Outline

1. Coordinated day-ahead and intraday market bidding

2. Weather based trading strategies on intraday markets

3. Liquidity of intraday markets
Outline

Motivation

Goal

Optimal non-anticipative trading strategies on short-term markets.
Motivation

Goal

Optimal non-anticipative trading strategies on short-term markets.

We deal with the following setting

- European market design
- No long-term future markets
- No bidding on reserve markets
- Special focus on continuous intraday trading
- Take perspective of single players that
 - are not acting strategically
 - recognize that the market is not efficient
Short-Term Power Markets

- Day-ahead market: auction one day ahead of delivery
- Intraday market: continuous, trades until shortly before delivery
- Balancing market
 - auction one day before delivery
 - remuneration for power and energy
 - continuous calls-offs by the TSO
Prices are random
Demands and production are random

market

Market prices often do not reflect true values
Decisions: Problems & Complications

- Prices are random
- Demands and production are random
- Hard technical constraints, demands have to be fulfilled
- High temporal resolution
- Products *seize to exist* (electricity is a *service*)
Decisions: Problems & Complications

- Prices are random
- Demands and production are random
- Hard technical constraints, demands have to be fulfilled
- High temporal resolution
- Products *seize to exist* (electricity is a *service*)
- Illiquid markets
- Interaction between markets is non-trivial
 - Market prices often do not reflect true values

\[\text{reBAP}_t = \beta_0 + \beta_1 \text{ID1}_t + \varepsilon_t \]
Liquidity

- Day-ahead market: high volumes, auction
- Intraday: smaller volumes, trading *spread out*

Source: EPEX, 2018
Liquidity

- Day-ahead market: high volumes, auction
- Intraday: smaller volumes, trading *spread out*
- Liquidity costs on intraday markets are still substantial
Liquidity

- Day-ahead market: high volumes, auction
- Intraday: smaller volumes, trading *spread out*
- Liquidity costs on intraday markets are still substantial

<table>
<thead>
<tr>
<th>Subset</th>
<th>N</th>
<th>mean</th>
<th>std</th>
<th>min</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1MWh</td>
<td>4991</td>
<td>1.99</td>
<td>1.23</td>
<td>0.55</td>
<td>1.24</td>
<td>1.64</td>
<td>2.34</td>
<td>14.32</td>
</tr>
<tr>
<td>5MWh</td>
<td>4991</td>
<td>2.20</td>
<td>1.33</td>
<td>0.62</td>
<td>1.40</td>
<td>1.83</td>
<td>2.60</td>
<td>24.31</td>
</tr>
<tr>
<td>10MWh</td>
<td>4991</td>
<td>2.38</td>
<td>1.42</td>
<td>0.72</td>
<td>1.54</td>
<td>1.99</td>
<td>2.79</td>
<td>35.52</td>
</tr>
<tr>
<td>15MWh</td>
<td>4991</td>
<td>2.56</td>
<td>1.49</td>
<td>0.81</td>
<td>1.69</td>
<td>2.17</td>
<td>3.00</td>
<td>39.55</td>
</tr>
<tr>
<td>50MWh</td>
<td>4991</td>
<td>3.90</td>
<td>2.09</td>
<td>1.32</td>
<td>2.67</td>
<td>3.37</td>
<td>4.52</td>
<td>58.61</td>
</tr>
</tbody>
</table>

Liquidity

- Day-ahead market: high volumes, auction

- Intraday: smaller volumes, trading *spread out*

- Liquidity costs on intraday markets are still substantial

- Continuous trading tends to increase (liquidity) cost
 - Schwartz (2012)
 - Budish et al. (2015)
 - Du and Zhu (2017)
 - Deutsche Börse Group (2018)
Setting

Market an energy storage on the day-ahead and intraday market.
Setting
Market an energy storage on the day-ahead and intraday market.

<table>
<thead>
<tr>
<th>Question I</th>
<th>Why not exclusively trade on the day-ahead market?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question II</td>
<td>Why not exclusively trade on the intraday market?</td>
</tr>
<tr>
<td>Question III</td>
<td>Why not trade on both markets and decide independently?</td>
</tr>
</tbody>
</table>
Setting
Market an energy storage on the day-ahead and intraday market.

Question I
Why not exclusively trade on the day-ahead market?

Question II
Why not exclusively trade on the intraday market?

Question III
Why not trade on both markets and decide independently?

Assumptions

- Maximize expected profits of an electricity storage
- Bid for two time periods
 - $t = 0$: Bid on day-ahead market for delivery in $t = 1, 2$
 - $t = 1$: Intraday market trading for period 1
 - $t = 2$: Intraday market trading for period 2
- Start with empty storage
- Linear price response β for intraday market trading
- No price response for day-ahead trading
- $\mathbb{E}(P_t^I | P_t^D = p_t^D) = p_t^D$ for $t = 1, 2$
Day and Intraday: A Simple Model

Proposition

If intraday prices have a higher dispersion, then

- it is never optimal to use full capacity on the day-ahead market;
- there exists $\bar{\beta} > 0$ such that for $\beta \in [0, \bar{\beta}]$, it is optimal to only trade on the intraday market.

- Attractiveness of the intraday market: volatility & information
- Attractiveness of the day-ahead market: market depth
- Small and fast storages should focus on the intraday market
- Larger storages should focus on the day-ahead market
Value of Coordination: Case Study

- Day-ahead trading
- Hourly intraday trading
- Fit price processes from data (order book) data
- Calculate LB on value of coordination using scenario trees
- UB by information relaxation

Three types of assets
- Small battery storage: 10MW / 10 MWh, efficiency of 95%
- Pumped hydro storage: 1000 MW / 8000 MWh, efficiency of 75%
- Seasonal hydro: 100 MW, no pump, 50 MW continuous inflow
Numerical Results

<table>
<thead>
<tr>
<th>Season</th>
<th>Market</th>
<th>Avg Profit (EUR)</th>
<th>Avg Volume (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ID</td>
<td>Sequential</td>
</tr>
<tr>
<td>Summer</td>
<td>DA</td>
<td>0</td>
<td>25,448</td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>37,724</td>
<td>24,725</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>37,724</td>
<td>50,173</td>
</tr>
<tr>
<td>Winter</td>
<td>DA</td>
<td>0</td>
<td>129,033</td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>94,027</td>
<td>25,732</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>94,027</td>
<td>154,764</td>
</tr>
<tr>
<td>Summer</td>
<td>DA</td>
<td>0</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>506</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>506</td>
<td>544</td>
</tr>
<tr>
<td>Winter</td>
<td>DA</td>
<td>0</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>785</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>785</td>
<td>801</td>
</tr>
<tr>
<td>Summer</td>
<td>DA</td>
<td>0</td>
<td>48,038</td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>35,728</td>
<td>1,544</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>35,728</td>
<td>49,582</td>
</tr>
<tr>
<td>Winter</td>
<td>DA</td>
<td>0</td>
<td>68,478</td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>49,983</td>
<td>1,471</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>49,983</td>
<td>69,948</td>
</tr>
</tbody>
</table>
Problem with Decisions

Challenge

Finding (globally) optimal intraday trading strategies is hard!

- Decisions are single buy and sell decisions for a random price
 - Intraday market: continuous trading based on a limit order book

- Order book dynamics
 - evolve at short time scale
 - changes happen at random points in time
 - order book consists of bid and offer curves

- Need another layer of modeling to make trading decisions
Order Book Dynamics

Sell Stack

200€, 50 MW
80€, 2 MW
45€, 12 MW
37€, 22 MW

Bid-Ask Spread

Buy Stack

35€, 17 MW
32€, 97 MW
22€, 12 MW
-20€, 42 MW
Order Book Dynamics

New price tick at T=2: 45€
<table>
<thead>
<tr>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-anticipative trading strategy for intraday-only arbitrage trading.</td>
</tr>
</tbody>
</table>
Intraday Trading

Goal

Non-anticipative trading strategy for intraday-only *arbitrage trading*.

- No assets, no demand
- Accurate processing of order level data
- Policy should prescribe directly implementable trading decisions
- Decision should be computable in real time
- Positive *out-of-sample profits*

Intraday Trading

Goal

Non-anticipative trading strategy for intraday-only *arbitrage trading*.

- No assets, no demand
- Accurate processing of order level data
- Policy should prescribe directly implementable trading decisions
- Decision should be computable in real time
- Positive *out-of-sample profits*

Intraday Trading: Literature

- Most papers on intraday trading consider asset backed trading

- Most papers do not consider exact order book dynamics
 - Exception: Bertrand and Papavasiliou (2019)

- Some related recent literature
 - Kath and Ziel (2018): Day-ahead vs intraday based on forecasts
 - Maciejowska et al. (2019): Day-ahead vs intraday arbitrage
 - Bertrand and Papavasiliou (2019): Storage optimization
 - Monteiro et al. (2020): Arbitrage trading with futures
 - Wozabal and Rameseder (2020): Auction based intraday trading
 - Kath and Ziel (2020): Optimal order execution
Interlude: Milliseconds & Microwaves

High frequency trading on financial markets (Budish et al., 2015).

- Trading on *signals* indicating changes in asset values
- The proceeds of HFT strategies go to fastest trader
- *Arms race for speed*
Interlude: Milliseconds & Microwaves

High frequency trading on financial markets (Budish et al., 2015).

- Trading on *signals* indicating changes in asset values
- The proceeds of HFT strategies go to fastest trader
- *Arms race for speed*

Ping Time New York-Chicago

- Telecommunication line between NY and Chicago: 16 ms
- *Spread Networks.* *Straight* cable for $300 Mio.: 13 ms
- Since then: microwave towers reducing time to 8 ms
- Speed limit: 4 ms (speed of light)
Interlude: Milliseconds & Microwaves

High frequency trading on financial markets (Budish et al., 2015).

- Trading on *signals* indicating changes in asset values
- The proceeds of HFT strategies go to fastest trader
- *Arms race for speed*

Ping Time New York-Chicago

- Telecommunication line between NY and Chicago: 16 *ms*
- *Spread Networks*. *Straight* cable for $300 Mio.: 13 *ms*
- Since then: microwave towers reducing time to 8 *ms*
- Speed limit: 4 *ms* (speed of light)

- Similar races take place in other areas
 - Computing: code held in the L1-cache of processors
 - Ping times within the exchange: distance to clearing server
- Earnings from ES vs SPY arbitrage alone: $75 Mio/year
Sniping Stale Quotes

Fundamental Value: 36€
Sniping Stale Quotes

Fundamental Value: 75€
Sniping Stale Quotes

Stale Quotes

<table>
<thead>
<tr>
<th>T= 1</th>
<th>T= 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>200€, 50 MW</td>
<td>200€, 50 MW</td>
</tr>
<tr>
<td>80€, 2 MW</td>
<td>80€, 2 MW</td>
</tr>
<tr>
<td>45€, 12 MW</td>
<td>45€, 12 MW</td>
</tr>
<tr>
<td>37€, 22 MW</td>
<td>37€, 22 MW</td>
</tr>
<tr>
<td>35€, 17 MW</td>
<td>35€, 17 MW</td>
</tr>
<tr>
<td>32€, 97 MW</td>
<td>32€, 97 MW</td>
</tr>
<tr>
<td>22€, 12 MW</td>
<td>22€, 12 MW</td>
</tr>
<tr>
<td>-20€, 42 MW</td>
<td>-20€, 42 MW</td>
</tr>
</tbody>
</table>
Sniping Stale Quotes

Strategy: Snipe Stale Quotes

Buy
- 12 MW for 45€
- 22 MW for 37€

Sell
- 36 MW for 70€

Profit
- 1166€
Trading Strategy: Intuition

Renewables and intraday prices

- German market has a significant fraction of renewable energy
- Day-ahead market trading based day-ahead weather forecasts
- Forecast errors trigger supply/demand shocks and price changes at the intraday market
 - Kiesel and Paraschiv (2017)
 - Kremer et al. (2020a,b)
 - Kulakov and Ziel (2019)
Trading Strategy: Intuition

Renewables and intraday prices

- German market has a significant fraction of renewable energy
- Day-ahead market trading based day-ahead weather forecasts
- Forecast errors trigger supply/demand shocks and price changes at the intraday market
 - Kiesel and Paraschiv (2017)
 - Kremer et al. (2020a,b)
 - Kulakov and Ziel (2019)

Strategy

Trade based on superior (early) forecasts of *day-ahead forecast errors* anticipating future intraday price changes.
Traditional Weather Forecasting

Traditional weather forecasting produces infrequent forecasts with a coarse temporal resolution.

- Based on *expensive* data (satellite images, weather balloons)
- Only 4 – 6 updates a day

VRES expansion prompted the development of specialized forecasts

- Feedback from real time production data
- Forecasting relevant parameters (wind speeds, cloud cover)
- New providers
 - Enfor, ConWX, Gnarum, enercast, weathernews, windsim, Meteologica
Forecasts: VRES Production

Hourly forecast-errors of intraday updates for wind and pv

Day-Ahead at 11:00
offset=8 hours
offset=5 hours
offset=3 hours
best intraday forecast

MWh

Quarter-hourly forecast-errors of intraday updates for wind and pv

Day-Ahead at 11:00
offset=8 hours
offset=5 hours
offset=3 hours
best intraday forecast

MWh

\times 10^4
A Parametric Policy

- Trade contract with delivery at t based on forecast from $s < t$
 \[\varepsilon_t^s = f_t^{DA} - f_t^s \]

- Trade (up to) quantity V

- Build up position in $[t_1, t_2]$ and unwind in $[t_3, t_4]$
Define thresholds Δ^+ and Δ^- for signal strength.

Calculate trading decision x_{t_1} as

$$x_{t_1} = \begin{cases}
V^+, & \text{if } \varepsilon_t^s > \Delta^+ \\
-V^-, & \text{if } \varepsilon_t^s < -\Delta^- \\
0, & \text{otherwise.}
\end{cases}$$
Patience is key?

Modes of Trading

Two ways of interfacing with the continuous market:

1. Accepting existing limit orders
2. Placing limit/market orders

Impatient Strategy
Build up position with immediate-or-cancel market order at \(t_1 \)
Unwind position with immediate-or-cancel market order at \(t_4 \)
Clear imbalance for reBAP

Patient Strategy
Build up position placing limit order on top of bid/offer stack at \(t_1 \)
Make sure that order stays on the top until either \(V \) is traded or \(t_2 \)
Unwind position in the same manner in \([t_3, t_4]\) Immediate-or-cancel market order at \(t_4 \) for remaining position
Clear imbalance for reBAP
Patience is key?

Modes of Trading

Two ways of interfacing with the continuous market:
1. Accepting existing limit orders
2. Placing limit/market orders

Impatient Strategy
- Build up position with *immediate-or-cancel* market order at t_1
- Unwind position with *immediate-or-cancel* market order at t_4
- Clear imbalance for reBAP
Patience is key?

Modes of Trading

Two ways of interfacing with the continuous market:

1. Accepting existing limit orders
2. Placing limit/market orders

Impatient Strategy

- Build up position with *immediate-or-cancel* market order at t_1
- Unwind position with *immediate-or-cancel* market order at t_4
- Clear imbalance for reBAP

Patient Strategy

- Build up position placing limit order on top of bid/offer stack at t_1
- Make sure that order stays on the top until either V is traded or t_2
- Unwind position in the same manner in $[t_3, t_4]$
- *Immediate-or-cancel* market order at t_4 for remaining position
- Clear imbalance for reBAP
Optimizing the Strategy

Parameter Choice

Fix timing and use a simple grid search on a discrete policy space.

Fix timing

- Use forecast 8 hours before delivery and choose $t_1 = t - 8h$
 - 8 hour forecast allows to react early

- $t_2 = t - 3h$, i.e., we choose a long first trading period
 - Ensures enough time to build up position, when liquidity is limited

- Choose $[t_3, t_4] = [t - 65m, t - 35m]$ to unwind the position
 - Better liquidity close to delivery
 - 5 remaining minutes used for market orders to close positions
 (patient strategy)
Optimizing the Strategy

Parameter Choice

Fix timing and use a simple grid search on a discrete policy space.

Grid search to determine V^\pm and Δ^\pm

- Using historical training data on days $d \in D_1$
- Define set of thresholds $L = \{100 \cdot i : 0 \leq i \leq 20\} \subseteq \mathbb{N}$
- Define set of volumes

\[
V = \{1, 5\} \cup \{10 \cdot i : 1 \leq i \leq 30\} \subseteq \mathbb{N} \quad \text{for hourly products}
\]
\[
V = \{1, 2, 3, 4\} \cup \{5 \cdot i : 1 \leq i \leq 6\} \subseteq \mathbb{N} \quad \text{for 1/4-hourly products}
\]

- Define $\Pi_d(\Delta^\pm, V^\pm)$ as trading profits on day d and solve

\[
(\bar{\Delta}^\pm, \bar{V}^\pm) \in \arg\max \left\{ \sum_{d \in D_1} \Pi_d(\Delta^\pm, V^\pm) : V^\pm \in V, \Delta^\pm \in L \right\}.
\]
In-Sample Evaluation

- Training data D_1: 01.07.2017 to 31.12.2018
 - 58.6 million orders for hourly products
 - 131 million orders for quarter-hourly products
In-Sample Evaluation

- Training data \mathcal{D}_1: 01.07.2017 to 31.12.2018
 - 58.6 million orders for hourly products
 - 131 million orders for quarter-hourly products

- Evaluation period: \mathcal{D}_1 (anticipative)
 - Only one set of parameters for whole period
 - Evaluate against detailed order book data
In-Sample Evaluation

- Training data \mathcal{D}_1: 01.07.2017 to 31.12.2018
 - 58.6 million orders for hourly products
 - 131 million orders for quarter-hourly products

- Evaluation period: \mathcal{D}_1 (anticipative)
 - Only one set of parameters for whole period
 - Evaluate against detailed order book data

- Take transaction costs into account
 - Trading fees: 0.125\(\text{€}/\text{MWh}\)
 - No fees for changes of limit order
 - *Order-to-trade ratio* (OTR), should stay below 100
In-Sample Evaluation

- **Training data** \mathcal{D}_1: 01.07.2017 to 31.12.2018
 - 58.6 million orders for hourly products
 - 131 million orders for quarter-hourly products

- **Evaluation period:** \mathcal{D}_1 (anticipative)
 - Only one set of parameters for whole period
 - Evaluate against detailed order book data

- **Take transaction costs into account**
 - Trading fees: 0.125€/MWh
 - No fees for changes of limit order
 - *Order-to-trade ratio* (OTR), should stay below 100

- **Use** ε^8_t as well as ε^0_t for the strategy
 - ε^8_t can be used to assess profits using early forecast
 - ε^0_t yields an upper bound for the value of a weather forecast
In-Sample Evaluation

- Training data \mathcal{D}_1: 01.07.2017 to 31.12.2018
 - 58.6 million orders for hourly products
 - 131 million orders for quarter-hourly products

- Evaluation period: \mathcal{D}_1 (anticipative)
 - Only one set of parameters for whole period
 - Evaluate against detailed order book data

- Take transaction costs into account
 - Trading fees: 0.125€/MWh
 - No fees for changes of limit order
 - Order-to-trade ratio (OTR), should stay below 100

- Use ε_t^8 as well as ε_t^0 for the strategy
 - ε_t^8 can be used to assess profits using early forecast
 - ε_t^0 yields an upper bound for the value of a weather forecast

- Test patient trading strategy against impatient strategy

- Define a sensible range for parameter values
Results

<table>
<thead>
<tr>
<th>Actual (ε^0_t)</th>
<th>Positive</th>
<th>Negative</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QH</td>
<td>192 659</td>
<td>214 774</td>
<td>407 433</td>
</tr>
<tr>
<td>H</td>
<td>1 686 492</td>
<td>1 560 323</td>
<td>3 246 816</td>
</tr>
<tr>
<td>Impatient</td>
<td>-48 892</td>
<td>-17 350</td>
<td>-66 242</td>
</tr>
<tr>
<td>QH</td>
<td>65 167</td>
<td>3 684</td>
<td>68 852</td>
</tr>
<tr>
<td>H</td>
<td>1 000</td>
<td>1 600</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forecast (ε^8_t)</th>
<th>Positive</th>
<th>Negative</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QH</td>
<td>48 438</td>
<td>52 589</td>
<td>101 027</td>
</tr>
<tr>
<td>H</td>
<td>157 222</td>
<td>331 196</td>
<td>488 418</td>
</tr>
<tr>
<td>Impatient</td>
<td>-30 937</td>
<td>-3 766</td>
<td>-34 703</td>
</tr>
<tr>
<td>QH</td>
<td>168</td>
<td>5 607</td>
<td>5 775</td>
</tr>
<tr>
<td>H</td>
<td>1 000</td>
<td>2 000</td>
<td></td>
</tr>
</tbody>
</table>

- Patient strategy clearly outperforms impatient strategy
- ε^0_t generates 5-10 more profits than ε^8_t
- QH products permit less volume and generate less profit
Optimal Parameters (ε_t^0)

Hourly products $\varepsilon_t^0 > 0$

Profit for hourly products $\varepsilon_t^0 < 0$

Quarter-hourly products $\varepsilon_t^0 > 0$

Profit for quarter-hourly products $\varepsilon_t^0 < 0$
Optimal Parameters (ε^8_t)

Hourly products $\varepsilon^8_t > 0$

Profit for hourly products $\varepsilon^8_t < 0$

Quarter-hourly products $\varepsilon^8_t > 0$

Profit for quarter-hourly products $\varepsilon^8_t < 0$
Out-of-Sample

Goal

Train non-anticipative strategy.

- Evaluation period: 01.01.2018 until 31.12.2018
- Results for ε_t^0 and ε_t^8
- Only test patient strategy
- Rolling window setting
 - Retrain strategy every day based on the last 180 days of data
- Evaluate on detailed order book data
- Take transaction costs into account
Out-of-Sample: Hourly Products

- True forecast yield profits one order of magnitude larger
- Profits positive overall, but many products with losses
- Large volumes are being traded
- Smaller volumes and open positions
- Less volatility in daily profits
Out-of-Sample: Statistics

<table>
<thead>
<tr>
<th></th>
<th>Hour ε_t^8</th>
<th>Hour ε_t^0</th>
<th>Quarter Hour ε_t^8</th>
<th>Quarter Hour ε_t^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit</td>
<td>194 385</td>
<td>2 087 823</td>
<td>62 724</td>
<td>297 656</td>
</tr>
<tr>
<td>Balancing Costs</td>
<td>-9 865</td>
<td>31 202</td>
<td>4 214</td>
<td>8 055</td>
</tr>
<tr>
<td>Mean</td>
<td>22.29</td>
<td>239.43</td>
<td>1.8</td>
<td>8.52</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>968</td>
<td>2 110</td>
<td>44</td>
<td>99</td>
</tr>
<tr>
<td>p-value of t-test</td>
<td>0.0316</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Minimum</td>
<td>-21 220</td>
<td>-93 030</td>
<td>-1 731</td>
<td>-2 717</td>
</tr>
<tr>
<td>1% quantile</td>
<td>-2 814</td>
<td>-3 740</td>
<td>-98</td>
<td>-246</td>
</tr>
<tr>
<td>10% quantile</td>
<td>-394</td>
<td>-929</td>
<td>-22</td>
<td>-30</td>
</tr>
<tr>
<td>Median</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>90% quantile</td>
<td>522</td>
<td>1 824</td>
<td>28</td>
<td>69</td>
</tr>
<tr>
<td>99% quantile</td>
<td>3 137</td>
<td>5 600</td>
<td>118</td>
<td>300</td>
</tr>
<tr>
<td>Maximum</td>
<td>15 908</td>
<td>32 174</td>
<td>1 836</td>
<td>3 518</td>
</tr>
<tr>
<td>Number of products</td>
<td>8 288</td>
<td>8 288</td>
<td>33 189</td>
<td>33 187</td>
</tr>
<tr>
<td>Number of traded products</td>
<td>2 853</td>
<td>4 732</td>
<td>21 425</td>
<td>21 044</td>
</tr>
<tr>
<td>Number of individual trades</td>
<td>136 863</td>
<td>311 802</td>
<td>223 593</td>
<td>367 719</td>
</tr>
</tbody>
</table>

- Profit for hourly products larger than for quarter hourly products
- Profits for perfect forecast 5-10 larger than for ε_t^8
Out-of-Sample: Statistics

<table>
<thead>
<tr>
<th></th>
<th>Hour ε_t^8</th>
<th>Quarter Hour ε_t^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit</td>
<td>194 385</td>
<td>62 724</td>
</tr>
<tr>
<td>Balancing Costs</td>
<td>-9 865</td>
<td>4 214</td>
</tr>
<tr>
<td>Mean</td>
<td>22.29</td>
<td>1.8</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>968</td>
<td>44</td>
</tr>
<tr>
<td>p-value of t-test</td>
<td>0.0316</td>
<td>0.0000</td>
</tr>
<tr>
<td>Minimum</td>
<td>-21 220</td>
<td>-1 731</td>
</tr>
<tr>
<td>1% quantile</td>
<td>-2 814</td>
<td>-98</td>
</tr>
<tr>
<td>10% quantile</td>
<td>-394</td>
<td>-22</td>
</tr>
<tr>
<td>Median</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>90% quantile</td>
<td>522</td>
<td>28</td>
</tr>
<tr>
<td>99% quantile</td>
<td>3 137</td>
<td>118</td>
</tr>
<tr>
<td>Maximum</td>
<td>15 908</td>
<td>1 836</td>
</tr>
<tr>
<td>Number of products</td>
<td>8 288</td>
<td>33 189</td>
</tr>
<tr>
<td>Number of traded products</td>
<td>2 853</td>
<td>21 425</td>
</tr>
<tr>
<td>Number of individual trades</td>
<td>136 863</td>
<td>223 593</td>
</tr>
</tbody>
</table>

- No significant balancing costs
Out-of-Sample: Statistics

<table>
<thead>
<tr>
<th></th>
<th>Hour ε_t^8</th>
<th>Hour ε_t^0</th>
<th>Quarter Hour ε_t^8</th>
<th>Quarter Hour ε_t^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit</td>
<td>194 385</td>
<td>2 087 823</td>
<td>62 724</td>
<td>297 656</td>
</tr>
<tr>
<td>Balancing Costs</td>
<td>-9 865</td>
<td>31 202</td>
<td>4 214</td>
<td>8 055</td>
</tr>
<tr>
<td>Mean</td>
<td>22.29</td>
<td>239.43</td>
<td>1.8</td>
<td>8.52</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>968</td>
<td>2 110</td>
<td>44</td>
<td>99</td>
</tr>
<tr>
<td>p-value of t-test</td>
<td>0.0316</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Minimum</td>
<td>-21 220</td>
<td>-93 030</td>
<td>-1 731</td>
<td>-2 717</td>
</tr>
<tr>
<td>1% quantile</td>
<td>-2 814</td>
<td>-3 740</td>
<td>-98</td>
<td>-246</td>
</tr>
<tr>
<td>10% quantile</td>
<td>-394</td>
<td>-929</td>
<td>-22</td>
<td>-30</td>
</tr>
<tr>
<td>Median</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>90% quantile</td>
<td>522</td>
<td>1824</td>
<td>28</td>
<td>69</td>
</tr>
<tr>
<td>99% quantile</td>
<td>3 137</td>
<td>5 600</td>
<td>118</td>
<td>300</td>
</tr>
<tr>
<td>Maximum</td>
<td>15 908</td>
<td>32 174</td>
<td>1 836</td>
<td>3 518</td>
</tr>
<tr>
<td>Number of products</td>
<td>8 288</td>
<td>8 288</td>
<td>33 189</td>
<td>33 187</td>
</tr>
<tr>
<td>Number of traded products</td>
<td>2 853</td>
<td>4 732</td>
<td>21 425</td>
<td>21 044</td>
</tr>
<tr>
<td>Number of individual trades</td>
<td>136 863</td>
<td>311 802</td>
<td>223 593</td>
<td>367 719</td>
</tr>
</tbody>
</table>

- All profits are significantly positive
Out-of-Sample: Statistics

<table>
<thead>
<tr>
<th></th>
<th>Hour ε^8_t</th>
<th>Quarter Hour ε^8_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit</td>
<td>194 385</td>
<td>62 724</td>
</tr>
<tr>
<td>Balancing Costs</td>
<td>-9 865</td>
<td>4 214</td>
</tr>
<tr>
<td>Mean</td>
<td>22.29</td>
<td>1.8</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>968</td>
<td>44</td>
</tr>
<tr>
<td>p-value of t-test</td>
<td>0.0316</td>
<td>0.0000</td>
</tr>
<tr>
<td>Minimum</td>
<td>-21 220</td>
<td>-1 731</td>
</tr>
<tr>
<td>1% quantile</td>
<td>-2 814</td>
<td>-98</td>
</tr>
<tr>
<td>10% quantile</td>
<td>-394</td>
<td>-22</td>
</tr>
<tr>
<td>Median</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>90% quantile</td>
<td>522</td>
<td>28</td>
</tr>
<tr>
<td>99% quantile</td>
<td>3 137</td>
<td>118</td>
</tr>
<tr>
<td>Maximum</td>
<td>15 908</td>
<td>1 836</td>
</tr>
<tr>
<td>Number of products</td>
<td>8 288</td>
<td>33 189</td>
</tr>
<tr>
<td>Number of traded products</td>
<td>2 853</td>
<td>21 425</td>
</tr>
<tr>
<td>Number of individual trades</td>
<td>136 863</td>
<td>223 593</td>
</tr>
</tbody>
</table>

- Higher risk (dispersion) for ε^0_t and for hourly products
Out-of-Sample: Statistics

<table>
<thead>
<tr>
<th></th>
<th>Hour</th>
<th>Quarter Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ε_t^8</td>
<td>ε_t^0</td>
</tr>
<tr>
<td>Profit</td>
<td>194 385</td>
<td>2 087 823</td>
</tr>
<tr>
<td>Balancing Costs</td>
<td>-9 865</td>
<td>31 202</td>
</tr>
<tr>
<td>Mean</td>
<td>22.29</td>
<td>239.43</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>968</td>
<td>2 110</td>
</tr>
<tr>
<td>p-value of t-test</td>
<td>0.0316</td>
<td>0.0000</td>
</tr>
<tr>
<td>Minimum</td>
<td>-21 220</td>
<td>-93 030</td>
</tr>
<tr>
<td>1% quantile</td>
<td>-2 814</td>
<td>-3 740</td>
</tr>
<tr>
<td>10% quantile</td>
<td>-394</td>
<td>-929</td>
</tr>
<tr>
<td>Median</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>90% quantile</td>
<td>522</td>
<td>1 824</td>
</tr>
<tr>
<td>99% quantile</td>
<td>3 137</td>
<td>5 600</td>
</tr>
<tr>
<td>Maximum</td>
<td>15 908</td>
<td>32 174</td>
</tr>
<tr>
<td>Number of products</td>
<td>8 288</td>
<td>8 288</td>
</tr>
<tr>
<td>Number of traded products</td>
<td>2 853</td>
<td>4 732</td>
</tr>
<tr>
<td>Number of individual trades</td>
<td>136 863</td>
<td>311 802</td>
</tr>
</tbody>
</table>

- Only a fraction of products is actually traded
- Strategy generates a substantial amount of limit orders
Conclusion

- Coordination between day-ahead and intraday markets
 - Coordinated bidding is optimal
 - Finding optimal trading decisions is hard
Conclusion

- Coordination between day-ahead and intraday markets
 - Coordinated bidding is optimal
 - Finding optimal trading decisions is hard

- Profitable weather based trading strategies exist
 - Intraday market is not (semi)-strong efficient
 - Potential for considerable improvement with better forecasts
 - Potential for better strategies
 - Potential for more sophisticated learning
Conclusion

- Coordination between day-ahead and intraday markets
 - Coordinated bidding is optimal
 - Finding optimal trading decisions is hard

- Profitable weather based trading strategies exist
 - Intraday market is not (semi)-strong efficient
 - Potential for considerable improvement with better forecasts
 - Potential for better strategies
 - Potential for more sophisticated learning

- Liquidity cost on the intraday market is substantial
 - Impatient strategies based on market orders are unprofitable
 - Day-ahead market is still attractive

Capital Requirements (Insample)

<table>
<thead>
<tr>
<th>Hour</th>
<th>Patient</th>
<th>Impatient</th>
<th>QH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ε_t^8</td>
<td>ε_t^0</td>
<td>ε_t^8</td>
</tr>
<tr>
<td>Mean</td>
<td>-22 163</td>
<td>-57 795</td>
<td>404</td>
</tr>
<tr>
<td>Max</td>
<td>5798</td>
<td>117 889</td>
<td>21 450</td>
</tr>
<tr>
<td>Min</td>
<td>-210 712</td>
<td>-38 7446</td>
<td>-24 865</td>
</tr>
<tr>
<td>Std</td>
<td>40 655</td>
<td>75 280</td>
<td>6 256</td>
</tr>
<tr>
<td>Hour</td>
<td>-68</td>
<td>-2 246</td>
<td>-141</td>
</tr>
<tr>
<td>Impatient</td>
<td>0</td>
<td>5277</td>
<td>2 613</td>
</tr>
<tr>
<td>Mean</td>
<td>-1015</td>
<td>-23 798</td>
<td>-19 710</td>
</tr>
<tr>
<td>Std</td>
<td>159</td>
<td>4 015</td>
<td>1 047</td>
</tr>
</tbody>
</table>