
Model Uncertainty

Model Uncertainty

Massimo Marinacci

AXA-Bocconi Chair in Risk
Department of Decision Sciences and IGIER

Università Bocconi

University of Duisburg-Essen
25 May 2016



Model Uncertainty

The problem

The problem

Uncertainty and information are twin notions

Uncertainty is indeed a form of partial / limited knowledge
about the possible realizations of a phenomenon

toss a die: what face will come up?

The �rst order of business is to frame the problem properly

First key breakthrough: probabilities

You can assign numbers to alternatives that quantify their
relative likelihoods (and manipulate them according to some
rules; probability calculus)
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Probability: emergence and consolidation

Probability: emergence and consolidation

16th-17th centuries: probability and its calculus emerged with
the works of Cardano, Huygens, Pascal et al.

18th-19th centuries: consolidation phase with the works of the
Bernoullis, Gauss, Laplace et al.

Laplace canon (1812) based on equally likely cases /
alternatives: the probability of an event equals the number of
�favorable� cases over their total number

Later, the �equally likely�notion came to be viewed as an
objective / physical feature (faces of a die, sides of a fair coin)
until...
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20th century: the Bayesian leap

20th century: the Bayesian leap

1920s: de Finetti and Ramsey freed probability of physics and
rendered �equally likely� a subjective evaluation

In doing so, they could attach probabilities to any event

�tomorrow it will rain�
�left wing parties will increase their votes in the next elections�

Such probabilities (often called subjective) quantify the
decision maker degree of belief

In this way, all uncertainty can be probabilized: Bayesianism



Model Uncertainty

Road map

Road map

Probabilities: a (brief) historical detour

Types of uncertainty: physical vs epistemic
Decision problems

toolbox
Savage setup
classical subjective expected utility

Model uncertainty: ambiguity / robustness models

Issues

ambiguity / robustness makes optimal actions more prudent?
ambiguity / robustness favors diversi�cation?
ambiguity / robustness a¤ects valuation?
model uncertainty resolves in the long run through learning?
sources of uncertainty: a Pandora�s box?
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Types of uncertainty

Types of uncertainty

All uncertainty relevant for decision making is ultimately subjective

To paraphrase Protagoras, in decision problems �DMs are the
measure of all things�

Yet, in applications (especially with data) it is convenient to
distinguish between physical and epistemic uncertainty

It traces back to Cournot and Poisson around 1840

This distinction is a pragmatic divide et impera approach
(combining objective and subjective views often regarded as
dichotomic)

Caveat, again: relevant for decision problems with data (not
for one-of-a-kind decisions / events)
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Types of uncertainty: physical

Types of uncertainty: physical

Examples of physical uncertainty: coin / dice tossing,
measurement errors

Physical uncertainty deals with variability in data (e.g.,
economic time series), because of their inherent randomness,
measurement errors, omitted minor explanatory variables

In applications, physical uncertainty characterizes data
generating processes (DGP), i.e., probability models for data
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Types of uncertainty: physical

Types of uncertainty: physical

Physical uncertainty is irreducible

take either an urn with 50 white and 50 black balls or a fair
coin, the probability of each alternative is 1/2

There is nothing to learn and information is captured by
conditioning

Here probability is a measure of randomness / variability
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Types of uncertainty: epistemic

Types of uncertainty: epistemic

Epistemic uncertainty deals with the truth of propositions

�tomorrow it will rain�
�left wing parties will increase their votes in the next elections�
�the parameter that characterizes the DGP has value x�
�the composition of the urn is 50 white and 50 black balls�

It is reducible through learning via Bayes�rule

take an urn with only black and white balls, in unknown (and
so uncertain) proportion; repeated drawing enables to learn
about such uncertainty and, hence, to reduce it

Here probability is a measure of degree of belief
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Road map

Road map

Probabilities: a (brief) historical detour

Types of uncertainty: physical vs epistemic

Decision problems

toolbox
Savage setup
classical subjective expected utility

Model uncertainty: ambiguity / robustness models

Issues

ambiguity / robustness makes optimal actions more prudent?
ambiguity / robustness favors diversi�cation?
ambiguity / robustness a¤ects valuation?
model uncertainty resolves in the long run through learning?
sources of uncertainty: a Pandora�s box?
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Decision problems: the toolbox, I

Decision problems: the toolbox, I

A decision problem consists of

a space A of actions

a space C of material (e.g., monetary) consequences

a space S of environment states

a consequence function ρ : A� S ! C that details the
consequence

c = ρ (a, s)

of action a when state s obtains
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Example (i): natural hazards

Example (i): natural hazards

Public o¢ cials have to decide whether or not to evacuate an area
because of a possible earthquake

A two actions a0 (no evacuation) and a1 (evacuation)

C monetary consequences (damages to infrastructures and
human casualties; Mercalli-type scale)

S possible peak ground accelerations (Richter-type scale)

c = ρ (a, s) the monetary consequence of action a when
state s obtains
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Example (ii): monetary policy

Example (ii): monetary policy example

ECB or the FED have to decide some target level of in�ation to
control the economy unemployment and in�ation

Unemployment u and in�ation π outcomes are connected to
shocks (w , ε) and the policy a according to

u = θ0 + θ1ππ + θ1aa+ θ2w

π = a+ θ3ε

θ = (θ0, θ1π, θ1a, θ2, θ3) are �ve structural coe¢ cients

θ1π and θ1a are slope responses of unemployment to actual
and planned in�ation (e.g., Lucas-Sargent θ1a = �θ1π;
Samuelson-Solow θ1a = 0)
θ2 and θ3 quantify shock volatilities
θ0 is the rate of unemployment that would (systematically)
prevail without policy interventions
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Example (ii): monetary policy

Example (ii): monetary policy

Here:
A the target levels of in�ation
C the pairs c = (u,π)
S has structural and random components

s = (w , ε, θ) 2 W � E �Θ = S

The reduced form is

u = θ0 + (θ1π + θ1a) a+ θ1πθ3ε+ θ2w

π = a+ θ3ε

and so ρ has the form

ρ (a,w , ε, θ) =
�

θ0
0

�
+ a

�
θ1π + θ1a

1

�
+

�
θ2 θ1πθ3
0 θ3

� �
w
ε

�
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Decision problems: the toolbox, II

Decision problems: the toolbox, II

The quartet (A,S ,C , ρ) is a decision form under uncertainty

The decision maker (DM) has a preference % over actions

we write a % b if the DM (weakly) prefers action a to action b

The quintet (A,S ,C , ρ,%) is a decision problem under
uncertainty

DMs aim to select actions â 2 A such that â % a for all a 2 A



Model Uncertainty

Consequentialism

Consequentialism

What matters about actions is not their label / name but the
consequences that they determine when the di¤erent states obtain

Consequentialism: two actions that are realization equivalent
� i.e., that generate the same consequence in every state �are
indi¤erent

Formally,

ρ (a, s) = ρ (b, s) 8s 2 S =) a � b

or, equivalently,
ρa = ρb =) a � b

Here ρa : S ! C is the section of ρ at a given by
ρa (s) = ρ (a, s)
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Savage setup

Savage setup

Identify actions that are realization equivalent

Formally, in place of actions we consider the maps a : S ! C
that they induce as follows:

a (s) = ρa (s) 8s 2 S

These maps are called acts � they are state contingent
consequences

A denotes the collection of all the acts
We can directly consider the preference % on A by setting
a % b if and only if a % b
The quartet (A,S ,C ,%) represents the decision problem
a la Savage (1954), a reduced form of problem (A,S ,C , ρ,%)
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Physical uncertainty: probability models

Physical uncertainty: probability models

Because of their ex-ante structural information, DMs know
that states are generated by a probability model m that
belongs to a given subset M of ∆ (S)
Each m describes a possible DGP, and so it represents
physical uncertainty (risk)

DMs thus posit a model space M in addition to the state
space S , a central tenet of classical statistics a la
Neyman-Pearson-Wald

When the model space is based on experts�advice, its
nonsingleton nature may re�ect di¤erent advice
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Models: a toy example

Models: a toy example

Consider an urn with 90 Red, or Green, or Yellow balls

DMs bet on the color of a ball drawn from the urn

State space is S = fR,G ,Y g
Without any further information, M = ∆ (fR,G ,Y g)
If DMs are told that 30 balls are red, then

M = fm 2 ∆ (fR,G ,Y g) : m (R) = 1/3g
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Models and experts: probability of heart attack

Models and experts: probability of heart attack

Two DMs: John and Lisa are 70 years old

smoke

no blood pressure problem

total cholesterol level 310 mg/dL

HDL-C (good cholesterol) 45 mg/dL

systolic blood pressure 130

What�s the probability of a heart attack in the next 10 years?
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Models and experts: probability of heart attack

Models and experts: probability of heart attack

Based on their data and medical models, experts say

Experts John�s m Lisa�s m
Mayo Clinic 25% 11%

National Cholesterol Education Program 27% 21%

American Heart Association 25% 11%

Medical College of Wisconsin 53% 27%

University of Maryland Heart Center 50% 27%

Table from Gilboa and Marinacci (2013)
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Models: adding a consistency condition

Models: adding a consistency condition

Cerreia, Maccheroni, Marinacci, Montrucchio (PNAS 2013)
take the �physical� information M as a primitive and thus
enrich the standard Savage framework

DMs know that the true model m that generates observations
belongs to the posited collection M

In terms of preferences: betting behavior must be consistent
with datum M. Formally,

m (F ) � m (E ) 8m 2 M =) cFc 0 % cEc 0

where cFc 0 and cEc 0 are bets on events F and E , with c � c 0

The quintet (A,S ,C ,M,%) forms a Savage classical
decision problem

Remark: we abstract away from model misspeci�cation issues
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Classical subjective EU

Classical subjective EU

We show that a preference % that satis�es Savage�s axioms and
the consistency condition is represented by the criterion

V (a) = ∑
m2M

 
∑
s2S

u (a (s))m (s)

!
µ (m) (1)

That is, acts a and b are ranked as follows:

a % b() V (a) � V (b)
Here

u is a von Neumann-Morgenstern utility function that captures
risk attitudes (i.e., attitudes toward physical uncertainty)
µ is a subjective prior probability that quanti�es the epistemic
uncertainty about models; its support is included in M
If M is based on the advice of di¤erent experts, the prior may
re�ect the di¤erent con�dence that DMs have in each of them
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Classical subjective EU

Classical subjective EU

We call this representation Classical Subjective Expected Utility
because of the classical statistics tenet on which it relies

If we set
U (a,m) = ∑

s2S
u (a (s))m (s)

we can write the criterion as

V (a) = ∑
m2M

U (a,m) µ (m)

In words, the criterion considers the expected utility U (a,m)
of each possible DGP m, and averages them out according to
the prior µ
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Classical subjective EU

Classical subjective EU

Each prior µ induces a predictive probability µ̄ 2 ∆ (S)
through reduction

µ̄ (E ) = ∑
m2M

m (E ) µ (m)

In turn, the predictive probability enables to rewrite the
representation as

V (a) = U (a, µ̄) = ∑
s2S

u (a (s)) µ̄ (s)

This reduced form of V is the original Savage subjective EU
representation
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Classical subjective EU: some special cases

Classical subjective EU: some special cases

If the support of µ is a singleton fmg, DMs subjectively (and
so possibly wrongly) believe that m is the true model
The criterion thus reduces to a Savage EU criterion U (a,m)

If M is a singleton fmg, DMs know that m is the true model
(a rational expectations tenet)

(i) There is no epistemic uncertainty, but only physical uncertainty
(quanti�ed by m)

(ii) The criterion again reduces to the EU representation U (a,m),
but now interpreted as a von Neumann-Morgenstern criterion
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Classical subjective EU: some special cases

Classical subjective EU: some special cases

Classical subjective EU thus encompasses both the Savage
and the von Neumann-Morgenstern representations

If M � fδs : s 2 Sg, there is no physical uncertainty, but only
epistemic uncertainty (quanti�ed by µ). By identifying s with
δs , wlog we can write µ (s) and so the criterion takes the form

V (a) = ∑ v (a (s)) µ (s)

where it is v that matters
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Classical subjective EU: monetary policy example

Classical subjective EU: monetary policy example

Back to the monetary example

u = θ0 + θ1ππ + θ1aa+ θ2w

π = a+ θ3ε

Distribution q of shocks (w , ε)

θ is deterministic, �xed

Each model m corresponds to a shock distribution q and to a
possible model economy θ
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Classical subjective EU: monetary policy example

Classical subjective EU: monetary policy example

Suppose:
(i) shocks distribution q is known
(ii) model economy θ is unknown

Each model m is thus uniquely parametrized by θ, and so
belief µ is directly on θ

The monetary policy problem is then

max
a2A

V (a) = max
a2A ∑

θ2Θ

 
∑

(w ,ε)2W�E
u (a (w , ε, θ)) q (w , ε)

!
µ (θ)
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Classical subjective EU: portfolio

Classical subjective EU: portfolio

Frictionless �nancial market with n assets

Each with uncertain gross return ri after one period

a = (a1, ..., an) 2 ∆n�1 is vector of portfolio weights
If initial wealth is 1,

ρ (a, s) = a � s =
n

∑
i=1
ai ri

is the end-of-period wealth when s = (r1, ..., rn) obtains

The portfolio decision problem is

max
a2A

V (a) = max
a2∆n�1

∑
m2M

 
∑
s2S

u (a � s)m (s)
!

µ (m)
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Classical subjective EU: portfolio

Classical subjective EU: portfolio

Two assets: a risk free with return rf and a risky one with
uncertain return r

State space is the set R of all possible returns of the risky
asset

If a 2 [0, 1] is the fraction of wealth invested in the risky
asset, the portfolio problem becomes

max
a2[0,1] ∑

m2M

 
∑
r2R

u ((1� a) rf + ar)m (r)
!

µ (m)
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Classical subjective EU: portfolio

Classical subjective EU: portfolio

Suppose r � rf = βx + (1� β) ε, with β 2 [0, 1]
x is a predictor for the excess return and ε is a shock with
distribution q

The higher β, the more predictable the excess return

s = (ε, β), where ε and β are its random and structural
components

Each model corresponds to a shock distribution q and to a
predictability structure β
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Classical subjective EU: portfolio

Classical subjective EU: portfolio

If q is known, the only unknown is β:

max
a2[0,1]

Z
[0,1]

�Z
E
u (rf + a (βx + (1� β) ε)) dq (ε)

�
dµ (β)

Here only predictability uncertainty

If q and ε are both unknown:

max
a2[0,1]

Z
∆(E )�[0,1]

�Z
E
u (rf + a (βx + (1� β) ε)) dq (ε)

�
dµ (q, β)

Now both parametric and predictability uncertainty (Barberis,
2000)
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Road map

Road map

Probabilities: a (brief) historical detour

Types of uncertainty: physical vs epistemic

Decision problems

toolbox
Savage setup
classical subjective expected utility

Model uncertainty: ambiguity / robustness models
Issues

ambiguity / robustness makes optimal actions more prudent?
ambiguity / robustness favors diversi�cation?
ambiguity / robustness a¤ects valuation?
model uncertainty resolves in the long run through learning?
sources of uncertainty: a Pandora�s box?
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Ambiguity / Robustness: the problem

Ambiguity / Robustness: the problem

Physical and epistemic uncertainties need to be treated
di¤erently

The standard expected utility model does not

Since the 1990s, a strand of economic literature has been
studying ambiguity / Knightian uncertainty / robustness

We consider two approaches

non-Bayesian (Gilboa and Schmeidler, J. Math. Econ. 1989;
Schmeidler, Econometrica 1989)

Bayesian (Klibano¤, Marinacci, Mukerji, Econometrica 2005)

Both approaches broaden the scope of traditional EU analysis

Normative focus (no behavioral biases or �mistakes�; see
Gilboa and Marinacci, 2013)
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Ambiguity / Robustness: the problem

Ambiguity / Robustness: the problem

Intuition: betting on coins is greatly a¤ected by whether or
not coins are well tested
Models correspond to possible biases of the coin
By symmetry (uniform reduction), heads and tails are judged
to be equally likely when betting on an untested coin, never
�ipped before
The same probabilistic judgement holds for a well tested coin,
�ipped a number of times with an approximately equal
proportion of heads to tails
The evidence behind such judgements, and so the con�dence
in them, is dramatically di¤erent: ceteris paribus, DMs may
well prefer to bet on tested (phys. unc.) rather than on
untested coins (phys. & epist. unc.)
Experimental evidence: Ellsberg paradox
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Ambiguity / Robustness: relevance

Ambiguity / Robustness: relevance

A more robust rational behavior toward uncertainty emerges

A more accurate / realistic account of how uncertainty a¤ects
valuation (e.g., uncertainty premia in market prices)

Better understanding of exchange mechanics

a dark side of uncertainty: no-trade or small-trade results
because of cumulative e¤ects of physical and epistemic
uncertainty; See the recent �nancial crisis

Better calibration and quantitative exercises

applications in Finance, Macroeconomics, and Environmental
Economics

Better modelling of decision / policy making

applications in Risk Management; e.g., the otherwise elusive
precautionary principle may �t within this framework
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Ambiguity / Robustness: relevance

Ambiguity / Robustness: relevance

Caveat: risk and model uncertainty can work in the same
direction (magni�cation e¤ects), as well as in di¤erent
directions

Magni�cation e¤ects: large �uncertainty prices�with
reasonable degrees of risk aversion

Combination of sophisticated formal reasoning and empirical
relevance
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Ambiguity / Robustness: a Bayesian approach

Ambiguity / Robustness: a Bayesian approach

A �rst distinction: DMs do not have attitudes toward
uncertainty per se, but rather toward physical uncertainty and
toward epistemic uncertainty

Such attitudes may di¤er: typically DMs are more averse to
epistemic than to physical uncertainty

Inferred from lab experiments, but in the end it is an empirical
question
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Bayesian approach: a tacit assumption

Bayesian approach: a tacit assumption

Suppose acts are monetary

Classical subjective EU representation can be written as

V (a) = ∑
m2M

U (a,m) µ (m)

= ∑
m2M

�
u � u�1

�
(U (a,m)) µ (m)

= ∑
m2M

u (c (a,m)) µ (m)

where c (a,m) is the certainty equivalent

c (a,m) = u�1 (U (a,m))

of act a under model m
Recall that U (a,m) = ∑s2S u (a (s))m (s)
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Bayesian approach: a tacit assumption

Bayesian approach: a tacit assumption

The pro�le
fc (a,m) : m 2 supp µg

is the scope of the model uncertainty that is relevant for the
decision
In particular, DMs use the decision criterion

V (a) = ∑
m2M

u (c (a,m)) µ (m)

to address model uncertainty, while

U (a,m) = ∑
s2S

u (a (s))m (s)

is how DMs address the physical uncertainty that each model
m features
Identical attitudes toward physical and epistemic
uncertainties, both modeled by the same function u
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Bayesian approach: representation

Bayesian approach: representation

The smooth ambiguity model generalizes the representation
by distinguishing such attitudes
Acts are ranked according to the smooth (ambiguity) criterion

V (a) = ∑
m2M

�
v � u�1

�
(U (a,m)) µ (m)

= ∑
m2M

v (c (a,m)) µ (m)

The function v : C ! R represents attitudes toward model
uncertainty
A negative attitude toward model uncertainty is modelled by a
concave v , interpreted as aversion to (mean preserving)
spreads in certainty equivalents c (a,m)
Ambiguity aversion amounts to a higher degree of aversion
toward epistemic than toward physical uncertainty, i.e., a v
more concave than u



Model Uncertainty

Bayesian approach: representation

Bayesian approach: representation

Setting φ = v � u�1, the smooth criterion can be written as

V (a) = ∑
m2M

φ (U (a,m)) µ (m)

This formulation holds for any kind of acts (not just monetary)

Ambiguity aversion corresponds to the concavity of φ

If φ (x) = �e�λx , it is a Bayesian version of the multiplier
preferences of Hansen and Sargent (AER 2001, book 2008)

Sources of uncertainty now matter (no longer �uncertainty is
reduced to risk�)
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Bayesian approach: example

Bayesian approach: example

Call I the tested coin and II the untested one

Actions aI and aII are, respectively, bets of one euro on coin I
and on coin II

S = fH,Tg � fH,Tg = fHH,HT ,TH,TTg
The next table summarizes the decision problem

HH HT TH TT
aI 1 1 0 0
aII 1 0 1 0
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Bayesian approach: example

Bayesian approach: example

Given the available information, it is natural to set

M =

�
m 2 ∆ (S) : m (HH [HT ) = m (TH [ TT ) = 1

2

�
M consists of all models that give probability 1/2 to either
outcome for the tested coin; no speci�c probability is, instead,
assigned to the outcome of the untested coin



Model Uncertainty

Bayesian approach: example

Bayesian approach: example

Normalize u (1) = 1 and u (0) = 0, so that

V (aI ) = ∑
m2M

φ (m (HH [HT )) dµ (m) = φ

�
1
2

�
and

V (aII ) = ∑
m2M

φ (m (HH [ TH)) dµ (m)

If µ is uniform, V (aII ) =
R 1
0 φ (x) dx . If φ is strictly concave,

by the Jensen inequality we then have

V (aII ) =
Z 1

0
φ (x) dx < φ

�Z 1

0
xdx
�
= φ

�
1
2

�
= V (aI )
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Bayesian approach: extreme attitudes and maxmin

Bayesian approach: extreme attitudes and maxmin

Under extreme ambiguity aversion (e.g., as λ " ∞ when
φ (x) = �e�λx ), the smooth ambiguity criterion in the limit
reduces to the maxmin criterion

V (a) = min
m2supp µ

∑
s2S

u (a (s))m (s)

Pessimistic criterion: DMs maxminimize over all possible
probability models in the support of µ

The prior µ just selects which models in M are relevant

Waldean version of Gilboa and Schmeidler (J. Math. Econ.
1989) seminal maxmin decision model
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Bayesian approach: extreme attitudes and maxmin

Bayesian approach: extreme attitudes and maxmin

If supp µ = M, the prior is actually irrelevant and we get
back to the Wald (1950) maxmin criterion

V (a) = min
m2M ∑

s2S
u (a (s))m (s)

When M consists of all possible models, it reduces to the
statewise maxmin criterion

V (a) = min
s2S

u (a (s))

A very pessimistic (paranoid?) criterion: probabilities, of any
sort, do not play any role (Arrow-Hurwicz decision under
ignorance)

Precautionary principle
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Bayesian approach: extreme attitudes and no trade

Bayesian approach: extreme attitudes and no trade

In a frictionless market a primary asset y that pays y (s) if state s
obtains, is traded

Its market price is p

Investors may trade x units of the asset (buy if x > 0, sell if
x < 0, no trade if x = 0)

State contingent payo¤ is x (s) = y (s) x � px
Trade occurs only if V (x) � V (0) = 0
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Bayesian approach: extreme attitudes and no trade

Bayesian approach: extreme attitudes and no trade

Dow and Werlang (Econometrica 1992): under maxmin
behavior, there is no trade on asset y whenever

min
m2supp µ

Em (y) < p < max
m2supp µ

Em (y) (2)

High ambiguity aversion may freeze markets

Inequality (2) requires supp µ to be nonsingleton: the result
requires ambiguity

More generally: a lower trade volume on asset y corresponds
to a higher ambiguity aversion (e.g., higher λ when
φ (x) = �e�λx ) if (2) holds

Bottom line: it reinforces the idea that uncertainty can be an
impediment to trade
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Bayesian approach: quadratic approximation

Bayesian approach: quadratic approximation

The smooth ambiguity criterion admits a simple quadratic
approximation that leads to a generalization of the classic
mean-variance model (Maccheroni, Marinacci, Ru¢ no,
Econometrica 2013)
The robust mean-variance rule ranks acts a by

Eµ̄ (a)�
λ

2
σ2µ̄ (a)�

θ

2
σ2µ (E (a))

where λ and θ are positive coe¢ cients
Here E(a) : M ! R is the random variable

m 7! Em(a) = ∑
s2S

a (s)m (s)

that associates the EV of act a under each possible model m
σ2µ (E(a)) is its variance
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Bayesian approach: quadratic approximation

Bayesian approach: quadratic approximation

The robust mean-variance rule

Eµ̄ (a)�
λ

2
σ2µ̄ (a)�

θ

2
σ2µ (E (a))

is determined by the three parameters λ, θ, and µ. When
θ = 0 we return to the usual mean-variance rule

The taste parameters λ and θ model DMs�attitudes toward
physical and epistemic uncertainty, resp.

Higher values of these parameters correspond to stronger
negative attitudes
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Bayesian approach: quadratic approximation

Bayesian approach: quadratic approximation

The information parameter µ determines the variances σ2µ̄ (a)
and σ2µ (E (a)) that measure the physical and epistemic
uncertainty that DMs perceive in the evaluation of act a
Higher values of these variances correspond to a DM�s poorer
information regarding such uncertainties

As usual, the risk premium is

λ

2
σ2µ̄ (a)

Novelty: the ambiguity premium is

θ

2
σ2µ (E(b))



Model Uncertainty

Ambiguity / Robustness: a non Bayesian approach

Ambiguity / Robustness: a non Bayesian approach

Need to relax the requirement that a single number quanti�es
beliefs: the multiple (prior) probabilities model

DMs may not have enough information to quantify their
beliefs through a single probability, but need a set of them

Expected utility is computed with respect to each probability
and DMs act according to the minimum among such expected
utilities
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Non Bayesian approach: representation

Non Bayesian approach: representation

Epistemic uncertainty quanti�ed by a set C of priors

DMs use the criterion

V (a) = min
µ2C ∑

m2M

 
∑
s2S

u (a (s))m (s)

!
µ(m)

= min
µ2C ∑

s2S
u (a (s)) µ̄(s) (3)

DMs consider the least among all the EU determined by each
prior in C

The predictive form (3) is the original version axiomatized by
Gilboa and Schmeidler (J. Math. Econ. 1989)
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Non Bayesian approach: comments

Non Bayesian approach: comments

This criterion is less extreme than it may appear at a �rst
glance

The set C incorporates

the attitude toward ambiguity, a taste component
its perception, an information component

A smaller set C may re�ect both better information � i.e., a
lower perception of ambiguity �and / or a less averse
uncertainty attitude

In sum, the size of C does not re�ect just information, but
taste as well
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Non Bayesian approach: comments

With singletons C = fµg we return to the classical subjective
EU criterion

When C consists of all possible priors on M, we return to the
Wald maxmin criterion

min
m2M ∑

s2S
u (a)m (s)

No trade results (kinks)
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Non Bayesian approach: variational model

In the maxmin model, a prior µ is either �in�or �out�of the
set C

Maccheroni, Marinacci, Rustichini (Econometrica 2006):
general variational representation

V (a) = inf
µ2∆(M )

 
∑
m2M

 
∑
s2S

u (a (s))m (s)

!
µ(m) + c (µ)

!

where c (µ) is a convex function that weights each prior µ

If c is the dichotomic function given by

δC (µ) =

�
0 if µ 2 C
+∞ else

we get back to the maxmin model with set of priors C
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Non Bayesian approach: multiplier model

If c is given by the relative entropy R (µjjν), where ν is a
reference prior, we get the multiplier model

V (a) = inf
µ2∆(M )

 
∑
m2M

 
∑
s2S

u (a (s))m (s)

!
µ(m) + αR (µjjν)

!

popularized by Hansen and Sargent in their studies on
robustness in Macroeconomics

Also the mean-variance model is variational, with c given by a
Gini index
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Road map

Probabilities: a (brief) historical detour

Types of uncertainty: physical vs epistemic

Decision problems

toolbox
Savage setup
classical subjective expected utility

Model uncertainty: ambiguity / robustness models

Issues

ambiguity / robustness makes optimal actions more prudent?
ambiguity / robustness favors diversi�cation?
ambiguity / robustness a¤ects valuation?
model uncertainty resolves in the long run through learning?
sources of uncertainty: a Pandora�s box?
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Optima: more prudent?

Does ambiguity /robustness make optimal actions more prudent?

It is a robustness requirement on optima

But this does not necessarily mean �more prudent�

Folk wisdom: sometimes �the best defense is a good o¤ense�
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Optima: more prudent?

Consider the optimum problem

max
a2A ∑

m2M
φ (U (a,m)) µ (m)

where φ and u are twice di¤erentiable, with φ0, u0 > 0 and
φ00, u00 < 0

Recall that U (a,m) = ∑s2S u (a (s))m (s)
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Optima: more prudent?

There is a �tilted�prior µ̂, equivalent to µ, such that problems

max
a2A ∑

m2M
φ (U (a,m)) µ (m) and max

a2A ∑
m2M

U (a,m) µ̂ (m)

have the same solution â
Here

µ̂ (m) =
φ0 (U (̂a,m))

∑m2M φ0 (U (̂a,m)) µ (m)
µ (m)
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Optima: more prudent?

φ0 is decreasing

µ̂ thus alters µ by shifting weight to models m with a lower
U (̂a,m)
â solves EU problem maxa2A ∑m2M U (̂a,m) µ̂ (m) despite µ̂
handicaps â by overweighting its cons over its pros
â is a robust solution when compared to the solution of the
ordinary EU problem maxa2A ∑m2M U (̂a,m) µ (m)

In sum, ambiguity aversion can be interpreted as a desire for
robustness on optima
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Optima: more prudent?

Back to the monetary policy example. De�ne (u,π) by

u (a,w , ε, θ) = θ0 + (θ1π + θ1a) a+ θ1πθ3ε+ θ2w

π (a,w , ε, θ) = a+ θ3ε

ρ (a,w , ε, θ) = (u (a,w , ε, θ) ,π (a,w , ε, θ))

Assumptions:

shocks are uncorrelated with zero mean and unit variance wrt
the known distribution q
the policy multiplier is negative, i.e., θ1π + θ1a � 0
coe¢ cients θ1π, θ2 and θ3 are known
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Optima: more prudent?

Linear quadratic policy framework

Objective function V (a) is

∑
θ

φ

 
� ∑
(w ,ε)

�
u2 (a,w , ε, θ) +π2 (a,w , ε, θ)

�
q (w , ε)

!
µ (θ)

where θ = (θ0, θ1a) 2 Θ
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Optima: more prudent?

If true model economy θ� is known, the (objectively) optimal
policy is

ao = B (θ�) = � θ�0 (θ
�
1π + θ�1a)

1+ (θ�1π + θ�1a)
2

where B (�) is the best reply function
If not, the optimal policy is

â = B (µ̂) = �
Eµ̂ (θ0)

�
θ�1π + Eµ̂ (θ1a)

�
+ Covµ̂ (θ0, θ1a)

1+
�
θ�1π + Eµ̂ (θ1a)

�2
+ Vµ̂ (θ1a)

where B (�) is the EU best reply function wrt the tilted prior µ̂

Policy B (µ̂) is the robust version of policy B (µ) that takes
into account ambiguity aversion
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Optima: more prudent?

Suppose the monetary authority is dogmatic on θ1a, i.e., there is a
value θ̄1a such that µ

�
θ̄1a
�
= 1. For example:

θ̄1a = 0 when dogmatic on a Samuelson-Solow economy

θ̄1a = �θ�1π when dogmatic on a Lucas-Sargent economy

Since µ̂ and µ are equivalent, also µ̂
�
θ̄1a
�
= 1. Hence,

B (µ̂) � B (µ)() Eµ̂ (θ0) � Eµ (θ0)
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Optima: more prudent?

The robust policy is more prudent as long as the tilted
expected value of θ0 is lower

When Lucas-Sargent dogmatic, B (µ) = B (µ̂) = 0 and so the
zero-target-in�ation policy is optimal, regardless of any
uncertainty

On �tilted�prudence and ambiguity / robustness

Taboga (FinRL 2005), Hansen (AER 2007), Hansen and
Sargent (book 2008), Gollier (RES 2011), Collard, Mukerji,
Sheppard, Tallon (2012)
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Diversi�cation

Public o¢ cials have to decide which treatment t 2 T should
be administered

Homogeneous population (same covariate)

Policy is a distribution a 2 ∆ (T ), where a (t) is the fraction
of the population under treatment t

c (t, s) is the outcome of treatment t when state s obtains

ρ (a, s) = ∑t2T c (t, s) a (t) is the average outcome
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Diversi�cation

Policy problem is

max
a2∆(T )

V (a) = max
a2∆(T )

∑
m2M

φ

 
∑
s2S

ρ (a, s)m (s)

!
µ (m)

= max
a2∆(T )

∑
m2M

φ

 
∑
t2T

c̄m (t) a (t)

!
µ (m)

where c̄m (t) = ∑s2S c (t, s)m (s) is the expected outcome of
treatment t under model m
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Diversi�cation

Binary case T = ft0, t1g
Policy a 2 [0, 1] is the fraction of the population under
treatment t1
Fractional treatment (and so diversi�cation) if a 2 (0, 1)
Policy problem is

max
a2[0,1]

V (a) = max
a2[0,1]

Eµφ ((1� a) c̄m (t0) + ac̄m (t1))

If φ is linear, a = 0 or a = 1 unless c̄µ̄ (t0) = c̄µ̄ (t1), in which
case all a 2 [0, 1] are optimal
Under subjective EU fractional treatment is not optimal

To justify fractional treatment, in a series of papers Charles
Manski considered maxmin regret
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Diversi�cation

Suppose φ is quadratic

Set dm = c̄m (t0)� c̄m (t1). The optimal policy is

â =
EµEm c̄m (t0) dm

Eµd2m

â 2 (0, 1) if and only if jV (0)� V (1)j < Eµd2m
Fractional treatment may thus emerge when φ nonlinear

In fact, if φ concave we have the following convexity property:

a � b =) αa+ (1� α) b % b 8α 2 [0, 1]

First noted by David Schmeidler, who called this property
uncertainty aversion
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Valuation: static asset pricing

Two-period economy, with a single consumption good

Agents decide today c0 and tomorrow c1, which is contingent
on the state s 2 S = fs1, ..., skg that tomorrow obtains
The true probability model is m� 2 M
Consumption pairs c = (c0, c1) are ranked by

V (c) = Eµφ (Emu (c))
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Valuation: static asset pricing

Agents have an endowment in the two periods, but can also
fund their consumption decisions by trading in a frictionless
�nancial market

A primary asset
y = (y1, ..., yk )

pays out yi if state si obtains

The Law of one price holds
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Valuation: static asset pricing

If the true model m� is known, we have the classic pricing
formula

py = Em�

 
∂u
∂c1
(ĉ)

∂u
∂c0
(ĉ)
y

!
Risk attitudes a¤ect asset pricing
In general, we have

py = Eµ

 
φ0 (Emu (ĉ))

Eµφ0 (Emu (ĉ))
Em

 
∂u
∂c1
(ĉ)

∂u
∂c0
(ĉ)
y

!!
Both risk and ambiguity attitudes a¤ect pricing
In a series of papers, Hansen and Sargent study similar
formulas and their relevance for some asset pricing empirical
puzzles
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Valuation: static asset pricing

Suppose the risk free asset is traded, with (gross) return rf
The classic pricing formula can be written as

py =
1
rf

Em̂� (y)

where m̂� is the, equivalent, risk neutral version of m�, given
by

m̂�i =
∂u

∂ci1
(ĉ)

Em� ∂u
∂c1
(ĉ)
m�i
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Valuation: static asset pricing

Adjustments for risk, ambiguity and model uncertainty
Risk: m̂ is the risk neutral version of model m given by

m̂i =
∂u

∂ci1
(ĉ)

Em� ∂u
∂c1
(ĉ)
mi

Ambiguity: µ̂ is the ambiguity neutral version of prior µ given
by

µ̂ (m) =
φ0 (Emu (ĉ))

Eµ (φ0 (Emu (ĉ)))
µ (m)

Model uncertainty: µ̃ is given by

µ̃ (m) =
Em ∂u

∂c1
(ĉ)

Eµ̂Em ∂u
∂c1
(ĉ)

µ̂ (m)
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Valuation: static asset pricing

m̂ = m under risk neutrality (u linear)

µ̂ = µ under ambiguity neutrality (φ linear), though possibly
µ̃ 6= µ

µ̃ = µ̂ = µ when the expected marginal utility Em ∂u
∂c1
(ĉ) is

constant, and so model uncertainty is immaterial
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Valuation: static asset pricing

Uncertainty neutral pricing is given by

pw =
1
rf

Eµ̃ (Em̂w) =
1
rf

Eµ̃ (w)

where µ̃i = ∑m2M m̂i µ̃ (m)

µ̃ is the uncertainty neutral measure on S

It involves expected marginal utilities, and so in principle it
can be estimated from consumption data
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Long run: is model uncertainty still relevant?

Does model uncertainty resolve in the long run through learning?

Consider a recurrent decision problem, in a stationary
environment

What DMs observe depend on the actions they choose

If the ex post feedback that they receive is partial, a partial
identi�cation problem (and so model uncertainty) arises

It persists at steady state, after DMs learned everything they
could (based on the long run frequencies of observations
caused by their actions)
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Long run: is model uncertainty still relevant?

Organizing principle: self-con�rming equilibrium

introduced in the early 1990s in the works of Battigalli,
Fudenberg and Levine, and Kalai and Lehrer

DMs best reply to the evidence they collected through their
actions

Steady state actions have to be best replies given the evidence
they generated

The true model being unknown (model uncertainty), prior
beliefs might well be not correct

No longer in a Nash setup where actions are best replies to
correct beliefs
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Long run: is model uncertainty still relevant?

Consider an urn with 90 Red, or Green, or Yellow balls

DMs keep betting on Red

Partial feedback: DMs observe whether or not they won (but
not the drawn color)

Suppose the long run frequency of �wins� is 1/3
The proportion of Red balls is learned (it is 1/3, i.e., 30 Red
balls)

The proportions of Green and Yellow balls remain unknown

Partial identi�cation at steady state

If DMs had observed the colors drawn (perfect feedback),
they would have learned the true model (i.e., all colors�
proportions)
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Long run: is model uncertainty still relevant?

Steady state betting on Red is only risky (DMs learned the
proportion of red balls)

Steady state betting on other colors remains ambiguous (DMs
did not learn anything on their proportions)

A status quo bias (betting on Red) emerges, captured through
ambiguity

Formally, betting on Red is self-con�rming
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Long run: is model uncertainty still relevant?

In general, the bias favors tested alternatives over untested
ones

The higher ambiguity aversion, the higher the bias

The bias might well trap DMs in self-con�rming, but
suboptimal (wrt to the true model), actions

For example, if in the previous urn there are 50 Green balls,
the (objectively) optimal action would be to bet on Green, not
on Red
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Long run: is model uncertainty still relevant?

In a Game Theoretic setting, this causes a penalization of
deviations. As a result, the set of self-con�rming equilibria
expands (Battigalli, Cerreia, Maccheroni, Marinacci, AER
2015)

Folk wisdom I: �better the devil you know than the devil you
do not know�

Folk wisdom II: �chi lascia la via vecchia per la via nuova, sa
quel che perde ma non sa quel che trova� (�those who leave
the old road for a new one, know what they leave but do not
know what they will �nd�)
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Long run: a glimpse to learning

Consider a decision problem over time

Experimentation is possible

The degree of ambiguity aversion and of patience a¤ect its
option value

The higher the degree of patience, the higher the value

The higher the degree of ambiguity aversion, the lower the
value

Ongoing research on this trade-o¤ (Battigalli, Cerreia,
Francetich, Maccheroni, Marinacci 2015)
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Sources of uncertainty

We made a distinction between attitudes toward physical and
epistemic uncertainty

A more general issue: do attitudes toward di¤erent
uncertainties di¤er?

Source contingent outcomes: Do DMs regard outcomes (even
monetary) that depend on di¤erent sources as di¤erent
economic objects?

Ongoing research on this subtle topic



Model Uncertainty

Epilogue

Epilogue

In decision problems with data, it is important to distinguish
physical and epistemic uncertainty

Traditional EU reduces epistemic uncertainty to physical
uncertainty, and so it ignores the distinction

Experimental and empirical evidence suggest that the
distinction is relevant and may a¤ect valuation

We presented two approaches, one Bayesian and one not

For di¤erent applications, di¤erent approaches may be most
appropriate

Traditional EU is the benchmark

Yet, adding ambiguity broadens the scope (empirical and
theoretical) and the robustness of results
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