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We consider the problem of a storage owner who trades in a multi-settlement electricity market comprising

an auction-based day-ahead market and a continuous intraday market. We show in a stylized model that a

coordinated policy that reserves capacity for the intraday market is optimal and that the gap to a sequential

policy increases with intraday price volatility and market liquidity. To assess the value of coordination in

a realistic setting, we develop a multi-stage stochastic program for day-ahead bidding and hourly intraday

trading along with a corresponding stochastic price model. We show how tight upper bounds can be obtained

based on calculating optimal bi-linear penalties for a novel information relaxation scheme. To calculate

lower bounds, we propose a scenario tree generation method that lends itself to deriving an implementable

policy based on re-optimization. We use these methods to quantify the value of coordination by comparing

our policy with a sequential policy that does not coordinate day-ahead and intraday bids. In a case study,

we find that coordinated bidding is most valuable for flexible storage assets with high price impact, like

pumped-hydro storage. For small assets with low price impact, like battery storage, participation in the

day-ahead auction is less important and intraday trading appears to be sufficient. For less flexible assets,

like large hydro reservoirs without pumps, intraday trading is hardly profitable as most profit is made in the

day-ahead market. A comparison of lower and upper bounds demonstrates that our policy is near-optimal

for all considered assets.

Key words : multi-stage stochastic programming, energy storage, electricity price model, limit order book,

scenario tree generation, information relaxation

History :

1. Introduction

The growing share of renewable power generation along with increasing demand for electric

mobility changes electricity systems around the world. Challenges include unforeseen and
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costly imbalances created by fluctuations in renewable power supply that threaten grid

stability as well as surges in demand from electric vehicles that lead to load curtailment

and decrease transformer lifetime. Grid energy storage has the potential to address these

challenges by effectively buffering supply and demand and thereby generating significant

welfare gains (Sioshansi et al. 2009).

In spite of its benefits and plummeting battery prices, grid energy storage remains scarce

(Cole and Frazier 2019, Ziegler et al. 2019). Whether firms view investments in storage as

profitable, largely depends on their expectation of operating cash flows which are difficult

to assess and depend on how storage complements an existing portfolio as well as on its

ability to improve a company’s trading strategy.

Owners of storage make profit from exploiting inter-temporal price differences which

arise due to fluctuating electricity demand as well as varying renewable power generation.

Storage assets therefore generate most revenue in short-term markets, where price spreads

and thus the value of flexibility is highest.

Power traders that manage electricity storage face a complex decision problem when

trading. They can buy or sell in a day-ahead auction for individual hours, blocks of hours,

or even quarter-hours of the following day; they can sell spinning and standing reserve

capacity in an ancillary service auction; and they can trade continuously in intraday or

real-time markets almost until delivery.

In particular, intraday trading has gained traction among European power companies

as the steadily increasing renewable penetration increases the importance of short-term

portfolio adjustments due to updated production forecasts. The number of commercial

software packages to support automated intraday trading is growing accordingly (e.g.,

Likron, Powel Intraday Trading, SOPTIM iTrade, Trayport autoTRADER, etc.).

In this article, we consider the problem of short-term trading in a multi-settlement

electricity market with a day-ahead auction and a continuous intraday market. As the

number of tradable products in both markets is high and prices evolve randomly, the trader

is faced with a multi-dimensional, multi-stage decision problem under uncertainty.

We note that intraday trading is distinct from trading on (real-time) balancing markets

that are prevalent in the US, as products for individual blocks, hours, and quarter-hours can

be traded continuously. This not only creates opportunities for repeated reoptimization,
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but also leads to a substantial increase in dimensionality of the underlying optimization

problem.

To manage the ensuing complexity of the problem, power traders typically follow a

sequential strategy, which treats day-ahead bidding and intraday trading as separate deci-

sion problems. We address the question of what can be gained from a coordinated trading

strategy, where day-ahead bids anticipate intraday opportunities. The question whether

and to what extent a coordinated strategy is better than sequential bidding is of practi-

cal importance for power traders who want to maximize the profitability of their storage

assets.

Most existing models either focus exclusively on day-ahead bidding or on intraday trad-

ing. In Fleten and Kristoffersen (2008), a two-stage stochastic programming model is pro-

posed to find optimal price-dependent bidding curves for a hydropower producer under

day-ahead price uncertainty ignoring the intraday market. An extension of the model that

accounts for intraday prices is proposed in Faria and Fleten (2011), but the model for-

mulation prohibits allocating capacity to the intraday market at the time of day-ahead

bidding. This assumption is dropped in Löhndorf et al. (2013) where short-term bidding

is integrated into medium-term planning of pumped-hydro storage, but intraday trading

takes place only once and prices are modeled by their expected values, ignoring the value

of intraday reoptimization.

Dynamic programming approaches that model the intraday bidding process are proposed

in Jiang and Powell (2015) and Aı̈d et al. (2016), although neither accounts for intraday

products with different times to maturity; and while Aı̈d et al. (2016) model the intraday

market, they do not consider storage. Bertrand and Papavasiliou (2019) train a threshold

policy for a storage unit on German limit order book data using reinforcement learning.

The authors report sizable gains for their trading strategy over a greedy strategy.

Boomsma et al. (2014) extend the work of Fleten and Kristoffersen (2008) and compare

sequential with coordinated bidding in day-ahead and balancing markets using multi-stage

stochastic programming. Based on data from the Scandinavian Nord Pool market, the

authors report gains of 25% for a price-taker and of up to 5% for a market where there

is price impact. Kongelf et al. (2019) propose a three-stage stochastic program that addi-

tionally considers the market for primary reserves and report gains of less than 1%. As

this literature focuses on the Scandinavian markets, where intraday trading still plays only



Löhndorf and Wozabal: The Value of Coordination in Multi-market Bidding
4 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

a minor role, intraday trading is not considered. Wozabal and Rameseder (2020) consider

the problem of coordinated bidding in sequential auctions for a renewable power producer

without storage in the Spanish intraday market and report gains of up to 20%.

In this article, we propose a joint model of day-ahead bidding and intraday trading of

storage that considers the option to reoptimize storage and the portfolio of hourly products

multiple times. As opposed to Barbry et al. (2019) who evaluate a price-maker storage and

its impact on day-ahead prices in the New York electricity market, we model storage as

price-taker in the day-ahead market but recognize the price impact of large orders in the

intraday market.

We start by examining the added value of coordinated bidding for a stylized version of the

problem and find that an optimal policy anticipates intraday optionality when placing day-

ahead bids. The main drivers of this effect are an information gain from trading intraday as

well as intraday price volatility. We find that it can even be optimal to allocate all capacity

to the intraday market if the market is sufficiently liquid or if the storage asset is small.

To assess the value of coordination in a real market situation, we formulate the decision

problem as a large multi-stage stochastic program. The model formulation considers hourly

day-ahead bids as well as dynamic rebalancing of hourly positions in intraday markets with

limited market depth. In accordance with empirical data, we propose a martingale model

of day-ahead and intraday prices and model price impact as linear functions estimated

from historical settlement data.

Calculating optimal day-ahead bids with this model is not trivial, as it entails the solu-

tion of a large-scale multi-stage stochastic optimization problem, which is computationally

intractable in its general form. To address this problem, we develop new solution method-

ology that allows us to calculate lower and upper bounds of the optimal objective value.

Our methodological contribution is three-fold: first, we construct scenario trees for the

stochastic optimization problem that lead to lower bounds on the true objective value.

The proposed method generates scenario trees that reduce approximation error, preserve

the martingale property of the stochastic process, and do not grow exponentially in the

number of stages, thereby combining three properties that are necessary to obtain good

lower bounds for the considered problem. Second, we show how to improve these lower

bounds by a reoptimization heuristic which yields an implementable policy for the storage

optimization problem that can be used in practice. Third, in order to be able to assess the
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quality of our policy, we propose an information relaxation scheme that extends results

in Brown et al. (2010) by computing optimal bi-linear penalties and thereby tight dual

upper bounds for the coordinated bidding problem that significantly outperform perfect

information bounds. As opposed to Desai et al. (2012), who compute optimal penalties

for optimal stopping problems, we use a dualization approach to reformulate the relaxed

problem as a single convex stochastic optimization problem with equality constraints. By

exploiting specific properties of our problem, we are able to circumvent the nested sampling

approach of Desai et al. (2012) and can effectively solve the problem by conventional sample

average approximation.

Based on these results, we calculate the value of coordination for three common types

of grid energy storage in an out-of-sample case study: a large-scale pumped-hydro storage,

a medium-sized hydropower plant with a large reservoir and natural inflow, and a small

battery storage. The proposed reoptimization heuristic yields profits that are up to 28%

higher than those obtained with a sequential trading strategy and that exhibit optimality

gaps between 0.1% and 8.1%.

In line with the findings from our stylized model, we find that a bang-bang policy that

alternates between full charge and full discharge is not optimal for day-ahead trading, which

contrasts results from the literature, e.g., Densing (2013) who studies storage as price-taker.

Instead, optimal day-ahead bids minimize the price impact from intraday rebalancing by

leaving slack capacity for intraday adjustments and by anticipating the option to reoptimize

the portfolio of hourly products.

We identify a sizable value of coordination for large and flexible pumped-hydro storage

which has significant price impact in the intraday market. Storage owners with such large

and flexible assets therefore benefit most from coordinating day-ahead and intraday bidding

decisions.

As predicted by our stylized model, our results further suggest that the small battery

storage benefits less from coordination, since the smaller price impact enables batteries to

more efficiently exploit intraday price spreads. This finding informs investors in battery

storage who should pay more attention to possible cash flows from intraday trading as

opposed to merely evaluating storage based on day-ahead price spreads.

We observe the opposite for the less flexible hydropower plant with the large reservoir.

The plant hardly benefits from intraday trading at all and makes most of its profits in the
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day-ahead market. This informs power companies which operate large cascaded reservoirs,

as they are often found in mountainous regions, that little can be gained from including

information on intraday trading into their long-term planning models.

Notation : Throughout the paper, we work on a general probability space (Ω,F ,P). We

denote by T the number of decision stages and define a filtration {∅,Ω}=F0 ⊆F1 ⊆ · · · ⊆
FT ⊆ F such that all random quantities ξt that realize in period t are measurable with

respect to Ft, denoted by ξt /Ft. We write ξt = (ξ0, . . . , ξt) for the history of decisions and

random variables. Furthermore, for any N ∈N, we denote the set {1, . . . ,N} by [N ], the

indicator function of set A by 1A, and the inner product in Rn by 〈·, ·〉.

2. The Value of Coordinated Bidding

In this section, we set up a stylized model that identifies the trade-off faced by a storage

owner who participates in the day-ahead and the intraday market. In particular, we show

that an optimal decision has to balance the advantages of higher liquidity in the day-ahead

market with the gain from having better price information and a greater variability of

prices in the intraday market. The model informs the discussion in later parts of the paper,

where the effects discussed in this section are quantified in a realistic setting for different

types of assets.

We assume that the storage owner is risk-neutral and operates an empty, perfectly

efficient storage with energy and power capacity equal to one over two time periods, t ∈
{1,2}. The storage owner is price-taker in the day-ahead market and price-setter in the

intraday market. Day-ahead bids qDt for delivery in t∈ {1,2} are submitted at t= 0 before

day-ahead prices become known at the beginning of t= 1. In t ∈ {1,2} the storage owner

trades on the intraday market, where she can observe the prices of the respective time

period before making a decision. We denote by qIt the intraday trades for period t and

follow the convention that buying electricity leads to positive qDt and qIt .

Let PD
1,t / F1 be the day-ahead price for delivery in period t ∈ {1,2} which realizes at

time t= 1, and let P I
t /Ft be the intraday price for delivery in period t ∈ {1,2}. Assume

that the expected intraday price is equal to the (expected) day-ahead price

E[P I
s |Ft] = E[PD

s |Ft], ∀s= 1,2, ∀t= 0,1,2.

Furthermore, assume that the volume, qIt , traded by the storage on the intraday market

in period t has a linear price impact, i.e., for a given reference price P I
t the storage owner



Löhndorf and Wozabal: The Value of Coordination in Multi-market Bidding
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 7

trades at the price P I
t + βqIt with β ∈ [0,∞). A linear price impact is supported by an

empirical analysis of market depth in Section 4. Note that P I
t is the intraday price that

realizes if the storage does not participate in the intraday market.

Based on these assumptions, the only sensible day-ahead bidding strategy is to buy

a quantity qD1 > 0 for delivery in period 1 and sell the same quantity in period 2, i.e.,

qD2 =−qD1 . As a result, after the day-ahead auction is cleared, a quantity of q̄= 1− qD1 ≤ 1

is available for intraday trading. Once prices PD
1 , PD

2 , and P I
1 have realized, the value of

buying q= qI1 ≤ q̄ on the intraday market in period t= 1 and selling it in t= 2, i.e., setting

qI2 =−qI1, is given by

v(q) =−(P I
1 +βq)q+E[(P I

2 −βq)q|F1] = q(E[P I
2 |F1]−P I

1 )− 2βq2.

Maximization in q yields q∗ = 1
4β

(E[P I
2 |F1]−P I

1 ) and

v(q∗) =
1

4β
(E[P I

2 |F1]−P I
1 )2− 2β

(4β)2
(E[P I

2 |F1]−P I
1 )2 =

1

8β
(E[P I

2 |F1]−P I
1 )2. (1)

Note that the price impact β negatively affects the profits of intraday trading in (1). We

thus arrive at the following conditional intraday value of storage in period t= 1, assuming

that the maximal capacity for intraday trading is q̄,

V I
1 (q̄) =


1

8β
(E[P I

2 |F1]−P I
1 )2 if E[P I

2 |F1]−P I
1 < 4βq̄,

q̄(E[P I
2 |F1]−P I

1 − 2βq̄) otherwise.
(2)

Here, the second line covers the case where q∗ is larger than q̄ and thus infeasible.

We start by proving the following proposition for the case that the day-ahead bids are

market orders, i.e., are executed independent of price.

Proposition 1. If day-ahead bids are independent of price and it is possible that intraday

prices in period t= 1 are greater than in period t= 2 and in particular

P[P I
1 >P

I
2 |P I

1 ≥E[P I
2 |F1]]> 0, (3)

then

1. it is never optimal to allocate all capacity to the day-ahead market;

2. there exists a β̄ > 0 such that for a price response β ∈ [0, β̄], it is optimal to reserve

all capacity for the intraday market and not to participate in the day-ahead auction.
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Proof. We start by noting that a lower bound for the intraday value of storage in t= 0

can be obtained by setting q= q̄ in (2), which implies that we ignore the effect of the price

impact on the optimal decision and always trade the maximum capacity. A risk neutral

agent only trades on the intraday market if P I
1 < E[P I

2 |F1] = PD
2 at t= 1. From this, we

obtain an unconditional lower bound on the value of intraday trading in t= 0 by

V I
0(q̄) = P(P I

1 <P
D
2 )q̄(E[P I

2 −P I
1 |P I

1 <P
D
2 ]− 2βq̄). (4)

If E[PD
1 ] ≥ E[PD

2 ], there is nothing to show, since the storage owner has no incentive

to participate in the day-ahead auction. It is therefore sufficient to focus on the case

E[PD
1 ]<E[PD

2 ] where the expected profit from day-ahead trading a quantity (1− q̄) equals

V D
0 (1− q̄) = (1− q̄)E[PD

2 −PD
1 ]. (5)

For prices responses β with

0≤ β < β̄ =− P(P I
1 ≥ PD

2 )

4 ·P(P I
1 <P

D
2 )

E[P I
2 −P I

1 |P I
1 ≥ PD

2 ]

it follows

∂

∂q
V I

0(q) = P(P I
1 <P

D
2 )E[P I

2 −P I
1 |P I

1 <P
D
2 ]− 4βqP(P I

1 <P
D
2 )

> P(P I
1 <P

D
2 )E[P I

2 −P I
1 |P I

1 <P
D
2 ] +P(P I

1 ≥ PD
2 )E[P I

2 −P I
1 |P I

1 ≥ PD
2 ]

=E[P I
2 −P I

1 ] = E[PD
2 −PD

1 ] =
∂

∂q
V D

0 (q).

By (3), E[P I
2 −P I

1 |P I
1 ≥ PD

2 ]< 0 and therefore β̄ > 0. It follows that for β < β̄, the marginal

expected profit from trading on the intraday market is higher than the marginal expected

profit from trading on the day-ahead market for all 0 ≤ q ≤ 1, which means that it is

optimal not bid on the day-ahead market and reserve the whole storage capacity for the

intraday market. Since this is true for the lower bound V I
0, it also has to hold for V I

0 and

the first part of the proposition follows.

To prove the second point, suppose the storage owner allocates (1− q̄) capacity to the

day-ahead market and q̄ to the intraday market. From (4), we have a lower bound for the

value of storage,

V (q̄) = (1− q̄)E[PD
2 −PD

1 ] +P(P I
1 <P

D
2 )(E[P I

2 −P I
1 |P I

1 <P
D
2 ]q̄− 2βq̄2).
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Maximizing V (q̄) in q̄ yields

q∗ =
1

4β

(
E[P I

2 −P I
1 |P I

1 <P
D
2 ]− E[PD

2 −PD
1 ]

P(P I
1 <P

D
2 )

)
. (6)

Note that since we are using a lower bound for the intraday profit, q∗ underestimates the

actual optimal allocation q∗ to the intraday market, i.e., q∗ ≥ q∗, and therefore overesti-

mates the fraction of storage volume (1− q̄) that would be dedicated to day-ahead trading

in optimality.

We now show that q∗ > 0, which establishes that q∗ > 0, i.e., not all capacity is used in

the day-ahead market. If q∗ ≤ 0, it is optimal for the storage owner to allocate all capacity

to the day-ahead market. Since 1
4β
> 0, this requires the second term in (6) to be smaller

than or equal to zero, which is equivalent to

0≥E[P I
2 −P I

1 |P I
1 <P

D
2 ]P(P I

1 <P
D
2 )−E[PD

2 −PD
1 ]

=E[P I
2 −P I

1 |P I
1 <P

D
2 ]P(P I

1 <P
D
2 )−E[P I

2 −P I
1 ]

=E[P I
2 −P I

1 |P I
1 <P

D
2 ]P(P I

1 <P
D
2 )−

(
P(P I

1 ≥ PD
2 )E[P I

2 −P I
1 |P I

1 ≥ PD
2 ]

+ P(P I
1 <P

D
2 )E[P I

2 −P I
1 |P I

1 <P
D
2 ]
)

=−P(P I
1 ≥ PD

2 )E[P I
2 −P I

1 |P I
1 ≥ PD

2 ]

=−P(P I
1 ≥ PD

2 )E[P I
2 −P I

1 |P I
1 ≥E[P I

2 ]|F1].

This leads to contradiction, since E[P I
2 −P I

1 |P I
1 ≥E[P I

2 |F1]]< 0 by assumption (3). �

Note that assumption (3) is always fulfilled if the intraday price for period t = 2 is

not larger than the intraday price for period t = 1 almost surely. This is a rather mild

assumption whose violation obviously would be prohibitive for intraday trading.

A coordinated bidding strategy explicitly reserves capacity for the intraday market where

price spreads are higher, whereas a sequential strategy allocates all capacity to the day-

ahead market and trades on the intraday market by reoptimizing the day-ahead schedule

ex-post. Due to its simple structure the sequential strategy is often adopted by practition-

ers. Proposition 1 shows that sequential bidding is suboptimal, as it is never optimal to

bid the entire capacity on the day-ahead market. Quite the contrary, if the intraday price

impact is sufficiently small, it is optimal to abstain from day-ahead trading entirely.

The intuition behind Proposition 1 is that storage owners can observe the intraday price

for t= 1 before buying, which is not possible in day-ahead trading, where prices for both
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periods are revealed simultaneously after bids have been placed. It is this information gain

that reduces the probability of losses and thus makes intraday trading relatively more

attractive as long as the price response is small. Note that this effect also increases in the

size of the storage, which has been set to unit capacity for our analysis. It can be easily

seen that increasing storage capacity is equivalent to increasing β and therefore results in

a relatively less attractive intraday market for larger assets.

Most day-ahead markets accept limit orders in the form of bidding functions, where bid

quantity is expressed as a function of price, which reduces the informational advantage of

trading on the intraday market. For our next analysis, we will therefore assume that, using

bidding functions, this advantage can be made to completely disappear. In particular, we

assume that bid quantities can be specified as arbitrary function of realized prices and

that the second stage bid can be made conditional on the acceptance of the first stage bid.

Note that real world implementations of day-ahead bidding offer much less flexibility and

in particular the second assumption leads to an overestimation of profits that can be made

on the day-ahead market.

In this setting, it is optimal to trade if the expectation of the price in t= 2, E[PD
2 |PD

1 ],

is greater the price for t= 1, PD
1 , so that the expected profit from trading a quantity q on

the day-ahead market is given by

ΠD(q) = E
[
(E[PD

2 |PD
1 ]−PD

1 )1BD

]
with BD = {ω ∈ Ω : E[PD

2 |PD
1 ] > PD

1 }. Now suppose that intraday prices have a higher

dispersion than day-ahead prices, so that extreme intraday prices are more probable than

extreme day-ahead prices. Ignoring price response, this may lead to a situation where

expected margins on the intraday market are higher than those on the day-ahead market,

i.e.,

E
[
(E[P I

2 |P I
1 ]−P I

1 )1BI

]
>E

[
(E[PD

2 |PD
1 ]−PD

1 )1BD

]
(7)

with BI = {ω ∈Ω : E[P I
2 |P I

1 ]>P I
1 }. In the next proposition, we establish that even with a

positive price response, it is never optimal to allocate all capacity to the day-ahead market

as long as (7) is fulfilled.

Proposition 2. 1. If condition (7) holds and day-ahead bids are arbitrary functions of

price, Proposition 1 still holds.
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2. If (PD
1 , P

D
2 ) and (P I

1 , P
I
2 ) are jointly normally distributed with identical means and

correlation, and the variances of the intraday prices in period i= 1,2 are larger than the

variances of the spot prices, then (7) is fulfilled.

Proof. Let X and Y be two random variables. For the purpose of this proof we define

Π(X,Y, q) = qE[(E[Y |X]−X)1B]

with B = {ω ∈ Ω : E[Y |X]>X}. Using this notation, we have ΠD(q) = Π(PD
1 , P

D
2 , q). We

furthermore denote by ΠI(q) the intraday profit of trading trading a quantity q conditional

on period 1 prices.

If β > 0, then the condition for buying in the first period on the intraday market becomes

P I
1 + qβ <E[P I

2 |P I
1 ]− qβ,

which for higher values of β leads to less trading and less profits

ΠI(q) = qE[(E[P I
2 |P I

1 ]−P I
1 )1B′ ]− 2q2β ≥Π(P I

1 , P
I
2 , q)− 2q2β︸ ︷︷ ︸

=:ΠI(q)

.

where B′ = {ω ∈Ω : E[P I
2 |P I

1 ]−2βq > P I
1 }. The right hand side of the inequality above thus

represents a lower bound on intraday profits associated with a suboptimal trading strategy

for the first period, which does not take into account the price response when buying in

the first period.

Calculating the marginal value of bidding q= qD1 =−qD2 om the day-ahead market using

ΠI instead of ΠI , we get

∂

∂q

(
ΠD(q) + ΠI(1− q)

)
= Π(PD

1 , P
D
2 ,1)−Π(P I

1 , P
I
2 ,1) + 4qβ. (8)

Note that by (7), Π(P I
1 , P

I
2 ,1)−Π(PD

1 , P
D
2 ,1)≥ 0 and therefore for

0≤ β < β̄ =
1

4
(Π(P I

1 , P
I
2 ,1)−Π(PD

1 , P
D
2 ,1)),

the marginal value of bidding in the day-ahead market is always smaller than zero, which

implies that it is optimal to reserve the entire storage capacity for the intraday market.

Similarly, for an arbitrary β > 0 there always exists a q > 0 that is small enough such that

(8) is less than zero, which implies that the marginal benefit of trading marginal quantities
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on the intraday market always exceeds the marginal benefit of trading the remaining

capacity on the day-ahead market. This proves the first point of the proposition.

The second point directly follows from the fact that for jointly normally distributed

(P1, P2), the profit Π(P1, P2, q) is increasing in the standard deviations of P1 and P2.

To see this, we denote by σ1, σ2, and ρ the standard deviations and the correlation of P1

and P2, respectively. For the bivariate normal distribution, the expected price in period 2

is given by E[P2|P1] = E[P2] + ρσ2
σ1

(P1−E[P1]), which leads to a profit of

q

(
E[P2]− ρ

σ2

σ1

E[P1]−P1

(
1− ρσ2

σ1

))
.

It is therefore optimal to buy for delivery in the first period if and only if

E[P2|P1]>P1⇔ P1 <
E[P2]− ρσ2σ1E[P1]

1− ρσ2
σ1

=: v

which results in

Π(P1, P2, q) = q

v∫
−∞

(
E[P2]− ρ

σ2

σ1

E[P1]−P1

(
1− ρσ2

σ1

))
φP1(P1) dP1

= q

(
Φ(ν) (E[P2]−E[P1]) +

(
1− ρσ2

σ1

)
φ(ν)σ1

)
, (9)

where φP1 is the density of P1, φ and Φ are the the density and the distribution function

of the standard normal distribution,

ν =
v−E[P1]

σ1

=
E[P2]−E[P1]

σ1− ρσ2

,

and the equality in (9) follows from properties of the truncated normal distribution. Notic-

ing that ∂
∂σ1
φ(ν) =−νφ(ν), it is a tedious but straightforward calculation to show that the

partial derivative of (9) with respect to σ1 and σ2 is strictly positive, i.e., that the profit

grows in the variance of P1 and P2. �

The second part of the proposition illustrates that in a setting with normally distributed

prices, coordinated bidding is optimal as long as intraday prices are more volatile than

day-ahead prices, which is a realistic assumption.

Of course, rules for bidding functions on real markets are more restrictive than the setting

used in Proposition 2. This implies that in reality bidding functions cannot completely

offset the informational advantage of the intraday market which further strengthens the

case for coordination.
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In summary, the analysis of the stylized model shows that the value of coordination

between the intraday and the day-ahead market is driven by the trade-offs between liquidity

costs, price volatility, as well as the information gain of trading on the intraday market.

3. A Multi-stage Stochastic Program of Coordinated Bidding

In the previous section, we established that sequential bidding is suboptimal in a stylized

setting. In this section, we propose a multi-stage stochastic program to quantify the gains

of a coordinated bidding strategy in a much more realistic model of bidding and storage

operation. We formulate the model with the European market design in mind, where a

combination of day-ahead auction and continuous intraday trading is currently becoming

the norm.

3.1. Background on Day-ahead and Intraday Trading

In Europe, market participants can trade electricity as bilateral (over-the-counter) con-

tracts or in power exchanges whose trade volumes have been growing constantly over the

past decade.

EPEX SPOT is the largest European power exchange with a total trade volume of

567 terawatt-hours (TWh) in 2018. The exchange hosts day-ahead auctions for hourly as

well as quarter-hourly products for several European countries and additionally offers the

possibility to trade in continuous intraday markets until shortly before physical delivery.

In the day-ahead market, electricity is traded in a sealed bid, single price daily auction

for delivery on the next day. The auction closes around noon of the previous day and

market clearing is announced roughly one hour later.

In the intraday market, trading for any given hour opens at 15:00 on the previous day

and electricity is traded continuously until five minutes before delivery. As this allows for

a high degree of flexibility, market participants use intraday markets to make last minute

adjustments in case of changes in electricity production or consumption.

In spite of its increasing importance, the intraday market is not sufficiently liquid to

accommodate large volumes. Although the intraday market has been growing steadily, its

trade volume of 82 TWh in Germany in 2018 is still small compared to 485 TWh traded

in the day-ahead auction in the same period (EPEX 2018). Power companies therefore

typically fix their volumes in the day-ahead auction and then use the intraday market to
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adjust their portfolio. Such sequential trading strategies are typically based on a combina-

tion of deterministic optimization based on price forward curves of day-ahead prices and

simple trading rules for intraday order execution.

3.2. Assumptions

As in Section 2 we consider a risk-neutral storage owner with a single asset who is price-

taker in the day-ahead market and price-setter in the intraday market. We assume that

every day, the storage owner submits market orders to the day-ahead market for each

hour of the following day. After day-ahead prices realize, the storage owner decides about

rebalancing the portfolio of hourly products by trading in the intraday market.

We assume day-ahead and intraday prices to have the same expectations, which means

that the price of a particular hour is a martingale. This assumption is supported by our

empirical analysis in Section 4 (see Figure 2a), which shows that there are no systematic

differences between day-ahead and intraday pries. As discussed in Klaassen (1998), this

property is important to avoid bias from speculative trading, which occurs whether or not

trading limits and transaction cost are present in the model.

Our model of the intraday market follows Bertsimas and Lo (1998) and Almgren and

Chriss (2001) who model price dynamics of a continuous market as arithmetic random

walk with price impact as a linear function of order quantity. The authors propose models

with permanent and temporary price impact. We adopt the argument of Gatheral and

Schied (2013) arguing that the price impact is only temporary as prices are forced back to

equilibrium values by competitive pressure from one hour to the next. Moreover, we model

price impacts as deterministic but varying by time to maturity and product.

We assume that injection and withdrawal limits as well as efficiency of the storage are

independent of storage content, i.e., we ignore the effect of differences in water pressure on

power capacity and efficiency in pumped-hydro storage systems. Furthermore, we assume

that storing electricity is subject to losses.

To simplify matters, we assume a fixed storage level at the beginning of the day that

we have to return to at the end of the day. In this way, we are able to isolate the effect of

coordinating day-ahead with intraday trades from optimizing storage operation over longer

periods of time. To use this model for storage operation, we would have to define the initial
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state of storage and product portfolio as well as their terminal values – the latter could

be, for example, derived from long-term models such as Löhndorf et al. (2013).

With initial and final storage levels fixed, the model merely needs to keep track of updates

of storage operation and of changes in the portfolio of hourly products. This includes day-

ahead bidding decisions at t = 0 before 12:00 on the previous day, a settlement at t = 1

(between 12:00 and 15:00), as well as intraday trading of hourly products beginning in

t= 2 at 15:00 on the same day until t= 34 at 22:00 on the day of delivery. Since trades are

made in hourly increments and the product for the interval [23:00,0:00) can be traded up

to 30 minutes before delivery, the last intraday adjustment is made at 22:00, so that the

model has T = 34 decision stages in total.

3.3. Model Formulation

We model the decision problem of the storage owner as a multi-stage stochastic program-

ming problem of the form

maxx E
[∑T

t=1Rt(x
t, ξt)

]
s.t. xt ∈Xt(xt−1), xt /Ft,

(10)

where ξ = (ξ0, . . . , ξT ) is the stochastic process of random prices with ξt : Ω→Rdt , Rt(·, ·)

are the immediate reward functions, xt are the decision variables in t, and Xt(·)⊆Rnt are

the feasible sets.

In the problem discussed below, the feasible sets Xt as well as the immediate rewards Rt

depend only on xt and not explicitly on the whole history of the decisions. Similarly, Rt

only depends on current and not on past prices, i.e., on ξt instead of ξt. Combined with

the fact that ξ is a Markov process, this makes (10) a Markovian stochastic optimization

problem and allows us to write Rt(xt, ξt) and Xt(xt−1) instead of Rt(x
t, ξt) and Xt(xt−1).

3.3.1. Decision variables. All H = 24 hourly products can be traded for nine hours

in the intraday market from 15:00 to 23:00 before products go into delivery one at a time.

Denote by Ht = {1+(t−9)+, . . . ,24} the the set of hours that can be traded in period t and

by yt ∈R|Ht| the positions held in period t. For better readability, we adopt the convention

that yth refers to the position held in period t that is due for delivery in hour h. This, for

example, implies that for t= 2, i.e., 15:00 on the previous day, y2,10 is the tenth component

of the vector y2, while in t= 19, i.e., at 9:00, y19,10 is the first component of y19. We will

use analogous indexing for the other variables in the model.
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Similarly, define st ∈R|Ht| as projected future storage levels at time t if open positions

yt would be closed without further trading by physically dispatching the storage starting

from its current level stt. The vector of all decision variables is denoted by xt = (yt, st).

3.3.2. Feasible set. All trading decisions must be backed by a physically feasible

schedule of storage operation. We assume the storage to be subject to in-kind losses and

to have a round-trip efficiency of η, a maximum injection rate into the storage of y, a

maximum withdrawal rate from the storage of y, and a maximum storage content of s.

Defining y− = min(yt,0), y+ = max(yt,0), and S0 as initial storage content, the set of

feasible trading and operational decisions in period t is given by

Xt(xt−1) =


sth = st,h−1− ηy−th− y

+
th, ∀ h∈Ht,

(yt, st) sth ∈ [0, s], ∀ h∈Ht, st,0 = st−1,1,

stH = S0, yth ∈ [−y, y], ∀ h∈Ht

 , (11)

with x0 = ((0, . . . ,0), (S0, . . . , S0)).

Note that the forward looking storage balance constrains in (11) enforce that trades for

future periods can be backed by an implementable schedule of injections and withdrawals

(see Löhndorf and Wozabal 2021). This constraint in particular ensures that the problem

has relatively complete recourse, which is required for our greedy benchmark strategy

discussed in Section 5.3, which otherwise may not fulfill constraint sTH = S0 in the last

stage of the problem.

3.3.3. Immediate reward. Denote ξt = Pt : Ω→R|Ht| as market prices in period t for

all hourly products that are tradable in t, with P1 as day-ahead prices and Pt, t= 2, . . . , T

as intraday prices. Day-ahead prices are uncertain in t= 0, so that there is no immediate

reward in the first stage and the reward in t= 1 is given by

R1(x1, P1) = P>1 y1, (12)

which is the sum of day-ahead profits that realize after the result of the day-ahead auction is

announced but before the respective hourly product can be traded in the intraday market.

Notice that at stage t= 1 no decisions are taken.

Denote bt ∈R|Ht| as the vector of slopes of the price impact in period t for every MWh

traded. The immediate reward in periods t= 2, . . . , T is given by the sum of all revenues

from intraday trading subject to a linear price impact,

Rt(xt, Pt) =
∑
h∈Ht

(Pth− bth(yt−1,h− yth))(yt−1,h− yth), t= 2, . . . , T. (13)
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Due to the linear price impact in the objective, the optimization problem becomes a convex

quadratic program.

4. Day-ahead and Intraday Price Model

In this section, we describe a stochastic model of day-ahead and intraday prices for the Ger-

man EPEX SPOT market that will serve as input to the stochastic optimization problem

discussed in the last section.

4.1. Day-ahead Model

The day-ahead model is fitted using historical data of hourly day-ahead prices between

2015-10-01 and 2018-09-30 as published on the EPEX SPOT website.

We use a simple time series regression to remove trend and seasonal components from

day-ahead price data. The model captures long-term trends by piecewise-linear segments

with breakpoints every seven days, and short-term seasonality by dummy variables for

each day of the week, with bank holidays treated as Sundays. A separate regression model

is fitted for each hour of the day. The regression model explains the day-ahead price in

hour h for the d-th observation in the sample by

P1,d,h = β
(1)
0h +

bd/7c∑
j=0

β
(2)
jh 1{7j+1,...,7(j+1)}(d)d+

7∑
j=1

β
(3)
jh 1{j}(d mod 7 + 1) + εDdh, (14)

where P1,d,h are the day-ahead prices for hour h on day d of the sample, β
(2)
jh is the price

level in week j, β
(3)
jh are the daily coefficients, while εDdh are the model errors.

We fit the above regression model to prices of every hour, h = 1, . . . ,24 and use the

empirical distributions on the residuals ε̂Dh to construct the scenario trees described in

Section 5.

Figure 1 shows a comparison of historical and estimated prices for two selected days in

summer and winter 2017. The fitted regression model achieves a mean absolute error of

EUR 5.56, which, despite the simplicity of the model, is comparable to the performance of

alternative day-ahead price forecasts (Weron 2014).

We note that the goal of the above model is not to compete with hourly price forward

curves provided by commercial data providers, but rather to obtain a realistic model of

day-ahead forecast errors that helps us to measure the added value of a coordinated bidding

strategy.
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Figure 1 Time series regression of day-ahead electricity prices for a summer day (left) and a winter day (right).

4.2. Intraday Model

The intraday model is based on M days of historical trade and quotes data of intraday

price ticks between 2015-11-30 and 2017-09-30. We group observations by quote hour and

delivery hour and use the volume-weighted average price of each group as our intraday

prices. As in Aı̈d et al. (2016), we model the evolution of the intraday price of hourly

products as an arithmetic random walk without drift, i.e.,

Pth = Pt−1,h + εIth, t= 2, . . . , T, h∈Ht. (15)

The random walk hypothesis is supported by the augmented Dickey-Fuller test which does

not reject the presence of a unit root at α = 0.1 in 77% of price time series of hourly

products. We therefore assume that errors εIth are independent across time periods t =

2, . . . , T .

We model the distribution of the innovation εIth by a discrete uniform distribution on

ε̂Itdh = (Pt−1,d,h−Ptdh)−M−1

M∑
d′=1

(Pt−1,d′,h−Ptd′h), d∈ [M ], t∈ {2, . . . , T}, h∈Ht, (16)

where, for t≥ 1, Ptdh are the volume-weighted intraday prices for hour h in the decision

stage that corresponds to period t of the problem observed on day d and P1,d,h is the day-

ahead price for hour h. We additionally model separate distributions for ε̂Itdh in summer

(quarters 2 and 3) and winter (quarters 1 and 4).

Note that the above formula centers all outcomes of ε̂Itdh to ensure that the price process

is a martingale. We note that the data shows no significant violation of this assumption. In
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(a) Deviation of intraday from day-ahead prices (b) Volume of hourly products by time-to-maturity.

Figure 2 Distribution of intraday prices and volumes for hourly products

particular, the martingale assumption is warranted for the difference between day-ahead

prices and the volume weighted average of intraday prices one hour ahead of delivery as is

illustrated in Figure 2a. Consequently, due to (16), the expected value for the first intraday

quotation at 15:00 is assumed to be equal to the realized day-ahead price, which ensures

that day-ahead and intraday prices have the same expected values, i.e., the price process

is a martingale.

4.3. Intraday Price Impact

To estimate the price impact of trades observed in hour t for a particular product h on day

d, we first sort the tick data in t by price in ascending order. We then construct a monotone

price impact function by computing the cumulative volumes. Using linear regression, we

estimate the relationship between cumulative volume and price for each hour t and product

h on day d and construct a sample of slope coefficients btdh. As we can see in Figure 3, linear

functions are reasonable approximations of the relationship between prices and cumulative

volumes within one hour. This is in line with the literature on models of financial intraday

markets (e.g., Almgren and Chriss 2001, Gatheral and Schied 2013, and references therein).

Figure 2b shows the cumulative hourly trading volume for each hourly product by time-

to-maturity. The traded volume sharply drops for hourly products that are more than two

hours ahead of delivery. We can also observe this effect in Figure 3 as products that are still

four hours away from delivery (orange) exhibit lower trading volumes and steeper price

increase than products that are only two hours ahead of delivery (blue). This indicates

that the price impact increases in time-to-maturity.
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Figure 3 Settlements of intraday orders for different delivery hours on 2016-12-21 (solid line: function of prices

and cumulative volumes in ascending order of price, dotted line: estimated price impact function).

As the distribution of slopes btdh obtained above is right-skewed, we estimate a model

of the linear price impact as a log-linear function of the time-to-maturity of the respective

hourly product, i.e.,

log btdh = β0t +β1th+ εSt , j = 1, . . . , T, t= 2, . . . , T,h∈Ht. (17)

Figure 4 shows log-transformed slope coefficients together with the prediction from (17)

for a selection of hourly products. The price impact for products that are less than six

hours ahead of delivery is negligible, but the regression line has an upward trend, which

confirms that the price impact increases in time-to-maturity. For example, after inverse

transformation, the product with delivery at 12:00 has an estimated price impact of almost

1.47 EUR/MWh if traded 21 hours ahead of delivery at 15:00.

5. Solution Method

In this section, we discuss how we approximate the stochastic price process from Section 4

by a scenario tree which we use to construct lower bounds of the optimal objective value of

the problem introduced in Section 3. Furthermore, we propose a novel upper bound based

on information relaxation. We will use these bounds in Section 6 to assess the value of

coordination for different types of grid energy storage.

5.1. Scenario Tree Lower Bound

Scenario tree generation is an important topic in stochastic programming and many com-

peting approaches have emerged in the literature during the past decades. Seminal con-

tributions on scenario tree generation aimed at providing lower and upper bounds on the
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Figure 4 Log-linear regression of observed price impact for products with increasing time-to-delivery during hours

0:00, 4:00, 8:00, 12:00, 16:00, 20:00.

optimal value of the original problem, e.g., Edirisinghe (1996), Frauendorfer (1996), Kuhn

(2005), Casey and Sen (2005). Klaassen (1998) and Høyland and Wallace (2001) propose

approaches that can be used to construct arbitrage-free trees. More recent approaches

use probability metrics to provide bounds on approximation errors, e.g., Pflug (2001),

Dupačová et al. (2003), Heitsch and Römisch (2009), Pflug and Pichler (2015).

However, none of the methods are suitable for solving the multi-stage stochastic program

in Section 3, as they either construct scenario trees that grow exponentially in the number

of time stages, e.g. Frauendorfer (1996) and Høyland and Wallace (2001), or trees that do

not preserve the martingale property of the discretized process and thus cannot be used for

pricing, e.g. Heitsch and Römisch (2009), or make assumptions that are not fulfilled by our

problem, e.g., Casey and Sen (2005) who require that only right-hand sides of constraints

are stochastic.

In this section, we propose a simple yet effective algorithm to construct scenario trees

that preserve the martingale property of the stochastic process from Section 4 but allows

for non-constant branching factor and thereby leads to trees of manageable size that need

not grow exponentially in the number of stages by construction. Furthermore, we show

that the optimal objectives calculated with the scenario trees are lower bounds of the

optimization problems introduced in Section 3.
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Since there is a one-to-one correspondence between scenario trees and finite filtrations,

we represent the scenario tree by a filtration F̄ = (F̄1, . . . , F̄T ), where F̄t ⊆Ft and F̄t has

finitely many elements. Because F̄t is finite, it is generated by a partition Ωi
t of Ω and

every Ωi
t can itself be partitioned by sets Ωj

t+1 ∈ F̄t+1. Based on the filtration F̄ , we define

a stochastic process ξ̄ = (ξ̄1, . . . , ξ̄T ) by

ξ̄t =E[ξt|F̄t], (18)

i.e., ξ̄t is defined as the process of conditional means on the partitions of Ω implied by F̄ .

Using the resulting finite scenario tree approximation ξ̄ in the stochastic optimization

problem (10), we obtain the following bounding result, which is in some sense dual to

the lower bound for multi-stage stochastic minimization problems with random right hand

sides that Birge and Louveaux (2011) hint to in chapter 10.1.

Proposition 3. The optimal objective value of (10) with scenario tree ξ̄ as stochastic

process is a lower bound for the optimal objective value based on the original process ξ.

Proof. The original stochastic optimization problem in its extensive form can be written

as

V1(x0, ξ0) :=

max
xt

E
[∑T

t=1Rt(xt, ξt)
]

s.t. xt ∈X (xt−1), xt /Ft.
(19)

Clearly, replacing the measurability constraint xt / Ft by the stricter condition xt / F̄t
results in a lower objective value.

Noting that by (18), the concavity of ξ 7→Rt(x, ξ), and Jensen’s inequality,

E

[
T∑
t=1

Rt(xt, ξt)

]
=E

[
T∑
t=1

E[Rt(xt, ξt)|Ft]

]
≥E

[
T∑
t=1

Rt(xt,E[ξt|Ft])

]
=E

[
T∑
t=1

Rt(xt, ξ̄t)

]
,

we have

V1(x0, ξ0)≥ V̄1(x0, ξ̄0) :=

max
xt

E
[∑T

t=1Rt(xt, ξ̄t)
]

s.t. xt ∈X (xt−1), xt / F̄t,
(20)

and the result follows. �

Note that Proposition 3 holds for arbitrary scenario trees, ξ̄, that fulfill (18). In order

to obtain tight bounds, we propose an algorithm that minimizes the nested distance of

Pflug and Pichler (2012). Unlike, for example, algorithms 6 and 7 in Pflug and Pichler
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(2015) which requires a minimum branching factor, the algorithm proposed below limits

the number of nodes in stage t to Lt thereby circumventing exponential growth.

We assume 1 = L0 ≤ L1 ≤ L2 ≤ · · · ≤ LT and denote Nt = {1, . . . ,Lt} as the indices of

nodes at stage t and Stk ⊆Nt+1 with |Stj| ≥ 1 as the set of child nodes in t+ 1 that have

node k ∈Nt as parent node, such that Nt+1 =
⋃
k∈Nt
Stk.

To minimize the approximation error, the algorithm seeks to minimize the Wasserstein

distances between the conditional distributions of the original stochastic process ξ and the

scenario tree ξ̄ (Graf and Luschgy 2000, Pflug 2001, Heitsch and Römisch 2003). Since

the problem of selecting nodes in such a way that these distances are minimized is NP-

hard, we resort to sample average approximation and local optimization techniques. More

specifically, given a tree node ξ̄lt−1 with l ∈ Nt−1, we draw a sample, (ξ̂nt )Nn=1, from ξt as

described below and then use k-means clustering to obtain a set of K nodes that minimize

the distance,

min

{
N∑
n=1

min
k∈[K]

||ξ̂nt − ξ̄tk||22 : ξ̄tk ∈Rd, ∀k ∈ [K]

}
. (21)

The chosen nodes, ξ̄tk, k ∈ [K], imply a partition of the sample,

Ξ̄tk =

{
ξ̂nt |k= arg min

j∈[K]

||ξ̂nt − ξ̄tk||22

}
.

We define the probability of node k by qtk = qt−1,l
1
N

∑N
n=1 1Ξtk

(ξ̂nt ) and note that the result-

ing discretization fulfills (18) (see Graf and Luschgy 2000).

Algorithm 1 outlines how a scenario tree can be generated stage-by-stage based on these

considerations. In line 1, the root node is set to the initial state of the stochastic process,

ξ0. In line 3, for stages t ∈ [T ] and each node k ∈ Nt−1 the algorithm generates a sample

((ξ̂ntk, ξ̂
n
t−1,k))

N
n=1 by first drawing ξ̂kt−1 from Ξ̂t−1,k and then sampling ξ̂kt ∼ ξt|ξt−1 = ξ̂kt−1. This

means that the algorithm draws from partitions associated with nodes from the previous

stage to generate a sample of successor outcomes. By setting Dk to ∞ in line 4, the

algorithm ensures that all nodes get at least one child node. In lines 6 and 7, the algorithm

adds a successor to the node i ∈ Nt−1 with the largest Wasserstein distance between its

child nodes and the samples thereby splitting those partitions that exhibit the largest

internal variation. This process is repeated until |Nt|=Lt.
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1 Set ξ̄1
0←{ξ0}, Ξ̄0,1←{ξ0}, q0,1 = 1

2 for t← 1 to T do

3 For every k ∈Nt−1, sample ((ξ̂ntk, ξ̂
n
t−1,k))

N
n=1

4 Set Dk←∞, St−1,k←∅ for k ∈Nt−1

5 for j← 1 to Lt do

6 i∈ arg max{Dkqt−1,k, k ∈Nt−1}

7 St−1,i←St−1,i ∪{j}

8 {ξ̄tk}k∈St−1,i
← arg min

{∑N
n=1 mink∈St−1,i

||ξ̂nti− ξ̄tk||22 : ξ̄tk ∈Rd, k ∈ St−1,i

}
9 Ξ̄tk←

{
ξ̂nti : ||ξ̂nti− ξ̄tk||22 ≤ ||ξ̂nti− ξ̄tm||22, ∀m∈ St−1,i

}
for k ∈ St−1,i

10 qtk← qt−1,i

∑N
n=1 1Ξ̄tk

(ξ̂nti) for k ∈ St−1,i

11 Di←
∑N

n=1 minm∈St−1,i
||ξ̂nti− ξ̄tm||22

12 end

13 end
Algorithm 1: Pseudo code of the scenario tree generation algorithm.

Remark 1. In the implementation of the algorithm, we correct sample means by shifting

the successors of every node by a constant to ensure (18). Therefore, using the tower

property, it holds that

E[ξ̄t|ξ̄t−1 = ξ̄t−1,j] = E[ξt|ξt−1 = ξ̄t−1,j], (22)

i.e., the process does not distort conditional expectations. It follows that, if εt have zero

mean and are independent, then by (22)

E[ξ̄t|ξ̄t−1] = ξ̄t−1 +E[εt] = ξ̄t−1.

This property is required to avoid speculation in the energy trading problem outlined in

Section 3.

5.2. Reoptimization Heuristic

An improved sampling-based lower bound can be obtained by simulating the process of

reoptimizing decisions after each state transition of the stochastic process. Reoptimization

heuristics are common among practitioners and referred to as rolling horizon optimiza-

tion (Sethi and Sorger 1991), lookahead approximation (Powell 2019), or model predictive

control (Schildbach and Morari 2016).
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Typically, reoptimization heuristics replace uncertain model parameters with their

expected values. We slightly modify this approach by solving the stochastic programming

problem using the scenario tree from Section 5.1 to obtain a first-stage solution x̄1. For

all subsequent stages, we proceed in the usual way by solving a deterministic optimization

problem over a receding horizon with prices replaced by their expectations. In particular,

the first-stage solution of the stochastic programming problem using the scenario tree is

given by

x̄1 ∈ arg max
x1∈X1(x0)

{
E

[
R1(x1, ξ̄1) + max

xt∈Xt(xt−1),t>1

{
E

[
T∑
t=2

Rt(xt, ξ̄t) : xt /Ft

]}]}
. (23)

To simulate rewards in later stages, we generate N sample paths, ξ̂nt , t∈ [T ], n∈ [N ], and

let x̂n1 = x̄1, n ∈ [N ]. For t= 2, . . . , T and n ∈ [N ] and a given ξ̂nt and x̂nt−1 , we solve the

following deterministic convex quadratic problem to compute decisions

{x̄nt , x̄nt+1, . . . , x̄
n
T} ∈ arg max

xr∈Xr(x̄nr−1)

{
Rt(xt, ξ̂

n
t ) +

T∑
r=t+1

Rr(xr,E[ξr|ξ̂nt ])

}
(24)

and set x̂nt = x̄nt . This allows us to estimate a lower bound of the optimal objective value

by calculating the sample average of total immediate rewards,

N−1

N∑
n=1

T∑
t=1

Rn
t (x̂nt , ξ̂

n
t ).

Note that the above reoptimization heuristics provides an implementable policy for the

coordinated bidding problem.

5.3. Sequential Bidding

A sequential bidding strategy can be obtained in a similar way by implementing a greedy

policy. Instead of using the entire scenario tree to obtain a first-stage solution, we solve

the following two-stage problem,

x̄1 ∈ arg max
x1∈X1(x0)

{
E
[
R1(x1, ξ̄1)

]}
, (25)

where the expectation is taken over outcomes at nodes N1. In this way, the option to trade

intraday is ignored by the day-ahead bid optimization.
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To calculate rewards obtained in later stages, we again simulate the decision process

as in the last section, whereby the sequential bidding strategy only maximizes immediate

rewards,

x̂nt = arg max
xt∈Xt(x̂nt−1)

{
Rt(xt, ξ̂

n
t )
}
. (26)

The sample average of the total immediate rewards now provides an estimate of the profit

from sequential bidding.

Remark 2. Note that a pure intraday bidding strategy can be obtained by skipping the

two-stage problem and setting x̄1 ≡ 0. We use this strategy in Section 6.3 to study profits

of storage assets that do not participate in the day-ahead auction.

5.4. Information Relaxation Upper Bound

To complement the above lower bounds, we propose an upper bound for the optimization

problem based on information relaxation in the spirit of Brown et al. (2010). In particular,

we solve the problem

V̄1(x0, ξ0) := E

[
T∑
t=1

max
xt∈Xt(xt−1)

Rt(xt, ξt)−
(
wt(x

t, ω)−E[wt(x
t, ω)|Ft]

)]

=E

[
T∑
t=1

E
[

max
xt∈Xt(xt−1)

Rt(xt, ξt)−
(
wt(x

t, ω)−E[wt(x
t, ω)|Ft]

) ∣∣∣Ft]] , (27)

for some functions wt :
∏t

i=1R
ni ×Ω→ R. Since the maximization operator is inside the

expectation, the decisions in (27) can be made knowing all outcomes of ξ until the end of

the planning horizon, i.e., xt/FT . Note that, in the notation of Brown et al. (2010), Gt =FT ,

i.e., we derive our bounds based on the perfect information filtration as a relaxation of the

natural filtration of the problem.

The last term in (27) involving wt acts as a penalty for anticipative decisions: In par-

ticular, wt ≡ 0, i.e., no penalty, results in the clairvoyant solution. On the contrary, for

arbitrary wt, optimizing over non-anticipative policies in stage t yields

E
[

max
xt∈Xt(xt−1), xt/Ft

Rt(xt, ξt) +
(
wt(x

t, ω)−E[wt(x
t, ω)|Ft]

) ∣∣∣Ft]
= max

xt∈Xt(xt−1), xt/Ft

E
[
Rt(xt, ξt) +

(
wt(x

t, ω)−E[wt(x
t, ω)|Ft]

) ∣∣∣Ft]
= max

xt∈Xt(xt−1), xt/Ft

E [Rt(xt, ξt)|Ft] (28)
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thereby reducing (27) to the original problem (10). This implies that for non-anticipative

policies there is no penalty and consequently V̄1(x0, ξ0)≥ V1(x0, ξ0), i.e., (27) is an upper

bound of the true objective value (see Brown et al. 2010, Brown and Smith 2014, for a

more detailed exposition).

In the literature on information relaxation bounds, the functions wt are typically chosen

as linear approximations of expected value functions of the respective problems (e.g. Brown

et al. 2010, Brown and Smith 2014, Nadarajah and Secomandi 2018, Balseiro and Brown

2019). This choice is motivated by the fact that if

wt(x
t, ω) = Vt+1(x

t, ξt+1) := max
xt∈Xt(xt−1), xt/Ft

Rt+1(x
t+1, ξt+1) +E

[
Vt+2(x

t+2, ξt+2)|Ft+1

]
,

i.e., the value function of the stochastic optimization problem, the optimal solution of

problem (27) is the true optimum (Brown et al. 2010). It follows that, if functions wt are

close to the optimal value functions of the problem, (27) can be expected to yield tight

bounds. This approach, however, requires linear approximations of the true value functions

of the problem, which either have to be derived from heuristic solution approaches or

obtained numerically.

Our approach, although motivated by the fact that the value functions Vt+1 are optimal

penalties, does not require explicit specification of value function approximations. In par-

ticular, we notice that, for Markovian problem, Vt+1 depends on xt and ξt+1 and restrict

our attention to bilinear penalty functions of the form

wt(xt, ξt+1) = 〈xt,Atξt+1〉 (29)

for some matrix At of fitting dimension.

Instead of manually fixing wt, we seek to find the optimal bilinear bounding function by

minimizing over matrices At, i.e., solving the minimax problem

min
At∈Rnt×dt

E

[
T∑
t=1

max
xt∈Xt(xt−1)

Rt(xt, ξt)− (〈xt,Atξt+1〉−E[〈xt,Atξt+1〉|Ft])

]
. (30)

The corresponding bounds are exact if Vt+1 is a bilinear function, i.e., if Vt+1(xt, ξt+1) =

〈xt,Atξt+1〉 for some choice ofAt. If this is not the case, our approach picks penalty functions

that yield the lowest upper bounds within the class of function which are bi-linear in xt

and ξt+1. In particular, this approach guarantees that the resulting bounds are tighter than
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the perfect information relaxation bound, i.e., the clairvoyant solution, as At = 0 results in

wt ≡ 0, which is a feasible choice in (30). Note that this property is not guaranteed if the

penalty wt is set manually.

Our approach is similar to the dual bounds proposed in Desai et al. (2012), who find

an optimal linear combination of Martingale differences for optimal stopping problems.

Similar to our Proposition 4, the authors show that the bounding problems can be solved

as convex optimization problems. However, there are two fundamental differences between

Desai et al. (2012) and our approach. First, the fact that set of feasible actions in Desai

et al. (2012) is discrete and therefore the optimal policy for a pathwise optimization can be

easily found by comparing finitely many decisions. Secondly, the authors propose a nested

sampling approach which consists of taking outer samples on which the policy is evaluated

and inner samples to evaluate conditional value functions for every decision taken at every

stage of an outer sample path.

In our problem, we are faced with a continuous action space. We deal with this problem

by interpreting the problem (30) as a Lagrangian minimax problem associated to a linear

maximization problem. This makes it possible to interpret (30) as a modified primal prob-

lem, where the outer maximization over the coefficients of the matrices At is implicitly

taken care off by the introduction of additional expectation constraints.

Proposition 4. If the distribution of ξt is finitely supported for all t∈ [T ], (30) is equiv-

alent to the problem

max
xt

E
[∑T

t=1Rt(xt, ξt)
]

s.t. xt ∈Xt(xt−1), xt /FT , ∀t∈ [T ]

E [xti(ξt+1,j −E[ξt+1,j|Ft])] = 0, ∀t∈ [T ], i∈ [nt], j ∈ [dt].

(31)

Proof. Note that the penalty term for stage t can be re-written as

E [〈xt,Atξt+1〉−E[〈xt,Atξt+1〉|Ft]] = E [〈xt,At(ξt+1−E[ξt+1|Ft])〉]

=
∑
i,j

atijE [xti (ξt+1,j −E[ξt+1,j|Ft])]

where the atij are the components of the matrix At.
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It follows by the interchangeability principle (see Shapiro et al. 2009, Theorem 7.92)

that (30) is equal to

min
At

max
xt

E
[∑T

t=1Rt(xt, ξt)
]

+
∑
i,j

atijE [xti (ξt+1,j −E[ξt+1,j|Ft])]

s.t. xt ∈Xt(xt−1), xt /FT , ∀t∈ [T ].
(32)

Note that since the ξt are finitely supported, the decisions xt are vectors in a finite dimen-

sional space and the above problem can be interpreted as the Lagrangian of a linear

optimization problem. By the application of the minimax theorem for linear programming,

we therefore can exchange the min and max operator to obtain (see for example Boyd and

Vandenberghe 2004, Section 5.4)

max
xt

min
At

E
[∑T

t=1Rt(xt, ξt)
]

+
∑
i,j

atijE [xti (ξt+1,j −E[ξt+1,j|Ft])]

s.t. xt ∈Xt(xt−1), xt /FT , ∀t∈ [T ],
(33)

for which the second objective term is the Lagrangian version of the constraints

E [xti(ξt+1,j −E[ξt+1,j|Ft])] = 0, ∀t∈ [T ], i∈ [nt], j ∈ [dt].

As usual in the minimax approach to duality the inner minimization forces the constraints

to hold, showing that (33) is equivalent to (31). �

Remark 3. Proposition 4 can be generalized to random variables ξt with continuous distri-

butions. Our model does not require such generalization, since in our case ξt are generated

by innovations that follow empirical distributions of the regression residuals from (14) and

(15). We therefore delegate the exposition of the more general case to future work.

Similar to Desai et al. (2012), the advantage of solving problem (31) is that there is

no need to specify a problem-specific penalty. Instead the optimal solution to problem

(30) chooses the optimal bilinear penalty, thereby leading to tighter bounds than problem-

specific linear penalties.

Note that the optimization over penalty coefficients, At, ties all scenarios together so

that (31) takes the form of a stochastic optimization problem with expectation constraints

instead of a pathwise optimization problem. For non-anticipative decisions, xt / Ft, the

constraints are automatically fulfilled since

E [xti(ξt+1,j −E[ξt+1,j|Ft])] = E [E [xti(ξt+1,j −E[ξt+1,j|Ft])|Ft]]

=E [xtiE [ξt+1,j −E[ξt+1,j|Ft]|Ft]] = 0.
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To obtain numerical solutions, we resort to sample average approximation, e.g., Wang

and Ahmed (2008). Note that, as opposed to Desai et al. (2012), in our case there is no

need for an expensive inner sampling to be able to evaluate the conditional expectation

E[ξt+1,j|Ft] in the equality constraints. In particular, since the innovations ε̂t are centered

and we assume them to be stage-wise independent, we get E[εt+1,j|Ft] = 0. It follows that

E [xti(ξt+1,j −E[ξt+1,j|Ft])] = E [xtiεt+1,j] ,

which can be approximated by its sampled equivalent∑
n∈[N ]

xntiε̂
n
t+1,j = 0.

6. Numerical Results

In this section, we compare coordinated with sequential bidding based on a case study for

storage assets that are traded in the German EPEX SPOT market. We generate several

benchmark instances by combining real price data with common types of grid energy

storage. We use empirical distributions for ε̂I and ε̂D described in Section 4 to simulate price

sample paths for June 21st (summer) and December 21st (winter) of 2017. We choose these

two dates as they mark extreme points in solar power generation and power consumption

which leads to different electricity price patters throughout the day.

We study three different types of storage: a 1000MW pumped-hydro storage with

8000MWh energy capacity and initial storage level of 2000MWh and with 75% round-

trip efficiency; a fast 10MW battery storage that can be emptied and filled in one hour

with 95% round-trip efficiency and zero initial storage; and a hydro reservoir with 100MW

power capacity that cannot be emptied on a single day with continuous deterministic inflow

equivalent to 50MW of power.

Note that we assume that the hydro reservoir does not have a pump. The condition

stH = S0 in the model formulation can therefore only be met by matching inflows with the

production of energy. As opposed to the other two storages, the reservoir’s profit therefore

does not depend on price spreads but rather on releasing water during hours with highest

prices.

All problem instances are solved using the FICO Xpress Barrier Solver on a 16-core Intel

Xeon 6130 workstation (2.1GHz, 256GB).
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Figure 5 Time series of historical and simulated hour-ahead intraday prices.

6.1. Scenario Tree Lower Bound

We pursue a data-driven approach and directly use empirical distributions of day-ahead

forecast errors and intraday price shifts to create scenario trees.

We control the size of the trees by fixing the number of terminal nodes, LT , and setting

Lt = btLT/T c, t= 1, . . . , T − 1, (34)

so that the number of nodes increases approximately linearly in the number of stages; and

we use N = 500 as the sample size to create successor partitions in Algorithm 1.

Figure 5 compares historical hour-ahead intraday prices during quarters Q2-Q3 for the

summer day with prices obtained from simulated sample paths drawn from the scenario

tree with LT = 10,000 terminal nodes. The scenario tree produces price scenarios that are

heavy-tailed like the original data, but are somewhat smoother, so that the tree will likely

underestimate the extrinsic value of storage due to lower volatility in intraday price shifts.

This is in line with the result from Section 5.1.

Table 1 shows lower bounds of the objective values of the bidding problem using scenario

trees with a varying number of terminal nodes for the two chosen dates and the different

types of storage. We note that the lower bounds increase, i.e., get tighter, in the number

of nodes LT . Optimal objective values for LT = 10,000 and LT = 30,000 are close but

CPU times increase from 90 minutes to 6 hours. Trees with LT = 100,000 exceed the

memory limit of the workstation. In the following comparative analysis, we therefore use

LT = 10,000 as the default number of terminal nodes.
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Number of Terminal Nodes
100 300 1000 3000 10000 30000

Storage Date

Pumped-hydro 2017-06-21 37,789 38,580 40,188 41,025 41,572 41,726
2017-12-21 135,828 138,230 140,016 141,274 141,984 142,127

Battery 2017-06-21 315 317 326 330 334 335
2017-12-21 429 433 446 459 467 469

Reservoir 2017-06-21 48,518 48,586 48,708 48,755 48,791 48,798
2017-12-21 68,482 68,576 68,638 68,689 68,717 68,724

Table 1 Effect of tree discretization on value of lower bound

6.2. Lower and Upper Bounds for Coordinated Bidding

Next, we compare the lower bounds obtained from solving the stochastic program with

the scenario tree (SP) and the reoptimization heuristic (RH) described in Section 5.2 with

the upper bounds from the information relaxation problem (IR) described in Section 5.4

and one from solving the problem under perfect information (PI). Table 2 shows optimal

objective values for the coordinated bidding problem obtained by the three approaches.

While the SP lower bound is deterministic, objective values of RH, IR, and PI are estimated

based on 5,000 scenarios.

The gap between IR and RH is between 0.1% for the reservoir and 8.1% for the pumped-

hydro storage, which indicates that the proposed re-optimization heuristic strategy is near-

optimal. The large gaps between IR and PI, which are in the range of 13.9% to 66.1%, indi-

cate that the proposed information relaxation provides substantially tighter upper bounds

than solving the problem under perfect foresight. By contrast, the gap between the objec-

tive value of SP and RH is between 2.0% for the reservoir and 35.2% for the pumped-hydro

storage, which demonstrates that the scenario tree significantly underestimates objective

values of the more flexible storage units.

6.3. Out-of-Sample Profits and Trade Volumes

We compare expected profits and average trade volumes of sequential and coordinated bid-

ding as well as pure intraday bidding (which is based on sequential bidding) by simulating

N = 10,000 out-of-sample profits for each strategy.

Table 3 reports lower bounds of expected profits and averages of total buy and sell

decisions for the three storage assets on the two chosen dates. The numbers shows that,
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Avg Objective Value (Std Err)

SP RH IR PI

Pumped-hydro 2017-06-21 40,679 65,719 (713.9) 69,859 (756.2) 125,804 (899.9)
2017-12-21 141,303 168,811 (854.8) 174,036 (990.4) 280,168 (1388.0)

Battery 2017-06-21 342 593 (2.5) 617 (3.5) 1,769 (5.5)
2017-12-21 476 863 (3.4) 907 (5.3) 2,679 (8.1)

Reservoir 2017-06-21 48,861 50,414 (72.8) 50,664 (79.6) 58,828 (87.6)
2017-12-21 68,785 70,301 (153.5) 70,194 (158.4) 83,008 (168.0)

Table 2 Lower and Upper Bounds for Coordinated Bidding

Avg Profit (EUR) Avg Volume (MWh)

Asset Season Market Intraday Sequential Coordinated Intraday Sequential Coordinated

Pumped Summer Day-ahead 0 25,448 -24,554 0 12,250 11,488
hydro Intraday 37,724 24,725 88,756 14,222 10,476 11,229

Both 37,724 50,173 64,202 14,222 22,726 22,717

Winter Day-ahead 0 129,033 77,834 0 16,917 15,518
Intraday 94,027 25,732 89,822 21,506 8,872 9,018
Both 94,027 154,764 167,656 21,506 25,788 24,536

Battery Summer Day-ahead 0 292 171 0 41 38
Intraday 506 252 405 316 272 149

Both 506 544 576 316 313 187

Winter Day-ahead 0 391 161 0 41 35
Intraday 785 411 687 331 307 158

Both 785 801 848 331 348 192

Reservoir Summer Day-ahead 0 48,038 46,881 0 1,200 1,200
Intraday 35,728 1,544 3,449 3,046 1,084 1,072

Both 35,728 49,582 50,329 3,046 2,284 2,272

Winter Day-ahead 0 68,478 67,032 0 1,200 1,200
Intraday 49,983 1,471 3,093 2,716 728 666

Both 49,983 69,948 70,125 2,716 1,928 1,866

Table 3 Average profits and volumes of different trading strategies for different storage assets

overall, coordinated bidding performs consistently better than sequential bidding, and

sequential bidding performs better than intraday bidding alone. The large pumped-hydro

storage and the battery benefit most from a coordinated bidding strategy, whereas gains

for the less flexible reservoir are marginal.

Except for the reservoir, coordinated bidding leads to a noticeable decrease in day-ahead

trading volume, which is in line with the result from the stylized model. The coordinated

strategy thereby reserves capacity for the intraday market and accepts lower day-ahead

profits (even losses) which are offset by higher intraday profits.
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The pumped-hydro storage with its high operational flexibility and market impact ben-

efits most from coordinated bidding with a profit increase of 8.3-28.0% over sequential

bidding. Clearly, for this asset, the pure intraday strategy performs worst with a loss of

44-47% of profits relative to coordinated bidding. The overall trade volumes are also less

for this strategy, since the price response on the intraday market limits the potential for

profitable trading. Portfolios that contain large and flexible storage assets should therefore

coordinate their bidding decisions across the two markets.

The battery storage only gains 5.9% from a coordinated strategy on average relative to

sequential bidding but also loses 7.4-12% of its profits if it does not bid on the the day-

ahead market and resorts to a greedy intraday strategy. Given the relatively large share of

intraday trading with the battery storage, it may be an option for small storage assets to

skip the day-ahead auction entirely and focus on coordinated intraday trading instead – a

setting that has also been studied in Bertrand and Papavasiliou (2019).

The large hydro reservoir, by contrast, hardly benefits at all from even entering the

intraday market as it makes most of its profits day-ahead. It should be noted that day-

ahead volumes are the same for coordinated and sequential bidding as both have to sell the

same amount of energy equivalent inflows due to the constraints imposed in (11). Focusing

on day-ahead price volatility as in Löhndorf et al. (2013) therefore seems sufficient when

optimizing such large and inflexible storages.

Another observation is that the value of storage is generally higher on the winter day

than on the day in summer, which can be explained by the overall lower average price

spread between day and night hours of only EUR 16.10 on June 21st compared to EUR

35.34 on December 21st.

6.4. Analysis of Trading Decisions

We study the difference in day-ahead bids and intraday trading intensity under each bid-

ding strategy.

Figure 6 shows day-ahead bids for sequential as well as coordinated bidding for the two

chosen days. Unlike sequential biding, coordinated day-ahead bids are non-trivial and do

not fully use the storage’s power capacity, i.e., are not bang-bang solutions. Instead the

coordinated strategy places day-ahead bids that match the final intraday position much
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Figure 6 Day-ahead bids for each strategy as well as 95% confidence bands of final contract positions (top:

2017-06-21, bottom: 2017-12-21).

better, as we can see from their location inside the blue bands in Figure 6 that contain the

final positions for 95% of the sampled scenarios.

Figure 7 shows heatmaps of the average order volume in each hour for each product

over time, with trading intensity of sequential bidding shown in the top row and coordi-

nated bidding in the bottom row. Coordinated bidding not only shifts more volume into

the intraday market but also increases trading intensity as delivery approaches. However,

intraday trades are not merely postponed until the last hour but are rather split up taking

into account the price impact of individual hours. In contrast, sequential bidding trades

earlier on average and therefore is more affected by the price response.

7. Conclusion

We have modeled the problem of day-ahead and intraday bidding of a storage owner who

participates in a multi-settlement market. For a stylized setting, we show that it is optimal

to reserve capacity for the intraday market and that a coordinated bidding strategy allows

storage owners to make more profit than a sequential strategy.
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Figure 7 Intraday trading intensity by product and trade hour for different asset types on 2017-06-21 (top:

sequential bidding, bottom: coordinated bidding).

To measure the added value of coordinated bidding in a real-world setting, we propose a

multi-stage stochastic program of day-ahead and intraday bidding. We show how scenario

trees can be constructed that allow to compute lower bounds of the optimal objective value

and propose a novel upper bound based on information relaxation.

We show in an out-of-sample case study that the added value of using a coordinated

bidding strategy is substantial, and that the gain is mostly driven by storage flexibility

and its price impact in the intraday market. The value of coordination is not equally large

for all asset types. For example, a large and flexible pumped-hydro storage benefits more

from a coordinated bidding strategy than a small battery storage or a less flexible hydro

reservoir with natural inflow.

In particular, small and flexible battery storages may opt to skip the day-ahead auc-

tion entirely and implement simpler trading strategies that exploit price spreads between

intraday products with different times to delivery.
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By contrast, little is lost for owners of less flexible hydropower plants with large reservoirs

and natural inflow if they do not participate in the intraday market. Quite the contrary,

operational cost may even decrease as owners no longer need to maintain and operate

costly intraday trading systems.

We also observe that anticipating the intraday market in day-ahead bidding results in

complex day-ahead bids that deviate from the bang-bang type solutions often described in

the literature.

A natural extension of the optimization model introduced in this paper would be to

optimize day-ahead bids and intraday trades of a whole portfolio of production assets

including renewables or thermal generators. Such a model could be used by power compa-

nies directly to compute day-ahead bids for their entire portfolio. Future work could also

investigate formulations where the dynamics of the intraday limit order book is modeled

as a continuous-time stochastic process (Cont et al. 2010).

References

Aı̈d R, Gruet P, Pham H (2016) An optimal trading problem in intraday electricity markets. Mathematics

and Financial Economics 10(1):49–85.

Almgren R, Chriss N (2001) Optimal execution of portfolio transactions. Journal of Risk 3:5–40.

Balseiro SR, Brown DB (2019) Approximations to stochastic dynamic programs via information relaxation

duality. Operations Research 67(2):577–597.

Barbry A, Anjos M, Delage E, Schell K (2019) Robust self-scheduling of a price-maker energy storage facility

in the new york electricity market. Energy Economics 78:629 – 646.

Bertrand G, Papavasiliou A (2019) Adaptive trading in continuous intraday electricity markets for a storage

unit. IEEE Transactions on Power Systems .

Bertsimas D, Lo AW (1998) Optimal control of execution costs. Journal of Financial Markets 1(1):1–50.

Birge J, Louveaux F (2011) Introduction to Stochastic Programming. Springer Series in Operations Research

and Financial Engineering (Springer New York).

Boomsma TK, Juul N, Fleten SE (2014) Bidding in sequential electricity markets: The nordic case. European

Journal of Operational Research 238(3):797–809.

Boyd S, Vandenberghe L (2004) Convex Optimization. Number Teil 1 (Cambridge University Press), ISBN

9780521833783.

Brown D, Smith J (2014) Information relaxations, duality, and convex stochastic dynamic programs. Oper-

ations Research 62(6):1394–1415.
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Löhndorf N, Wozabal D (2021) Gas storage valuation in incomplete markets. European Journal of Operational

Research 288(1):318 – 330.

Nadarajah S, Secomandi N (2018) Merchant energy trading in a network. Operations Research 66(5):1304–

1320.

Pflug G (2001) Scenario tree generation for multiperiod financial optimization by optimal discretization.

Mathematical Programming, Series B 89(2):251–271.

Pflug GC, Pichler A (2012) A distance for multistage stochastic optimization models. SIAM Journal on

Optimization 22(1):1–23.

Pflug GC, Pichler A (2015) Dynamic generation of scenario trees. Computational Optimization and Appli-

cations 62(3):641–668.

Powell WB (2019) A unified framework for stochastic optimization. European Journal of Operational Research

275(3):795–821.

Schildbach G, Morari M (2016) Scenario-based model predictive control for multi-echelon supply chain

management. European Journal of Operational Research 252(2):540–549.

Sethi S, Sorger G (1991) A theory of rolling horizon decision making. Annals of Operations Research

29(1):387–415.
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