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Outlook

Motivation – p.2

• Structural models for forward electricity prices are highly relevant: major structural
changes in the market due to the infeed from renewable energy

• Renewable energies infeed reflected in the market expectation – impact on futures
(forward) prices?



Literature review

Motivation – p.3

• Models for forward prices in commodity/energy:

– Specify one model for the spot price and from this derive for forwards: Lucia and
Schwartz (2002); Cartea and Figueroa (2005); Benth, Kallsen, and
Mayer-Brandis (2007);

– Heath-Jarrow-Morton approach – price forward prices directly, by multifactor
models: Roncoroni, Guiotto (2000); Benth and Koekebakker (2008); Kiesel,
Schindlmayr, and Boerger (2009);

• Critical view of Koekebakker and Ollmar (2005), Frestad (2008)

– Few common factors cannot explain the substantial amount of variation in
forward prices

– Non-Gaussian noise

• Random-field models for forward prices:

– Roncoroni, Guiotto (2000);
– Andresen, Koekebakker, and Westgaard (2010);

• Derivation of seasonality shapes and price forward curves for electricity:

– Fleten and Lemming (2003);
– Bloechlinger (2008).



Questions to be answered

Motivation – p.4

• We will refer to a panel of daily price forward curves derived over time

• We deseasonalize and aim at a structural model for the stochastic component of
PFCs

– Examine and model the dynamics of risk premia, the distribution of noise
(non-Gaussian, stochastic volatility), spatial correlations

– The analysis is spatio-temporal: cross-section analysis with respect to the time
dimention and the maturity “space”



Problem statement

Modeling assumptions – p.5

• Previous models model forward prices evolving over time (time-series) along the
time at maturity T: Andresen, Koekebakker, and Westgaard (2010)

• Let Ft(T ) denote the forward price at time t ≥ 0 for delivery of a commodity at time
T ≥ t

• Random field in t:
t 7→ Ft(T ), t ≥ 0 (1)

• Random field in both t and T :

(t, T ) 7→ Ft(T ), t ≥ 0, t ≤ T (2)

• Get rid of the second condition: Musiela parametrization x = T − t, x ≥ 0.

Ft(t + x) = Ft(T ), t ≥ 0 (3)

• Let Gt(x) be the forward price for a contract with time to maturity x ≥ 0. Note that:

Gt(x) = Ft(t + x) (4)



Graphical interpretation

Modeling assumptions – p.6
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Influence of the “time to maturity”

Modeling assumptions – p.7
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Model formulation: Heath-Jarrow-Morton (HJM)

Modeling assumptions – p.8

• The stochastic process t 7→ Gt(x), t ≥ 0 is the solution to:

dGt(x) = (∂xGt(x) + β(t, x)) dt + dWt(x) (5)

– Space of curves are endowed with a Hilbert space structure H

– ∂x differential operator with respect to time to maturity

– β spatio-temporal random field describing the market price of risk

– W Spatio-temporal random field describing the randomly evolving residuals

• Discrete structure:
Gt(x) = ft(x) + st(x) , (6)

– st(x) deterministic seasonality function R
2
+ ∋ (t, x) 7→ st(x) ∈ R



Model formulation (cont)

Modeling assumptions – p.9

We furthermore assume that the deasonalized forward price curve, denoted by ft(x), has
the dynamics:

dft(x) = (∂xft(x) + θ(x)ft(x)) dt + dWt(x) , (7)

with θ ∈ R being a constant. With this definition, we note that

dFt(x) = dft(x) + dst(x)

= (∂xft(x) + θ(x)ft(x)) dt + ∂tst(x) dt + dWt(x)

= (∂xFt(x) + (∂tst(x) − ∂xst(x)) + θ(x)(Ft(x) − st(x))) dt + dWt(x) .

In the natural case, ∂tst(x) = ∂xst(x), and therefore we see that Ft(x) satisfy (5) with
β(t, x) := θ(x)ft(x).

The market price of risk is proportional to the deseasonalized forward prices.



Model formulation (cont)

Modeling assumptions – p.10

We discretize the dynamics in Eq. (7) by an Euler discretization

dft(x) = (∂xft(x) + θ(x)ft(x)) dt + dWt(x)

∂xft(x) ≈
ft(x + ∆x) − ft(x)

∆x

ft+∆t(x) = (ft(x) +
∆t

∆x
(ft(x + ∆x) − ft(x)) + θ(x)ft(x)∆t + ǫt(x) (8)

with x ∈ {x1, . . . , xN } and t = ∆t, . . . , (M − 1)∆t, where ǫt(x) := Wt+∆t(x) − Wt(x).

Zt(x) := ft+∆t(x) − ft(x) −
∆t

∆x
(ft(x + ∆x) − ft(x)) (9)

which implies
Zt(x) = θ(x)ft(x)∆t + ǫt(x) , (10)

ǫt(x) = σ(x)ǫ̃t(x) (11)



Overview of modeling procedure

Overview of the modeling approach – p.11

Is it realistic?

We validate
assumptions

Fine Tuning

Theoretical model: 

Spatio-temporal 

random field of

forward prices

Empirical analysis: 
• Fit the model to 2’386 PFCs

• Examine statistics of:

ü Risk premia

ü Distribution of noise

ü Volatility term structure

ü Spatial correlations

Refine the model:
• Volatility term structure

• Model coloured noise

• Spatial correlations



Derivation of price forward curves: seasonality curves

Derivation of price forwad curves – p.12

• We firstly remove the long-term trend from the hourly electricity prices

• Follow Blöchlinger (2008) for the derivation of the seasonality shape for EPEX power
prices: very „data specific”; removes seasonal effects and autocorrelation!

• In a first step, we identify the seasonal structure during a year with daily
prices: factor-to-year (f2y)

• In the second step, the patterns during a day are analyzed using hourly
prices: factor-to-day (f2d)

• Forecasting models for the factors are derived, such that the resulting shape can be
predicted

• The shape is aligned to the level of futures prices



Factor to year

Derivation of price forwad curves – p.13

f2yd =
Sday(d)∑

kǫyear(d)
Sday(k) 1

K(d)

(12)

To explain the f2y, we use a multiple regression model:

f2yd = α0 +

6∑

i=1

biDdi +

12∑

i=1

ciMdi +

3∑

i=1

diCDDdi +

3∑

i=1

eiHDDdi + ε (13)

- f2yd: Factor to year, daily-base-price/yearly-base-price

- Ddi: 6 daily dummy variables (for Mo-Sat)

- Mdi: 12 monthly dummy variables (for Feb-Dec); August will be subdivided in two
parts, due to summer vacation

- CDDdi: Cooling degree days for 3 different German cities – max(T − 18.3◦C, 0)

- HDDdi: Heating degree days for 3 different German cities – max(18.3◦C − T, 0)

where CDDi/HDDi are estimated based on the temperature in Berlin, Hannover and
Munich.



Regression model for the temperature

Derivation of price forwad curves – p.14

• For temperature, we propose a forecasting model based on fourier series:

Tt = a0 +

3∑

i=1

b1,i cos(i
2π

365
Y Tt) +

3∑

i=1

b2,i sin(i
2π

365
Y Tt) + εt (14)

where Tp is the average daily temperature and YT the observation time within one
year

• Once the coefficients in the above model are estimated, the temperature can be
easily predicted since the only exogenous factor YT is deterministic!

• Forecasts for CDD and HDD are also straightforward



Factor to day

Derivation of price forwad curves – p.15

• The f2d, in contrast, indicates the weight of the price of a particular hour compared
to the daily base price.

f2dt =
Shour(t)∑

kǫday(t)
Shour(k) 1

24

(15)

• with Shour(t) being the hourly spot price at the hour t.

• We know that there are considerable differences both in the daily profiles of
workdays, Saturdays and Sundays, but also between daily profiles during winter and
summer season

• We classify the days by weekdays and seasons and choose the classification scheme
presented in Table 1



Profile classes for each day

Derivation of price forwad curves – p.16

Table 1: The table indicates the assignment of each day to one out of the twenty profile classes.
The daily pattern is held constant for the workdays Monday to Friday within a month, and for
Saturday and Sunday, respectively, within three months.

J F M A M J J A S O N D

Week day 1 2 3 4 5 6 7 8 9 10 11 12
Sat 13 13 14 14 14 15 15 15 16 16 16 13
Sun 17 17 18 18 18 19 19 19 20 20 20 17



Profile classes for each day

Derivation of price forwad curves – p.17

• The regression model for each class is built quite similarly to the one for the yearly
seasonality. For each profile class c = {1, . . . , 20} defined in table 1, a model of the
following type is formulated:

f2dt = ac
o +

23∑

i=1

bc
i Ht,i + εt for all tǫc. (16)

where Hi = {0, . . . , 23} represents dummy variables for the hours of one day

• The seasonality shape st can be calculated by st = f2yt · f2dt.

• st is the forecast of the relative hourly weights and it is additionally
multiplied by the yearly average prices, in order to align the shape at the
prices level

• This yields the seasonality shape st which is finally used to deseasonalize
the electricity prices



Deseasonalization result

Derivation of price forwad curves – p.18

The deseasonalized series is assumed to contain only the stochastic component of
electricity prices, such as the volatility and randomly occurring jumps and peaks
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Figure 1: Autocorrelation function before and after deseasonalization



Derivation of HPFC Fleten & Lemming (2003)

Derivation of price forwad curves – p.19

• Recall that Ft(x) is the price of the forward contract with maturity x, where time is
measured in hours, and let Ft(T1, T2) be the settlement price at time t of a forward
contract with delivery in the interval [T1, T2].

• The forward prices of the derived curve should match the observed settlement price
of the traded future product for the corresponding delivery period, that is:

1∑T2

τ=T1

exp(−rτ/a)

T2∑

τ=T1

exp(−rτ/a)Ft(τ − t) = Ft(T1, T2) (17)

where r is the continuously compounded rate for discounting per annum and a is the
number of hours per year.

• A realistic price forward curve should capture information about the hourly
seasonality pattern of electricity prices

min

[
N∑

x=1

(Ft(x) − st(x))2

]
(18)



Input mix for electricity production Germany

Empirical results – p.20

2009 2010 2011 2012 2013 2014
Coal 42.6 41.5 42.8 44 45.2 43.2
Nuclear 22.6 22.2 17.6 15.8 15.4 15.8
Natural Gas 13.6 14.1 14 12.1 10.5 9.5
Oil 1.7 1.4 1.2 1.2 1 1
Renewable energies from which 15.9 16.6 20.2 22.8 23.9 25.9
Wind 6.5 6 8 8.1 8.4 8.9
Hydro power 3.2 3.3 2.9 3.5 3.2 3.3
Biomass 4.4 4.7 5.3 6.3 6.7 7.0
Photovoltaic 1.1 1.8 3.2 4.2 4.7 5.7
Waste-to-energy 0.7 0.7 0.8 0.8 0.8 1

Other 3.6 4.2 4.2 4.1 4 4.3

Table 2: Electricity production in Germany by source (%), as shown in Paraschiv, Bunn
and Westgaard (2016).



Data

Empirical results – p.21

• We employed a unique data set of 2’386 daily price forward curves
Ft(x1), . . . , Ft(xN ) generated each day between 01/01/2009 and 15/07/2015 based on
the latest information from the observed futures prices for the German electricity
Phelix price index.

• We firstly deaseasonalize the prices:

Ft(x) = ft(x) + st(x) , (19)

• Estimate the parameter of the market price of risk (θ), the volatility term structure
(σ(x)) and analyse the noise ǫ̃t(x)

Zt(x) := ft+∆t(x) − ft(x) −
∆t

∆x
(ft(x + ∆x) − ft(x)) (20)

which implies
Zt(x) = θ(x)ft(x)∆t + ǫt(x) , (21)

ǫt(x) = σ(x)ǫ̃t(x) (22)



Increase in renewables: increase in the PFC’s volatility

Empirical results – p.22
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Figure 2: Stochastic component of PFCs generated at 01/17/2010 (left graph) and 01/17/2011,
right graph.



Increase in renewables: increase in the PFC’s volatility

Empirical results – p.23
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Figure 3: Stochastic component of PFCs generated at 01/17/2013 (left graph) and 01/17/2014,
right graph.



Risk premia

Empirical results – p.24

• Short-term: it oscillates around zero and has higher volatility (similar in Pietz
(2009), Paraschiv et al. (2015))

• Long-term: is becomes negative and has more constant volatility (Burger et al.
(2007)): In the long-run power generators accept lower futures prices, as they need
to make sure that their investment costs are covered.
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Term structure volatility

Empirical results – p.25

• We observe Samuelson effect: overall higher volatility for shorter time to maturity
• Volatility bumps (front month; second/third quarters) explained by increased volume

of trades
• Jigsaw pattern: weekend effect; volatility smaller in the weekend versus working days
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Explaining volatility bumps

Empirical results – p.26
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Figure 5: The sum of traded contracts for the monthly futures, evidence from EPEX, own
calculations (source of data ems.eex.com).



Explaining volatility bumps

Empirical results – p.27
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Figure 6: The sum of traded contracts for the quarterly futures, evidence from EPEX,
own calculations (source of data ems.eex.com).



Statistical properties of the noise

Empirical results – p.28

• We examined the statistical properties of the noise time-series ǫ̃t(x)

ǫt(x) = σ(x)ǫ̃t(x) (23)

• We found: Overall we conclude that the model residuals are coloured noise, with
heavy tails (leptokurtic distribution) and with a tendency for conditional
volatility.

ǫ̃t(xk) Stationarity Autocorrelation ǫ̃t(xk) Autocorrelation ǫ̃t(xk)2 ARCH/GARCH
h h1 h1 h2

Q0 0 1 1 1
Q1 0 0 0 0
Q2 0 1 1 1
Q3 0 0 1 1
Q4 0 1 0 0
Q5 0 1 1 1
Q6 0 1 1 1
Q7 0 1 1 1

Table 3: The time series are selected by quarterly increments (90 days) along the maturity points on one noise
curve. Hypotheses tests results, case study 1: ∆x = 1day. In column stationarity, if h = 0 we fail to reject the
null that series are stationary. For autocorrelation h1 = 0 indicates that there is not enough evidence to suggest
that noise time series are autocorrelated. In the last column h2 = 1 indicates that there are significant ARCH
effects in the noise time-series.



Autocorrelation structure of noise time series

Empirical results – p.29
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Figure 7: Autocorrelation function in the level of the noise time series ǫ̃t(xk), by taking
k ∈ {1, 90, 180, 270}, case study 1: ∆x = 1day.



Autocorrelation structure of noise time series (squared)

Empirical results – p.30
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Figure 8: Autocorrelation function in the squared time series of the noise ǫ̃t(xk)2, by
taking k ∈ {1, 90, 180, 270}, case study 1: ∆x = 1day.



Leptokurtic distribution

Empirical results – p.31
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Figure 9: Correlation matrix with respect to different maturity points along one curve.
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• We have analysed empirically the noise residual dWt(x) expressed as
ǫt(x) = σ(x)ǫ̃t(x) in a discrete form

• Recover an infinite dimensional model for Wt(x) based on our findings

Wt =

∫ t

0

Σs dLs , (24)

where s 7→ Σs is an L(U , H)-valued predictable process and L is a U-valued Lévy
process with zero mean and finite variance.

• As a first case, we can choose Σs ≡ Ψ time-independent:

Wt+∆t − Wt ≈ Ψ(Lt+∆t − Lt) (25)

Choose now U = L2(R), the space of square integrable functions on the real line
equipped with the Lebesgue measure, and assume Ψ is an integral operator on L2(R)

R+ ∋ x 7→ Ψ(g)(x) =

∫

R

σ̃(x, y)g(y) dy (26)

• we can further make the approximation Ψ(g)(x) ≈ σ̃(x, x)g(x), which gives

Wt+∆t(x) − Wt(x) ≈ σ̃(x, x)(Lt+∆t(x) − Lt(x)) . (27)



Revisiting the model (cont)
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• Recall the spatial correlation structure of ǫ̃t(x). This provides the empirical
foundation for defining a covariance functional Q associated with the Lévy process L.

• In general, we know that for any g, h ∈ L2(R),

E[(Lt, g)2(Lt, h)2] = (Qg, h)2

where (·, ·)2 denotes the inner product in L2(R)

Qg(x) =

∫

R

q(x, y)g(y) dy , (28)

• If we assume g ∈ L2(R) to be close to δx, the Dirac δ-function, and likewise,
h ∈ L2(R) being close to δy, (x, y) ∈ R

2, we find approximately

E[Lt(x)Lt(y)] = q(x, y)

• A simple choice resembling to some degree the fast decaying property is
q(|x − y|) = exp(−γ|x − y|) for a constant γ > 0.

• It follows that t 7→ (Lt, g)2 is a NIG Lévy process on the real line.



Conclusion and future work
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• We developed a spatio-temporal dynamical arbitrage free model for electricity
forward prices based on the Heath-Jarrow-Morton (HJM) approach under Musiela
parametrization

• We examined a unique data set of price forward curves derived each day in the
market between 2009–2015

• We examined the spatio-temporal structure of our data set

– Risk premia: higher volatility short-term, oscillating around zero; constant
volatility on the long-term, turning into negative

– Term structure volatility: Samuelson effect, volatility bumps explained by
increased volume of trades

– Coloured (leptokurtic) noise with evidence of conditional volatility
– Spatial correlations structure: decaying fast for short-term maturities;

constant (white noise) afterwards with a bump around 1 year

• After explaining the Samuelson effect in the volatility term structure, the residuals
are modeled by an infinite dimensional NIG Lévy process, which allows for a natural
formulation of a covariance functional.
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