Algorithmic Power Trading Challenges and Weather Based Strategies T. Kuppelwieser, N. Löhndorf, D. Wozabal

Seminar Series Energy & Finance, 05/2021

٦Π

1 Coordinated day-ahead and intraday market bidding

Weather based trading strategies on intraday markets

3 Liquidity of intraday markets

N. Löhndorf, D. Wozabal. *The Value of Coordination in Multimarket Bidding of Grid Energy Storage*. Working Paper, 2021.

T. Kuppelwieser, D. Wozabal. *Intraday Power Trading: Towards an Arms Race in Weather Forecasting?*. Working Paper, 2021.

T. Kuppelwieser, D. Wozabal. *Liquidity Costs on Intraday Power Markets: Continuous Trading Versus Auctions*. Energy Policy, 2021.

Goal

Optimal non-anticipative trading strategies on short-term markets.

Goal

Optimal non-anticipative trading strategies on short-term markets.

We deal with the following setting

- European market design
- No long-term future markets
- No bidding on reserve markets
- Special focus on continuous intraday trading
- Take perspective of single players that
 - are not acting strategically
 - recognize that the market is not efficient

Short-Term Power Markets

- Day-ahead market: auction one day ahead of delivery
- Intraday market: continuous, trades until shortly before delivery
- Balancing market
 - auction one day before delivery
 - remuneration for power and energy
 - continuous calls-offs by the TSO

Copyright: Amprion

Decisions: Problems & Complications

- Prices are random
- Demands and production are random

Decisions: Problems & Complications

- Prices are random
- Demands and production are random
- Hard technical constraints, demands have to be fulfilled
- High temporal resolution
- Products seize to exist (electricity is a service)

Decisions: Problems & Complications

- Prices are random
- Demands and production are random
- Hard technical constraints, demands have to be fulfilled
- High temporal resolution
- Products seize to exist (electricity is a service)
- Illiquid markets
- Interaction between markets is non-trivial
 - Market prices often do not reflect true values

$$reBAP_t = \beta_0 + \beta_1 ID1_t + \varepsilon_t$$

Liquidity

- Day-ahead market: high volumes, auction
- Intraday: smaller volumes, trading spread out

Intraday Volumes (TWH)

Source: EPEX, 2018

- Day-ahead market: high volumes, auction
- Intraday: smaller volumes, trading spread out
- Liquidity costs on intraday markets are still substantial

- Day-ahead market: high volumes, auction
- Intraday: smaller volumes, trading spread out
- Liquidity costs on intraday markets are still substantial

volume v	volume weighted cost of noundtrip per www (17.11.2017 to 15.00.2018)								
Subset	N	mean	std	min	25%	50%	75%	max	
0.1MWh	4991	1.99	1.23	0.55	1.24	1.64	2.34	14.32	
5MWh	4991	2.20	1.33	0.62	1.40	1.83	2.60	24.31	
10MWh	4991	2.38	1.42	0.72	1.54	1.99	2.79	35.52	
15MWh	4991	2.56	1.49	0.81	1.69	2.17	3.00	39.55	
50MWh	4991	3.90	2.09	1.32	2.67	3.37	4.52	58.61	

Volume Weighted Cost of Roundtrip per MWh (17.11.2017 to 15.06.2018)

T. Kuppelwieser, D. Wozabal. *Liquidity Costs on Intraday Power Markets: Continuous Trading Versus Auctions.* Energy Policy, 2021.

- Day-ahead market: high volumes, auction
- Intraday: smaller volumes, trading spread out
- Liquidity costs on intraday markets are still substantial
- Continuous trading tends to increase (liquidity) cost
 - Schwartz (2012)
 - Budish et al. (2015)
 - Du and Zhu (2017)
 - Deutsche Börse Group (2018)

Day-Ahead & Intraday: The Value of Coordination

Setting

Market an energy storage on the day-ahead and intraday market.

Day-Ahead & Intraday: The Value of Coordination

Setting

Market an energy storage on the day-ahead and intraday market.

Question I

Why not exclusively trade on the day-ahead market?

Question II

Why not exclusively trade on the intraday market?

Question III

Why not trade trade on both markets and decide independently?

Day-Ahead & Intraday: The Value of Coordination

Setting

Market an energy storage on the day-ahead and intraday market.

Question I

Why not exclusively trade on the day-ahead market?

Question II

Why not exclusively trade on the intraday market?

Question III

Why not trade trade on both markets and decide independently?

N. Löhndorf, D. Wozabal. *The Value of Coordination in Multimarket Bidding of Grid Energy Storage.* Working Paper, 2021.

Assumptions

- Maximize expected profits of an electricity storage
- Bid for two time periods
 - t = 0: Bid on day-ahead market for delivery in t = 1, 2
 - t = 1: Intraday market trading for period 1
 - t = 2: Intraday market trading for period 2
- Start with empty storage
- Linear price response β for intraday market trading
- No price response for day-ahead trading

•
$$\mathbb{E}(P_t^{\prime}|P_t^D = p_t^D) = p_t^D$$
 for $t = 1, 2$

Proposition

If intraday prices have a higher dispersion, then

- it is never optimal to use full capacity on the day-ahead market;
- there exists β̄ > 0 such that for β ∈ [0, β̄], it is optimal to only trade on the intraday market.

- Attractiveness of the intraday market: volatility & information
- Attractiveness of the day-ahead market: market depth
- Small and fast storages should focus on the intraday market
- Larger storages should focus on the day-ahead market

Value of Coordination: Case Study

- Day-ahead trading
- Hourly intraday trading
- Fit price processes from data (order book) data
- Calculate LB on value of coordination using scenario trees
- UB by information relaxation
- Three types of assets
 - Small battery storage: 10MW / 10 MWh, efficiency of 95%
 - Pumped hydro storage: 1000 MW / 8000 MWh, efficiency of 75%
 - Seasonal hydro: 100 MW, no pump, 50 MW continuous inflow

Numerical Results

			Avg Profit (EUR)				Avg Volume (N	/Wh)
	Season	Market	ID	Sequential	Coordinated	ID	Sequential	Coordinated
/dro	Summer	DA ID	0 37,724	25,448 24,725	-24,554 88,756	0 14,222	12,250 10,476	11,488 11,229
Я́Нр		Both	37,724	50,173	64,202	14,222	22,726	22,717
ed Wir	Winter	DA ID	0 94,027	129,033 25,732	77,834 89,822	0 21,506	16,917 8,872	15,518 9,018
_		Both	94,027	154,764	167,656	21,506	25,788	24,536
	Summer	DA ID	0 506	292 252	171 405	0 316	41 272	38 149
ttery		Both	506	544	576	316	313	187
Ba	Winter	DA ID	0 785	391 411	161 687	0 331	41 307	35 158
		Both	785	801	848	331	348	192
. .	Summer	DA ID	0 35,728	48,038 1,544	46,881 3,449	0 3,046	1,200 1,084	1,200 1,072
ervoi		Both	35,728	49,582	50,329	3,046	2,284	2,272
Res	Winter	DA ID	0 49,983	68,478 1,471	67,032 3,093	0 2,716	1,200 728	1,200 666
		Both	49,983	69,948	70,125	2,716	1,928	1,866

Challenge

Finding (globally) optimal intraday trading strategies is hard!

Decisions are single buy and sell decisions for a random price

Intraday market: continuous trading based on a limit order book

Order book dynamics

- evolve at short time scale
- changes happen at random points in time
- order book consists of bid and offer curves

Need another layer of modeling to make trading decisions

Intraday Trading

Goal

Non-anticipative trading strategy for intraday-only arbitrage trading.

Intraday Trading

Goal

Non-anticipative trading strategy for intraday-only arbitrage trading.

- No assets, no demand
- Accurate processing of order level data
- Policy should prescribe directly implementable trading decisions
- Decision should be computable in real time
- Positive out-of-sample profits

Intraday Trading

Goal

Non-anticipative trading strategy for intraday-only arbitrage trading.

- No assets, no demand
- Accurate processing of order level data
- Policy should prescribe directly implementable trading decisions
- Decision should be computable in real time
- Positive *out-of-sample profits*

T. Kuppelwieser, D. Wozabal. *Intraday Power Trading: Towards an Arms Race in Weather Forecasting?*. Working Paper, 2021.

Intraday Trading: Literature

Most papers on intraday trading consider asset backed trading

Most papers do not consider exact order book dynamics
 Exception: Bertrand and Papavasiliou (2019)

Some related recent literature

- Kath and Ziel (2018): Day-ahead vs intraday based on forecasts
- Maciejowska et al. (2019): Day-ahead vs intraday arbitrage
- Bertrand and Papavasiliou (2019): Storage optimization
- Monteiro et al. (2020): Arbitrage trading with futures
- Wozabal and Rameseder (2020): Auction based intraday trading
- Kath and Ziel (2020): Optimal order execution

Interlude: Milliseconds & Microwaves

High frequency trading on financial markets (Budish et al., 2015).

- Trading on signals indicating changes in asset values
- The proceeds of HFT strategies go to fastest trader
- Arms race for speed

Interlude: Milliseconds & Microwaves

High frequency trading on financial markets (Budish et al., 2015).

- Trading on signals indicating changes in asset values
- The proceeds of HFT strategies go to fastest trader
- Arms race for speed

Ping Time New York-Chicago

- Telecommunication line between NY and Chicago: 16 ms
- Spread Networks. Straight cable for \$300 Mio.: 13 ms
- Since then: microwave towers reducing time to 8 ms
- Speed limit: 4 ms (speed of light)

Interlude: Milliseconds & Microwaves

High frequency trading on financial markets (Budish et al., 2015).

- Trading on signals indicating changes in asset values
- The proceeds of HFT strategies go to fastest trader
- Arms race for speed

Ping Time New York-Chicago

- Telecommunication line between NY and Chicago: 16 ms
- Spread Networks. Straight cable for \$300 Mio.: 13 ms
- Since then: microwave towers reducing time to 8 ms
- Speed limit: 4 ms (speed of light)
- Similar races take place in other areas
 - Computing: code held in the L1-cache of processors
 - Ping times within the exchange: distance to clearing server
- Earnings from ES vs SPY arbitrage alone: \$75 Mio/year

Renewables and intraday prices

- German market has a significant fraction of renewable energy
- Day-ahead market trading based day-ahead weather forecasts
- Forecast errors trigger supply/demand shocks and price changes at the intraday market
 - Kiesel and Paraschiv (2017)
 - Kremer et al. (2020a,b)
 - Kulakov and Ziel (2019)

Renewables and intraday prices

- German market has a significant fraction of renewable energy
- Day-ahead market trading based day-ahead weather forecasts
- Forecast errors trigger supply/demand shocks and price changes at the intraday market
 - Kiesel and Paraschiv (2017)
 - Kremer et al. (2020a,b)
 - Kulakov and Ziel (2019)

Strategy

Trade based on superior (early) forecasts of *day-ahead forecast errors* anticipating future intraday price changes.

Traditional Weather Forecasting

Traditional weather forecasting produces infrequent forecasts with a coarse temporal resolution.

- Based on *expensive* data (satellite images, weather balloons)
- Only 4 6 updates a day

VRES expansion prompted the development of specialized forecasts

- Feedback from real time production data
- Forecasting relevant parameters (wind speeds, cloud cover)
- New providers
 - Enfor, ConWX, Gnarum, enercast, weathernews, windsim, Meteologica

A Parametric Policy

■ Trade contract with delivery at *t* based on forecast from *s* < *t*

$$\varepsilon_t^s = f_t^{DA} - f_t^s$$

- Trade (up to) quantity V
- Build up position in $[t_1, t_2]$ and unwind in $[t_3, t_4]$

21/33

A Parametric Policy (contd.)

- \blacksquare Define a thresholds Δ^+ and Δ^- for signal strength
- **Calculate trading decision** x_{t_1} as

$$\mathbf{x}_{t_1} = egin{cases} \mathbf{V}^+, & ext{if } arepsilon_t^s > \Delta^+ \ -\mathbf{V}^-, & ext{if } arepsilon_t^s < -\Delta^- \ \mathbf{0}, & ext{otherwise.} \end{cases}$$

Patience is key?

Modes of Trading

Two ways of interfacing with the continuous market:

- Accepting existing limit orders
- Placing limit/market orders

Patience is key?

Modes of Trading

Two ways of interfacing with the continuous market:

- Accepting existing limit orders
- Placing limit/market orders

Impatient Strategy

- Build up position with immediate-or-cancel market order at t₁
- Unwind position with immediate-or-cancel market order at t₄
- Clear imbalance for reBAP

Patience is key?

Modes of Trading

Two ways of interfacing with the continuous market:

- Accepting existing limit orders
- Placing limit/market orders

Impatient Strategy

- Build up position with immediate-or-cancel market order at t₁
- Unwind position with *immediate-or-cancel* market order at t₄
- Clear imbalance for reBAP

Patient Strategy

- Build up position placing limit order on top of bid/offer stack at t₁
- Make sure that order stays on the top until either V is traded or t₂
- Unwind position in the same manner in [t₃, t₄]
- *Immediate-or-cancel* market order at *t*₄ for remaining position
- Clear imbalance for reBAP

Parameter Choice

Fix timing and use a simple grid search on a discrete policy space.

Fix timing

- Use forecast 8 hours before delivery and choose $t_1 = t 8h$
 - 8 hour forecast allows to react early
- $t_2 = t 3h$, i.e., we choose a long first trading period
 - Ensures enough time to build up position, when liquidity is limited
- Choose $[t_3, t_4] = [t 65m, t 35m]$ to unwind the position
 - Better liquidity close to delivery
 - 5 remaining minutes used for market orders to close positions (patient strategy)

Parameter Choice

Fix timing and use a simple grid search on a discrete policy space.

Grid search to determine V^{\pm} and Δ^{\pm}

- Using historical training data on days $d \in D_1$
- Define set of thresholds $\mathcal{L} = \{100 \cdot i : 0 \le i \le 20\} \subseteq \mathbb{N}$
- Define set of volumes

$$\begin{split} \mathcal{V} &= \{1,5\} \cup \{10 \cdot i: \ 1 \leq i \leq 30\} \subseteq \mathbb{N} \\ \mathcal{V} &= \{1,2,3,4\} \cup \{5 \cdot i: \ 1 \leq i \leq 6\} \subseteq \mathbb{N} \\ \end{split} \ \ \text{for hourly products}$$

Define $\Pi_d(\Delta^{\pm}, V^{\pm})$ as trading profits on day *d* and solve

$$(ar{\Delta}^{\pm}, ar{V}^{\pm}) \in rg\max\left\{\sum_{d\in\mathcal{D}_1} \Pi_d(\Delta^{\pm}, V^{\pm}): V^{\pm}\in\mathcal{V}, \ \Delta^{\pm}\in\mathcal{L}
ight\}.$$

■ Training data *D*₁: 01.07.2017 to 31.12.2018

- 58.6 million orders for hourly products
- 131 million orders for quarter-hourly products

- Training data *D*₁: 01.07.2017 to 31.12.2018
 - 58.6 million orders for hourly products
 - 131 million orders for quarter-hourly products
- Evaluation period: D_1 (anticipative)
 - Only one set of parameters for whole period
 - Evaluate against detailed order book data

- Training data *D*₁: 01.07.2017 to 31.12.2018
 - 58.6 million orders for hourly products
 - 131 million orders for quarter-hourly products
- Evaluation period: D₁ (anticipative)
 - Only one set of parameters for whole period
 - Evaluate against detailed order book data
- Take transaction costs into account
 - Trading fees: 0.125€/MWh
 - No fees for changes of limit order
 - Order-to-trade ratio (OTR), should stay below 100

- Training data *D*₁: 01.07.2017 to 31.12.2018
 - 58.6 million orders for hourly products
 - 131 million orders for quarter-hourly products
- Evaluation period: D₁ (anticipative)
 - Only one set of parameters for whole period
 - Evaluate against detailed order book data
- Take transaction costs into account
 - Trading fees: 0.125€/MWh
 - No fees for changes of limit order
 - Order-to-trade ratio (OTR), should stay below 100
- Use ε_t^8 as well as ε_t^0 for the strategy
 - \mathbf{z}_t^8 can be used to assess profits using early forecast
 - ε_t^0 yields an upper bound for the value of a weather forecast

- Training data *D*₁: 01.07.2017 to 31.12.2018
 - 58.6 million orders for hourly products
 - 131 million orders for quarter-hourly products
- Evaluation period: D₁ (anticipative)
 - Only one set of parameters for whole period
 - Evaluate against detailed order book data
- Take transaction costs into account
 - Trading fees: 0.125€/MWh
 - No fees for changes of limit order
 - Order-to-trade ratio (OTR), should stay below 100
- Use ε_t^8 as well as ε_t^0 for the strategy
 - \mathbf{z}_t^8 can be used to assess profits using early forecast
 - ε_t^0 yields an upper bound for the value of a weather forecast
- Test patient trading strategy against impatient strategy
- Define a sensible range for parameter values

			Positive			Negative			Overall
			Profit	V^+	Δ^+	Profit	V^{-}	Δ^{-}	Profit
$\binom{0}{t}$	Patient	QH	192 659	10	700	214774	10	300	407 433
al (ε		н	1 686 492	300	1 1 0 0	1 560 323	270	1 000	3246816
vctua	Impatient	QH	-48 892	1	2000	-17 350	1	2 000	-66 242
4		н	65 167	20	2000	3 684	1	1 600	68 852
ε_{t}^{8})	Patient	QH	48 438	4	200	52 589	4	0	101 027
ast (н	157 222	200	1 200	331 196	270	1 000	488 418
rece	Impatient	QH	-30 937	1	2000	-3 766	1	2 000	-34 703
ц		н	168	1	1 600	5607	20	2000	5775

- Patient strategy clearly outperforms impatient strategy
- ε_t^0 generates 5-10 more profits than ε_t^8
- QH products permit less volume and generate less profit

Optimal Parameters (ε_t^0)

Optimal Parameters (ε_t^8)

Out-of-Sample

Goal

Train non-anticipative strategy.

- Evaluation period: 01.01.2018 until 31.12.2018
- Results for ε_t^0 and ε_t^8
- Only test patient strategy
- Rolling window setting
 - Retrain strategy every day based on the last 180 days of data
- Evaluate on detailed order book data
- Take transaction costs into account

Out-of-Sample: Hourly Products

- True forecast yield profits one order of magnitude larger
- Profits positive overall, but many products with losses
- Large volumes are being traded

Out-of-Sample: Quarter Hourly Products

- Smaller volumes and open positions
- Less volatility in daily profits

	Н	our	Quarter Hour		
	ε_t^8	ε_t^0	ε_t^{8}	ε_t^0	
Profit	194 385	2087823	62724	297 656	
Balancing Costs	-9865	31 202	4214	8 055	
Mean	22.29	239.43	1.8	8.52	
Standard Deviation	968	2110	44	99	
p-value of t-test	0.0316	0.0000	0.0000	0.0000	
Minimum	-21 220	-93 030	-1731	-2717	
1% quantile	-2814	-3 740	-98	-246	
10% quantile	-394	-929	-22	-30	
Median	0	0	0	0	
90% quantile	522	1824	28	69	
99% quantile	3 1 3 7	5 600	118	300	
Maximum	15908	32 174	1 836	3518	
Number of products	8 288	8 288	33 189	33 187	
Number of traded products	2853	4 732	21 425	21 044	
Number of individual trades	136 863	311 802	223 593	367 719	

Profit for hourly products larger than for quarter hourly products

Profits for perfect forecast 5-10 larger than for ε_t^8

	н	our	Quarte	er Hour
	ε ⁸ _t	ε_t^0	ε_t^8	ε_t^0
Profit	194 385	2 087 823	62724	297 656
Balancing Costs	-9865	31 202	4214	8055
Mean	22.29	239.43	1.8	8.52
Standard Deviation	968	2110	44	99
p-value of t-test	0.0316	0.0000	0.0000	0.0000
Minimum	-21 220	-93 030	-1731	-2717
1% quantile	-2814	-3740	-98	-246
10% quantile	-394	-929	-22	-30
Median	0	0	0	0
90% quantile	522	1824	28	69
99% quantile	3137	5 600	118	300
Maximum	15908	32 174	1 836	3518
Number of products	8 2 8 8	8 288	33 189	33 187
Number of traded products	2853	4 732	21 425	21 044
Number of individual trades	136 863	311 802	223 593	367719

No significant balancing costs

	н	our	Quarte	er Hour		
	ε ⁸ _t	ε_t^0	ε_t^8	ε_t^0		
Profit	194 385	2087823	62724	297 656		
Balancing Costs	-9865	31 202	4214	8 0 5 5		
Mean	22.29	239.43	1.8	8.52		
Standard Deviation	968	2110	44	99		
p-value of t-test	0.0316	0.0000	0.0000	0.0000		
Minimum	-21 220	-93 030	-1731	-2717		
1% quantile	-2814	-3740	-98	-246		
10% quantile	-394	-929	-22	-30		
Median	0	0	0	0		
90% quantile	522	1824	28	69		
99% quantile	3137	5 600	118	300		
Maximum	15908	32 174	1 836	3518		
Number of products	8 288	8 288	33 189	33 187		
Number of traded products	2853	4732	21 425	21 044		
Number of individual trades	136 863	311 802	223 593	367719		

All profits are significantly positive

	н	our	Quarte	er Hour		
	ε_t^{8}	ε_t^0	ε_t^8	ε_t^0		
Profit	194 385	2087823	62724	297 656		
Balancing Costs	-9865	31 202	4214	8 0 5 5		
Mean	22.29	239.43	1.8	8.52		
Standard Deviation	968	2110	44	99		
p-value of t-test	0.0316	0.0000	0.0000	0.0000		
Minimum	-21 220	-93 030	-1731	-2717		
1% quantile	-2814	-3740	-98	-246		
10% quantile	-394	-929	-22	-30		
Median	0	0	0	0		
90% quantile	522	1824	28	69		
99% quantile	3137	5 600	118	300		
Maximum	15908	32 174	1 836	3518		
Number of products	8 2 8 8	8 288	33 189	33 187		
Number of traded products	2853	4 732	21 425	21 044		
Number of individual trades	136 863	311 802	223 593	367719		

Higher *risk* (dispersion) for ε_t^0 and for hourly products

	н	our	Quarte	er Hour
	ε_t^{B}	ε_t^0	ε_t^8	ε_t^0
Profit	194 385	2087823	62724	297 656
Balancing Costs	-9865	31 202	4214	8 0 5 5
Mean	22.29	239.43	1.8	8.52
Standard Deviation	968	2110	44	99
p-value of t-test	0.0316	0.0000	0.0000	0.0000
Minimum	-21 220	-93 030	-1731	-2717
1% quantile	-2814	-3 740	-98	-246
10% quantile	-394	-929	-22	-30
Median	0	0	0	0
90% quantile	522	1824	28	69
99% quantile	3137	5 600	118	300
Maximum	15908	32 174	1 836	3518
Number of products	8 288	8 288	33 189	33 187
Number of traded products	2853	4 732	21 425	21 044
Number of individual trades	136 863	311 802	223 593	367719

Only a fraction of products is actually traded

Strategy generates a substantial amount of limit orders

Conclusion

Coordination between day-ahead and intraday markets

- Coordinated bidding is optimal
- Finding optimal trading decisions is hard

Conclusion

Coordination between day-ahead and intraday markets

- Coordinated bidding is optimal
- Finding optimal trading decisions is hard
- Profitable weather based trading strategies exist
 - Intraday market is not (semi)-strong efficient
 - Potential for considerable improvement with better forecasts
 - Potential for better strategies
 - Potential for more sophisticated learning

Conclusion

Coordination between day-ahead and intraday markets

- Coordinated bidding is optimal
- Finding optimal trading decisions is hard
- Profitable weather based trading strategies exist
 - Intraday market is not (semi)-strong efficient
 - Potential for considerable improvement with better forecasts
 - Potential for better strategies
 - Potential for more sophisticated learning
- Liquidity cost on the intraday market is substantial
 - Impatient strategies based on market orders are unprofitable
 - Day-ahead market is still attractive

david wozabal david.wozabal@tum.de

Literature

- Gilles Bertrand and Anthony Papavasiliou. Adaptive trading in continuous intraday electricity markets for a storage unit. IEEE Transactions on Power Systems, 2019.
- E. Budish, P. Cramton, and J. Shim. The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response. The Quarterly Journal of Economics, 130(4):1547–1621, 7 2015.
- Deutsche Börse Group. Continuous auction market model: A proposal for the future european intraday power market. Technical report, Deutsche Börse AG, 10 2018.
- S. Du and H. Zhu. What is the optimal trading frequency in financial markets? The Review of Economic Studies, 84(4):1606–1651, 2017.
- C. Kath and F. Ziel. The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts. Energy Economics, 76:411–423, nov 2018.
- Christopher Kath and Florian Ziel. Optimal order execution in intraday markets: Minimizing costs in trade trajectories, 2020.
- Rüdiger Kiesel and Florentina Paraschiv. Econometric analysis of 15-minute intraday electricity prices. Energy Economics, 64:77 90, 2017. ISSN 0140-9883.
- M. Kremer, R. Kiesel, and F. Paraschiv. An econometric model for intraday electricity trading. *Philosophical Transactions of the Royal Society A, Forthcoming*, may 2020a.
- M. Kremer, R. Kiesel, and F. Paraschiv. Intraday electricity pricing of night contracts. Energies, 13(17):4501-0, sep 2020b.
- S. Kulakov and F. Ziel. The impact of renewable energy forecasts on intraday electricity prices. The Energy Journal, 10, 2019.
- K. Maciejowska, W. Nitka, and T. Weron. Day-ahead vs. intraday—forecasting the price spread to maximize economic benefits. *Energies*, 12(4), 2019.
- C. Monteiro, L.A. Fernandez-Jimenez, and I.J. Ramirez-Rosado. Predictive trading strategy for physical electricity futures. *Energies*, 13 (14), 2020.
- R.A. Schwartz. The Electronic Call Auction: Market Mechanism and Trading: Building a Better Stock Market. The New York University Salomon Center Series on Financial Markets and Institutions. Springer US, 2012.
- D. Wozabal and G. Rameseder. A Stochastic Optimization Approach for Optimal Bidding of a Virtual Power Plant on the Spanish Spot Market for Electricity. European Journal of Operational Research, 280(2):639–655, 2020.

			Mean	Max	Min	Std
L	Patient	ε_t^8	-22 163	5798	-210712	40 655
no		$\varepsilon_{\tilde{t}}$	-57 795	11/009	-36/440	75260
Ĭ	Impationt	ε_t^8	-68	0	-1015	159
	impatient	ε_t^0	-2 246	5277	-23 798	4015
	Dationt	ε_t^8	404	21 450	-24 865	6256
Ĩ	Falleni	ε_t^0	1 597	49 375	-33657	10711
9	Impationt	ε_t^8	-141	2613	-19710	1 047
	impatient	ε_t^0	-276	4 069	-10835	1 424