a swing option with
one exercise right. This fundamental algorithm has been extended for the valuation of swing
options with multiple exercise rights (Dörr 2003, d-�ne 2004) and has recently been applied to
gas storage (Boogert and de Jong 2008). Other methods to value swing options are for example
based on �nite element methods (Dahlgren 2005), which are fast for simple price processes but
di�cult or even impossible to implement for complicated price processes like the ones used in
this paper. Keppo (2004) shows that swing options can be replicated with regular electricity
forwards and call options in case of a complete market; in this paper also lower boundaries for
swing option values have been calculated for selected swing options.
In the following section the fundamental LSM algorithm as well as the extensions for multiple

exercise rights are described.
The possible exercise times of the Bermudan option are denoted

0 < t1 < t2 < . . . < tJ = T . (50)

In each case the option is exercised if the resulting immediate payo� is larger than the continua-
tion value, which is the value of the remaining option with a shorter lifetime and the remaining
number of exercise rights left. This continuation value can be written as the conditional expec-
tation under the risk-neutral measure:

F (ω, tk) = EQ
 J∑
j=k+1

D(tk, tj) · Ck(ω, tj)

∣∣∣∣∣∣Ftk
 ; (51)

where D(tk, tj) = exp(−r · (tk − tj)) denotes the discount factor from time tk to tj with
the risk-free rate r and Ck(ω, tj) the cash�ows generated by an application of the optimal
exercise strategy if the option is not exercised at time tk. For each price scenario ω, at most
one index j with Ck(ω, tj) > 0 can exist, as the Bermudan option contains only one exercise
right. Thus, most elements of the N × J-matrix Ck(ω, tj) are zeros and a much more compact
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storage is possible if only the discounted cash�ows are saved in each price path. In this case
the information, which exercise opportunities are used (this information could even be stored
in an additional index-vector), is lost, but as a big advantage only an N -dimensional vector is
necessary to keep track of the discounted cash�ows. For Bermudan options with one exercise
right computing time and memory usage is not an issue, but this changes later on if we try to
value swing options with a large number of exercise rights.
It makes very much sense to start with tJ , and iteratively step back in time until t1 is reached,

because at time tJ no future decisions exist and the immediate cash�ow for an exercise can be
calculated using

CJ(ω, tJ) = P (SJ(ω)) , (52)

where SJ(ω) is the spot price at time tJ in the price path ω and P the payo� function. For a
call this payo� function P is simply

P (SJ(ω)) = max(SJ(ω)−K, 0) , (53)

where K denotes the strike price of the option.
At time tJ−1 the exercise decision is done comparing the future cash�ow F (ω, tJ−1) and

the immediate payo� P (SJ−1(ω)); while the payo� is well known, the functional form of the
continuation value F (ω, tJ−1) is unknown. For this reason the conditional expectation F is
expanded in a set of basis functions Bl:

F (ω, tk) =
∞∑
l=0

al(tk) ·Bl(Sk(ω)) , (54)

with Bl = xl .

In practice the in�nite sum is cut o� after a small number of M basis functions, e.g. M = 5
is used in this paper (see below for an examination of the in�uence of the choice of M on the
option value), which is larger than the M = 3 found in the literature (Dörr 2003, d-�ne 2004):

F̂ (ω, tk) =
M∑
l=0

al(tk) ·Bl(Sk(ω)) . (55)

As a memoryless Markov process is assumed for the state variable Sk, only realizations at time
tk (and not times tl < tk) occur as arguments of the basis functions. For each of the three price
processes used in this paper this assumption is valid. The coe�cients al can be calculated using
linear regression:

min
N∑
ω=1

 J∑
j=k+1

D(tJ , tk) · Ck(ω, tj)−
M∑
l=0

alBl(SJ−1(ω))

2

. (56)

In time step tJ−1 this reduces to:

min
N∑
ω=1

(
D(tJ , tJ−1) · CJ−1(ω, tJ)−

M∑
l=0

alBl(SJ−1(ω))

)2

. (57)

25



With known coe�cients al the continuation value F is given by

F̂ (ω, tk) =
M∑
l=0

alBl(Sk(ω)) , (58)

or speci�cally for time step tJ−1:

F̂ (ω, tJ−1) =
M∑
l=0

alBl(SJ−1(ω)) . (59)

Using this approximation for the continuation value, the option can be exercised optimally
under uncertainty: For every price path ω, where the option is in the money, the cash�ow for
the appropriate time step tk can be calculated comparing the continuation value F̂ (ω, tk) and
the immediate payo� P (Sk(ω)) resulting by an immediate exercise:

Ck(ω, tk) =

{
P (Sk(ω)) , if P (Sk(ω)) > F̂ (ω, tk)

0 , else .
(60)

For all price paths ω, where the option is exercised (i.e. Ck(ω, tk) > 0) the resulting cash�ows
have to be placed in the cash�ow vector, while otherwise the discounted future values are kept.
After the last iteration step (at time t1) the option value eventually results as the average

V =
1

N

N∑
ω=1

J∑
j=k+1

D(tJ , tk) · C1(ω, tj) . (61)

Altogether, the algorithm can be summed up as follows: For an initialization of the iteration
at time step tJ the cash�ows CJ(ω, tJ) have to be calculated for all price paths ω and stored
in the cash�ow vector C(tJ). Subsequently, for time steps tk = tJ−1, . . . , t1 the following steps
are taken:

1. The cash�ows in the vector C(tk+1) are discounted to the time step tk by multiplication
with the discount factor D(tk+1, tk):

C(tk) = D(tk+1, tk) ·C(tk+1) .

2. The cash�ow vector P (Sk) for an immediate exercise is calculated. For a plain vanilla call
option the payo� function is simply P (Sk(ω)) = max(Sk(ω)−K, 0).

3. For all price paths ω, where the option is in the money (P (Sk(ω)) > 0), the continuation
value F̂(tk) is calculated using linear regression:

F̂(tk) =

M∑
l=0

alBl(Sk) .

4. The cash�ow at time tk results from a comparison of the continuation value F̂(tk) and
the cash�ow vector P (Sk) for immediate exercise: If an immediate exercise occurs in
price path ω (in this case P (Sk(ω)) > F̂ (ω, tk) holds), the resulting cash�ow P (Sk(ω))
is placed in the cash�ow vector C(tk), otherwise the discounted future cash�ows in this
vector (calculated as described in step 1) are kept.
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5. Progress with the next time step tk → tk−1 if t1 has not yet been reached.

Using the entries in the cash�ow vector at time t1 the option value can easily be calculated as
a simple average:

V =
1

N

N∑
ω=1

Cω(t1) . (62)

The algorithm described so far has to be extended for swing options with umax exercise rights
(up-swing rights).

2.1 Extensions for Swing Options

Let u denote the number of upswing rights already exercised. Instead of a cash�ow matrix a
tensor with dimensions (N, J, umax) would be necessary to keep account of the cash�ows in
the di�erent price paths. Due to the compact storage, the cash�ow vector with length N turns
into a cash�ow matrix with dimensions (N, umax). The algorithm for the Least Squares Monte
Carlo calculation results as follows: In time step J all umax columns of the cash�ow matrix are
initialized with the cash�ow vector C(tJ) calculated as in eq. (52). After this initialization the
following iteration results:

1. The cash�ows in the cash�ow matrix C(tk+1) have to be discounted to time tk by multi-
plication with the discount factor D(tk+1, tk):

C(tk) = D(tk+1, tk) ·C(tk+1) .

2. The cash�ow vector P (Sk) for an immediate exercise has to be calculated. For a plain
vanilla call option the payo� in price path ω is P (Sk(ω)) = max(Sk(ω)−K, 0).

3. For all price paths ω, where the option is in the money (i.e. P (Sk(ω)) > 0 holds), the
continuation value F̂u(tk) for the case, that u exercise rights have already been used, is
calculated via linear regression:

F̂u(tk) =
M∑
l=0

aul Bl(Sk) . (63)

In contrast to a Bermudan option, umax regression problems need to be solved. This can
be done simultaneously, as the regression matrix with elements Bl(Sk) is the same for all
umax problems. Altogether, these continuation values can be collected in an (N, umax)-
matrix F̂(tk).

4. The cash�ow at time tk results from a comparison of the continuation value F̂u(tk) and
the cash�ow vector P (Sk) for immediate exercise: The option is exercised in price path ω if
P (Sk(ω)) + F̂u+1(ω, tk) > F̂u(ω, tk) holds. In this case, the resulting cash�ow P (Sk(ω)) +
Cω,u+1(tk) has to be placed in row number ω of the u-th column of the cash�ow matrix
C(tk). Otherwise, the discounted future cash�ows contained in this element (calculated
as described in step 1) are left unchanged. Because of these modi�cations the calculations
have to start with u = 0 and end up with u = umax − 1 and not vice versa! (In this case
the next column of the cash�ow matrix has to contain the (discounted) cash�ows from
the previous iteration step, as this ensures that after iteration step tk only the remaining
exercise rights are used (in addition to the one exercised at time tk)).
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5. Proceed to the next time step tk → tk−1, if t1 has not yet been reached.

Calculating the average over the entries in the �rst column of the cash�ow matrix after time
step t1 the option value results:

V =
1

N

N∑
ω=1

Cω,0(t1) . (64)

As a nice side e�ect of the algorithm, the values of all swing options with u = 1, . . . , umax − 1
exercise rights can easily be calculated simultaneously as average over the appropriate remaining
columns.
The values of the swing options are (independent of the number of exercise rights) discounted

to time t1 (present value for this time). If the value has to be calculated for another (earlier)
time, a corresponding discount factor has to be introduced.
Finally, it should be mentioned, that a few ideas concerning the implementation are crucial

for the speed and accuracy of the resulting algorithm:

• E�cient memory usage: A cash�ow matrix has to be used instead of a tensor. Oth-
erwise, a valuation of swing options with 5000 upswing-right is impossible on a normal
laptop computer (Intel T2080 Pentium Dual Core 1.73 GHz with 2 GB RAM). Fur-
thermore, swapping, which is very time consuming, has to be prevented. Therefore, the
generated scenarios should not be kept in memory for the whole examined lifetime but
only for one day of the option's lifetime.

• Economy size decomposition: The commonly used regression algorithm is based on a
QR decomposition of the regression matrix. In MATLAB an economy size decomposition
algorithm (also called skinny QR decomposition) can be used, which improves the speed
of the algorithm by round about a factor of 10 (depending of course on the number of
exercise rights). Furthermore, the skinny QR decomposition should be reused to solve the
umax regression problems (c.f. equation 63) simultaneously.

• Scaling: Due to the polynomials used as basis functions, it has turned out to be a very
good idea to scale the spot scenarios and replace the regression (63) by

F̂u(tk) =
M∑
l=0

aul Bl(
Sk
||Sk||∞

) . (65)

This scaling does not change the option value, but without it only calculations with up
to M = 3 basis functions are possible (at least in MATLAB on a laptop equipped with 2
GB RAM) as the regression matrix becomes numerically rank de�cient. With this scaling
up to M = 8 basis functions can be used without rank de�ciencies.

As �gure 8 shows, the computing time of the e�cient LSM algorithm presented in this paper
scales linearly with the number of scenarios as well as with the number of exercise rights. For
an option with 5000 exercise rights a calculation based on 1000 scenarios takes round about
1.5 hours, which is a very reasonable time.
Beneath the real option value obtained from the LSM algorithm, lower and upper boundaries

for the option value can be calculated.

28



0 2000 4000 6000
0

2000

4000

6000

8000

10000

12000

exercise rights

co
m

pu
tin

g 
tim

e 
[s

]

(a) Variation of the number of exercise rights
(1000 scenarios)

0 5000 10000
0

1000

2000

3000

4000

5000

6000

number of price scenarios
co

m
pu

tin
g 

tim
e 

[s
]

(b) Variation o� the number of scenarios (500 ex-
ercise rights)

Figure 8: Computing time for the e�cient LSM algorithm as a function of the number of scenarios as
well as the number of scenarios (strike 60 e/MWh, M = 5 basis functions, regime-switching)

2.2 Intrinsic and Deterministic Value

On the one hand, the intrinsic value, i.e. the value against the price forward curve

Vintrinsic = max
φi

N∑
i=1

exp(−r(Ti − t))φiP (Ft,Ti) (66)

forms a lower boundary for the swing option value.
On the other hand, an upper boundary is given by the deterministic option value, i.e. the

expected payo� that would result if the spot prices were deterministic and known in advance. In
this case a number of price scenarios k = 1, . . . , NScen are generated and for each price scenario
SkTi the linear optimization problem

V k
deterministic = max

φki

N∑
i=1

exp(−r(Ti − t))φki P (SkTi) (67a)

with the energy constraint

N∑
i=1

φki ≤ Emax (67b)

is solved. Since the whole price path is assumed to be known in advance, the solution of this
optimization problem can easily be obtained by
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1. calculating the discounted payo�s exp(−r(Ti − t))P (SkTi) for each scenario,

2. sorting them in descending order for each scenario and

3. taking only the �rst U payo�s.

Finally, the deterministic option value is calculated as mean over all scenarios:

Vdeterministic =
1

Nscen

Nscen∑
k=1

V k
deterministic . (68)

The deterministic option value as well as the intrinsic value can be compared to the one resulting
from the LSM algorithm.

3 Results for Selected Swing Options

All the calculations presented in the following subsections have been done in MATLAB and
assume a yearly interest rate of 5% as well as an energy constraint Emax = U MWh, where U
denotes the number of upswing rights. The set J of possible exercise times always contains all
the hours of the year 2009 (i.e. 8760 hours).

Intrinsic Value

To get a �rst insight into typical properties of swing options we can have a closer look at the
intrinsic value. In �gure 9 the sorted discounted price forward curves resulting from the three
models as well as the intrinsic value for the corresponding swing options with a strike price of
K = 60 e/MWh have been plotted. Obviously, the sorted price forward curves for model A, B
and C show only little di�erences. Generally, the intrinsic option value grows with the number of
exercise right, at �rst almost linearly. At round about 4700 exercise rights a maximum intrinsic
value is reached � more exercise rights do not increase the option value any longer, i.e. the
number of exercise rights is no longer a restriction as no more prices above the strike price exist
in the price forward curve. Special interest will be spend to this special property if deterministic
as well as real option values are examined later on.

model A model B model C

Vmax,intrinsic 120828.31 120901.30 123379.18

Umax 4693 4718 4653

Table 5: Comparison of maximum intrinsic value and corresponding number of exercise rights for model
A to C

The maximum intrinsic value and the corresponding number of exercise rights Umax are given
in table 5. From this table it can be seen that for Umax upswing rights the di�erences between
the three models � at least as far as the intrinsic value is concerned � are rather small.
The downside of the intrinsic value is, that it is based on the HPFC containing the spikes

only as an average and that it does not take the exercise decision under uncertainty (exercise
today or hope for higher prices in the future) into account � in contrast to the LSM algorithm.
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Figure 9: Intrinsic value for a swing option with strike K = 60 e/MWh resulting from model A to D

Required Number of Basis Functions and Scenarios

One important question concerning the LSM algorithm is, how many basis functions are neces-
sary to get a satisfactory accuracy of the option value. To answer this question, 1000 scenarios
generated with the regime-switching model A have been used and the option values of swing
options with 1 to 10 exercise rights have been calculated using up to M = 8 basis functions.
The resulting options values have been divided by the option values obtained for M = 8 basis
functions and are shown in �gure 10. Using M = 1 instead of M = 8 decreases the resulting
option value by 5 % in case of ten exercise rights and up to 12 % for a single exercise right. As
computation time scales almost linearly with the number of basis functions, M = 5 is a good
compromise between accuracy and speed.
A second major question is the convergence of the LSM algorithm as far as the number of

price scenarios is concerned. For this purpose, a swing option with 500 exercise rights has been

priced using di�erent numbers of scenarios. For Monte Carlo Simulations a
√
N
−1

law for the
convergence is typical, i.e. quadrupling the number of sample paths approximately halves the
error in the simulated price. This behavior can also be observed in �gure 11 (a). Starting with
100 scenarios generated with model A, the error reduces nonlinearly with an increasing number
of scenarios. Nevertheless, even for 100 scenarios the error in the option value (compared to a
scenario number of 10000) is small if the number of exercise rights is not too small. Figure 11 (b)
shows that for more than 50 exercise rights the relative error in comparison to 10000 scenarios
is less than 1 % if 1000 scenarios are used. Due to this fact the further calculations in this paper
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Figure 10: Options values for 1 to 10 exercise rights and M = 1, . . . , 8 (strike 60 e/MWh)

have been based on 1000 price scenarios as well as M = 5 basis functions.

Option Values for the Di�erent Models

In a next step, option values resulting from the three speci�ed models A to C are compared. In
�gure 12 the option values calculated with the LSM algorithm are plotted against the number
of exercise rights and the corresponding intrinsic and deterministic values are also shown.
Regardless of the underlying model, the intrinsic value is very small compared to the value

calculated using the LSM algorithm, which is much closer to the deterministic value. One
reason for this large di�erence between the intrinsic and the LSM option value is, that spikes
are very important for swing options with few exercise rights. Unfortunately, the spikes are
only contained in the HPFC as an average and therefore have only a small in�uence on the
HPFC and the intrinsic option price. Another reason is, of course, the volatility introduced by
the two factors, which is not re�ected by the HPFC. On the contrary, the deterministic value
is larger as the nomination in each scenario is done without uncertainty � in di�erence to the
LSM algorithm.
In the loglog plot shown in �gure 12 (a) the option values obtained applying model B and C

have been divided by the option value calculated using model A. The resulting relative prices
reveal the potential model error resulting from a use of the di�erent models. For a small number
of exercise rights models B and C result in lower prices than model A � the prices di�er by 32
% (model B) or even 56 % (model C) respectively. With a growing number of exercise rights
the situation reverses. For 500 exercise rights the option prices obtained with model B as well
as model C are 9 % higher than the ones with model A.
In �gure 13 the LSM option values for models A to C as well as the relative option values

are plotted for up to 5000 exercise rights. The sub�gures containing the results for the three
models show, that the di�erences between the deterministic price and the real option value
calculated via LSM �rst become larger with a growing number of exercise rights � and shrink
to zero if the number of exercise rights approaches round about 5000. This behavior reproduces
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Figure 11: Option value calculated with LSM using model A (strike 60 e/MWh) for up to 500 exercise
rights using di�erent numbers of price scenarios
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Figure 12: Real option value calculated with LSM using models A to C in comparison to intrinsic and
deterministic value (strike 60 e/MWh) for up to 500 exercise rights
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Figure 13: Real option value calculated with LSM using models A to C in comparison to intrinsic and
deterministic value (strike 60 e/MWh) for up to 5000 exercise rights
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Figure 14: Real option value for di�erent strike prices using models A to C in comparison to intrinsic
and deterministic value
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model B C

relative price 1.04 1.03

Table 6: relative price of the di�erent models for 5000 exercise rights (strike 60 e/MWh)

what we have seen for the intrinsic price: Even with the uncertain future spot prices, a limit of
5000 exercise rights is almost surely no longer a constraint � LSM algorithm and deterministic
calculation show the same results.
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Figure 15: Di�erence between the deterministic value and the real option value calculated with LSM
for models A to C (strike 60 e/MWh) for up to 5000 exercise rights

Furthermore, for 5000 exercise rights the di�erences between the three models are smaller
than 4 % in any case (c.f. table 6) and it can be concluded, that for such a large number of
exercise rights the model choice is less important but nevertheless still relevant.
Finally, the option values have been calculated for strike prices varying between 40 e/MWh

and 120 e/MWh and the results are shown in �gure 14. In any case, for a strike price of
120 e/MWh the intrinsic value for model A to C approaches zero, as no prices higher than
120 e/MWh can be found in the HPFC. Moreover, the option value generally decreases with
an increasing strike price. While this decrease is linear for 100 exercise rights (�g. 14 (a)) it
becomes more and more nonlinear with a growing number of exercise rights (�g. 14 (b),(c)).
Once again, the di�erences between the real option value and the deterministic value decrease
� now independent of the number of exercise rights � with an increasing strike price. This is
once again due to the fact that with a growing strike price the number of exercise rights is
almost surely no longer a constraint. Therefore, the exercise decision becomes trivial and the
option value converges to the one obtained in a deterministic calculation.
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4 Summary

In this paper we have modeled the EEX spot prices using three di�erent price processes. From
a kernel density estimation it can be concluded that model A (regime-switching combined with
24 ARMA processes) reproduces the characteristics of the historical spot prices, namely fat tails
and asymmetry, best. Model B (jump-di�usion combined with 24 ARMA processes) and Model
C (NIG process combined with 24 ARMA processes) show comparable results but perform not
as good as model A. Beyond this in-sample analysis, model A also shows the best performance
in an out-of-sample analysis and the estimation algorithm delivers stable parameters as has
been shown for a period of 400 trading days. The other two models either show less parameter
stability or weaknesses in the out-of-sample analysis. Model A also as well as model B reproduce
the implied volatilities of options quoted at the EEX, but none of the models is able to reproduce
the empirical correlation structure of futures prices. Over all, model A is the most preferable
one among the three examined models.
In the second part of the paper an e�cient Least Squares Monte Carlo algorithm (LSM)

has been introduced and applied to swing options with up to 5000 exercise rights using price
scenarios generated with the three di�erent price processes as input. Here it has become obvious
that it is very important for the pricing of swing options to use simulation methods based on
an appropriate price process. This is especially relevant for small numbers of exercise rights as
option prices may vary by a factor of two depending on the price process. Therefore a swing
option with few exercise rights is a risky bet on the price process used because of the high
model risk. With a growing number of exercise rights the di�erences between the three models
shrink and the model choice becomes less important.
In all examined cases the resulting option values obtained using the LSM algorithm as well

as a deterministic calculation are much larger than the intrinsic option values. But from the
calculations in this paper it can be concluded that with a growing number of exercise rights
and an increasing strike price a time consuming stochastic calculation becomes super�uous �
instead a simple deterministic calculation can be applied. This is an important fact for the
valuation and optimal dispatch of power plants with high numbers of hours of operation, for
example gas and steam plants or coal �red power plants. In a simpli�ed model (disregarding
constraints like ramps, minimum down-time, maintenance, outages etc.) these power plants
can be seen as swing options with at least 5000 exercise rights. Of course the situation may
be di�erent if another price level at the EEX emerges and therefore from time to time this
examination has to be repeated.
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