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1. Introduction
Considering exchange-based trading of power supply contracts with delivery in Germany
there exist both a futures and a spot market. The main German spot market is operated
by EPEX SPOT SE and comprises trading of both power supply contracts with hourly
and quarter hourly delivery. For contracts with hourly delivery the spot market com-
prises a day-ahead auction with submission deadline at 12.00 noon on the day before the
delivery day and continuous trading which opens at 3.00 pm on the day before the de-
livery day and closes 30 minutes before delivery start. For contracts with quarter hourly
delivery similar markets are in place. In the following, the markets involving continuous
trading of power supply contracts with delivery in Germany are commonly referred to as
the German intraday power market. They are mainly used in order to balance forecast
errors which evolve after the submission deadlines for the day-ahead auctions, see e.g.
Weber (2010).
Participants in the German intraday power market have the choice between three types

of orders, i.e. regular orders, iceberg orders and over-the-counter (OTC) orders. Iceberg
orders are large-volume orders which are split into several orders with smaller volume and
placed into the market sequentially. In case of OTC orders the trader needs to specify
the receiving balancing group. OTC orders are not considered further in the following.
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Furthermore, market participants may either place single-contract orders for deliveries
in individual hours or block orders for deliveries in two or more contiguous hours. Only
single-contract orders are considered in the following. If market participants wish to
place single-contract orders they need to make some specifications. Important ones are
the delivery hour or quarter hour, whether it is a buy or a sell order, the quantity to
be traded, the price limit and potentially also execution restrictions, i.e. immediate-or-
cancel, fill-or-kill or all-or-nothing.1 In case of iceberg orders the peak quantity needs to
be specified in addition and execution restrictions may not be specified.
Single-contract orders with no execution restriction are added to a central, open and

anonymous order book. Order book entries are sorted firstly by whether they are buy or
sell orders, secondly by limit price and thirdly by time of reception. Order books provide
market participants with information on the (peak) quantity and the limit price of each
active buy and sell order. A buy (sell) order placed into the single-contract market is
matched if its limit price is greater (smaller) than or equal to the limit price of at least
one sell (buy) order from the order book and if all execution restrictions are adhered to.
In that case the order may also be referred to as market order.
Given that the German intraday power market involves continuous trading of power

supply contracts by allowing market participants to place (i) buy and sell limit orders
which are gathered in a central, open and anonymous order book and which give rise
to a bid-ask spread and (ii) buy and sell market orders, significant analaogies with
order-driven equity markets prevail. An important trading strategy on equity markets
is market making, i.e. placing buy and sell limit orders and being lifted on both sides
of the market, thus potentially realizing bid-ask spreads. According to Harris (2003)
market makers are exposed to the risk of holding an inventory position whose value may
decrease due to an unfavorable price change and to the risk of entering into a contract
with an information trader which may trigger an unfavorable price change and hence a
decrease in the value of the newly gained inventory position. Adverse selection risk. The
question arises of whether it is reasonable to apply the market making strategy also on
the German intraday power market. The aim of this work is to go into this question.
This work is organized as follows: In Section 2 the market parameters from a model

for market maker pricing in equity markets are adjusted to the German intraday power
market. In Section 3 a solution for optimal limit order prices from the perspective of
a market maker in the German intraday power market is derived. Section 4 treats the
estimation of the parameters of the model for market maker pricing in the German
intraday power market and Section 5 gives an overview of backtest results.

2. Components of the German Intraday Power Market
Relevant for Modeling Market Maker Pricing

Amarket maker faces the question of how to price her sell and buy limit orders. Generally
speaking, a market maker should price her limit orders such that both the diversifiable

1For more details please refer to EPEX SPOT SE (2016).
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Figure 1: Bid, ask and market orders for product H12 with delivery on April 01, 2015

inventory risk and the adverse selection risk are taken account of. Avellaneda and Stoikov
(2008) suggest a model for market maker pricing which takes account of the diversifiable
inventory risk. As opposed to that the model suggested by Cartea, Jaimungal, and Ricci
(2014) and Ricci (2014) also considers the adverse selection risk. This and the following
chapter address how the different elements of their model could be modified so that they
resemble better the characteristics of the German intraday power market.
Developing a model for optimal market maker pricing in the German intraday power

market requires consideration of a number of relevant market components in the first
place. Those components which are stochastic processes or random variables are defined
on the completed, filtered probability space (Ω,F ,Ft,P) where Ft is a filtration of the
σ-algebra F and P is the real-world probability measure.

2.1. Mid Price and Half Spread
The mid price of a power supply contract which is traded on the German intraday power
market at time t, denoted St, is defined as the arithmetic mean of the price of the best
buy limit order and the price of the best sell limit order at that time. The mid price
changes if a new buy or sell limit order is placed inside the bid-ask spread or if an existing
buy or sell limit order is canceled from the first level of the order book. Furthermore, the
mid price changes if a buy (sell) market order lifts at least the entire best sell (buy) limit
order. The following stochastic differential equation reflects these mid price dynamics:

dSt = ε+ν dK
+
t − ε−ν dK−t + ε+υ dL

+
t − ε−υ dL−t + ε+dM+

t − ε−dM−t (1)

The processes K±t are point processes on the real positive line with intensities ν±t and
reflect the number of upward changes in the mid price due to new buy limit orders being
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Figure 2: Average buy market order intensity for product H14 with delivery between
April 01 and April 30, 2015

placed inside the bid-ask spread and downward changes due to existing buy limit orders
being canceled from the first level of the order book. The random variables ε±ν reflect
by how much the mid price jumps up and down. The processes L±t with intensities υ±
and the random variables ε±υ refer to sell limit orders and are defined analagously. The
processes M±t are also point processes on the real positive line with intensities λ±t and
reflect the number of buy and sell market orders. The random variables ε± reflect by
how much the mid price jumps up and down.
The half spread Ht is defined as half the difference between the price of the best buy

limit order and the price of the best sell limit order at that time. The dynamics of the
half spread depend on the same events as those which drive the mid price. However, the
directions of the half spread changes caused by these events are partly different. The
following stochastic differential equation reflects these half spread dynamics:

dHt = −ε+ν dK+
t + ε−ν dK

−
t + ε+υ dL

+
t − ε−υ dL−t + ε+dM+

t + ε−dM−t (2)

2.2. Intensities
Considering arrivals of buy and sell market orders per time interval on the German intra-
day power market, there is evidence that their distributions depend on the location of the
time intervals. Figure 2 shows the average number of buy market orders per five minutes
for product H14 with delivery on weekdays between April 01, 2015 and April 30, 2015.
The path suggests that the intensity of buy market order arrivals increases with decreas-
ing time to maturity. Furthermore, the frequency tends to be markedly higher in the
last trading hour compared to the second last trading hour and still on a substantial
level in the second last trading hour. For sell market orders the same holds true. For
that reason the intensity parameters are fitted separately to the data which falls into the
last trading hour and the second last trading hour (see Section 4). All data that does
not fall into one of these windows is ignored. In the following the last trading hour is
referred to as “Late” and the second last as “Mid”.
Figure 3 shows the arrivals of sell market orders per minute product H14 with delivery
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Figure 3: Sell market order intensity for product H14 with delivery on April 08, 2016

on April 08, 2015. The path suggests that occasionally sell market orders arrive in
clusters. For buy market orders the same holds true. Given such clustering, buy and sell
market order arrivals are hypothesized to follow point processes with intensities which
depend on the arrival histories. One such process is the Hawkes point process which
according to Daley and Vere-Jones (2003) has the advantage of a linear representation
for the conditional intensity. Considering the arrivals of buy and sell market orders,
possible forms for the conditional intensities λ±t are

λ+
t = µ+ +

∑
t+i <t

ζ+e−ρ
+(t−t+i ) (3)

λ−t = µ− +
∑
t−i <t

ζ−e−ρ
−(t−t−i ). (4)

They may be interpreted as follows: The arrival of a buy (sell) market order causes
the conditional intensity to jump up by ζ+ (ζ−), which means that the probability of
another buy (sell) market order arriving increases. The positive impact ζ+ (ζ−) of the
buy (sell) market order on the conditional intensity decays exponentially with time at
rate ρ+ (ρ−). They not only have the advantage of being simple to evaluate but also
of having first moments which are simple to evaluate. According to Da Fonseca and
Zaatour (2014) they are defined as

E
[
λ+
T | Ft

]
= µ+ρ+

ζ+ − ρ+

(
e(ζ+−ρ+)(T−t) − 1

)
+ λ+

t e
(ζ+−ρ+)(T−t) (5)

E
[
λ−T | Ft

]
= µ−ρ−

ζ− − ρ−
(
e(ζ−−ρ−)(T−t) − 1

)
+ λ−t e

(ζ−−ρ−)(T−t). (6)

Having discussed the intensities of buy and sell market order arrivals, the intensities
of limit order-driven mid price and half spread changes remain to be considered. While
a thorough analysis has been omitted, it is assumed that they also exhibit clustering.
Against that background it is hypothesized that the conditional intensities of limit order-
driven mid price and half spread changes ν±t and υ±t and hence also their first moments
have the same forms as the conditional intensities of buy and sell market order arrivals.
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2.3. Mid Price and Half Spread Impacts
As already indicated the mid price and half spread impacts of buy and sell market orders
ε± are random variables which represent the absolute mid price and half spread changes
after the arrival of a market order. If a market order consumes only part of the best limit
order, it does not have any impact on the mid price and half spread. If, however, one
or more limit orders are consumed by a market order, the mid price and the half spread
change by half the distance between the price of the best limit order before the arrival
of the market order and after. With this in mind it becomes clear that the mid price
and half spread impacts of market orders depend on the shape of the limit order book
(i.e. the volume at each tick above and below the mid price) before market order arrival
and the market order volume. Hence, the expected mid price and half spread impacts
of buy and sell market orders ε± should depend on processes reflecting the shape of the
limit order book and the evolution of market order volumes.
Regarding the limit order books for the products traded on the German intraday

power market, it is hypothesized that their shapes may vary significantly over time. For
example, in times of large market orders arriving on one side of the market they may
thin out quickly on that side and take a while to be filled up again. Considering the
evolution of market order volumes on the German intraday power market a positive
autocorrelation structure is suspected. One explanation for this is that if a market
participant suffers a sudden position imbalance e.g. due to a power plant outage, she
may place a number of market orders with substantial volumes on one side of the market
over a short period of time in order to compensate the imbalance. However, analyzing
these dynamics in detail is left for future research.
The mid price and half spread impacts of limit order-driven mid price and half spread

changes ε±ν and ε±υ are random variables which represent the absolute mid price and half
spread changes after a new limit order has been placed inside the bid-ask spread or after
an existing limit order has been canceled from the first level of the order book. Both the
mid price and the half spread change by half the distance between the price of the best
limit order before the event and after. The mid price and half spread impacts of existing
limit orders being canceled from the first level of the order book depend on the shape of
the limit order book. Hence, the shape of the limit order book should be represented in
their expectations ε−ν and ε+

υ . As opposed to this the mid price and half spread impacts
of new limit orders being placed inside the bid-ask spread do not depend directly on the
shape of the limit order book.

2.4. Fill Probability
Assume that there are market participants placing market orders which lift limit orders
contained in a limit order book. The highest (lowest) price of a sell (buy) limit order
which is lifted by a buy (sell) market order is denoted Π+

t (Π−t ), whereas the absolute
difference between that price and the mid price is denoted ∆Π+

t (∆Π−t ) and named mid
price impact. The fill probabilities Pr

(
∆Π±t > δ±t

)
reflect the likeliness that a sell or

buy limit order placed at distance δ±t above or below the mid price is lifted. Avellaneda
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and Stoikov (2008) suggest that the fill probability of a limit order may be derived from
the distribution of market order volumes and its relation to the distribution of market
order impacts on the mid price. Assuming that the distributions of market order volumes
obey power laws and that there is a logarithmic relation between the distributions of
market order volumes and the distributions of market order impacts, they come up with
parametric equations for the fill probabilities which decay exponentially in δ±t . The way
how these fill probabilities work is that the further a limit order is placed away from the
mid price the less likely it is to be lifted.
Avellaneda and Stoikov (2008) do not consider explicitly the impact of the shape of the

limit order book on the fill probability. Furthermore, they do not consider any variability
in the shape of the limit order book or the distributions of market order volumes over
time. While confirming the dependence of the fill probabilities on the distributions of
market order volumes, Cartea, Jaimungal, and Ricci (2014) state explicitly that the
shape of the limit order book is an additional factor influencing the fill probability.
However, the parametric equations for the fill probabilities they suggest which are most
comparable to the ones proposed by Avellaneda and Stoikov (2008) are exponentially
decaying functions of δ±t with decay rates κ±t which reflect the current distributions of
market order volumes and the current shape of the limit order book in an aggregated
way. The larger κ+

t (κ−t ) is, the smaller is the probability of a sell (buy) limit order with
a price greater (smaller) than the mid price of being lifted.

Considering the German intraday power market both variability in the distributions
of market order volumes and variability in the shape of the limit order book are sus-
pected (see above). For that reason the parametric equations for the fill probabilities
suggested by Cartea, Jaimungal, and Ricci (2014) appear to be a good starting point.
It is hypothesized, however, that they should also take account of the half spread. The
reason for that is that in fact it is the distance between the price of a sell (buy) limit
order and the price of the best sell (buy) limit order which mainly impacts the likeliness
of being lifted, not the distance to the mid price. Hence, the fill probabilities of sell and
buy limit orders are assumed to have the forms

f
(
δ+
t ;Ht, κ

+
t

)
:= Pr

(
∆Π−t > δ−t

)
= e−κ

+
t (δ+

t −Ht) (7)

f
(
δ−t ;Ht, κ

−
t

)
:= Pr

(
∆Π−t > δ−t

)
= e−κ

−
t (δ−

t −Ht). (8)

In line with Cartea, Jaimungal, and Ricci (2014) these fill probabilities are assumed to
be associated with the condition f

(
δ±t ;Ht, κ

±
t

)
= 1 for δ±t < Ht. That means that

market participants are assumed not to be able to increase the likeliness of their limit
orders being lifted by placing them inside the bid-ask spread.

3. A Model for Optimal Market Maker Pricing in the German
Intraday Power Market

Having outlined the characteristics of the components of the German intraday power
market which are relevant for the market maker pricing model suggested by Cartea,
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Jaimungal, and Ricci (2014) and Ricci (2014), the model itself may be modified. Again
it should be noted that all stochastic processes and random variables are defined on the
completed, filtered probability space (Ω,F ,Ft,P) where Ft is a filtration of the σ-algebra
F and P is the real-world probability measure.

3.1. Market Maker’s Value Function
The model for market maker pricing comprises on the one hand a market making agent
(the Agent) who continuously places sell and buy limit orders and on the other hand
other market participants who place limit and market orders. The markup (markdown)
which the Agent adds to (subtracts from) the mid price to price her sell (buy) limit
orders is labeled δ+

t (δ−t ). If a sell (buy) limit order placed by the Agent is lifted her
inventory decreases (increases). The Agent realizes profits if she sells power at prices
which are higher than the prices at which she buys power. Hence, she benefits from the
price spread between the market’s sell and buy side and a favorable mid price and/or
half spread development but also takes the risk of an unfavorable mid price and/or half
spread development. For that reason the Agent is reluctant to inventory. Furthermore,
the Agent splits the trading periods of the products which are traded in the German
intraday power market into windows of equal duration such as one hour and operates
in each window on its own. If the Agent’s inventory is positive (negative) at the end of
such a trading window, she liquidates her position by a sell (buy) market order.2

Against that background the Agent’s performance criterion is hypothesized to consist
of three components. The first component is her terminal wealth XT whose dynamics
over a trading window are defined as

dXt =
(
St + δ+

t

)
dN+

t −
(
St − δ−t

)
dN−t (9)

where the processes N+
t and N−t represent the number of sell and buy limit orders placed

by the Agent which have been lifted by buy and sell market orders, respectively. In case
of a sell limit order being lifted the Agent’s wealth increases by the price of that limit
order, whereas in case of a buy limit order being lifted her wealth decreases by the price
of that limit order. The intensities of the processes N±t are labeled Λ±t and consist of
the intensities of buy and sell market order arrivals λ±t and the fill probabilities of sell
and buy limit orders f

(
δ±t ;Ht, κ

±
t

)
:

Λ+
t = λ+

t f
(
δ+
t ;Ht, κ

+
t

)
(10)

Λ−t = λ−t f
(
δ−t ;Ht, κ

−
t

)
. (11)

The hypothesized intensities of buy and sell market order arrivals and fill probabilities
of sell and buy limit orders have already been discussed above. Given that the processes
N±t count the number of sell and buy limit orders placed by the Agent and subsequently

2In particular, she does not pass any position on to the reserve energy market.
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being lifted by buy and sell market orders, the inventory level at any time during a
trading window is defined as

qt = N−t −N+
t . (12)

The second component of the Agent’s performance criterion is the liquidation value
of her terminal inventory, i.e. her terminal inventory position multiplied by the termi-
nal mid price reduced or increased by the terminal half spread depending on whether
the terminal inventory level is positive or negative and reduced by a penalty which is
scaled by the terminal inventory position: qT (ST − sgn (qT )HT − αqT ). The terminal
mid price is reduced by an inventory-scaled penalty to account for the fact that the
greater the terminal inventory position is, the worse is the price at which the terminal
inventory position may be liquidated: In case of a negative terminal inventory position
the liquidation price tends to be greater greater than the terminal best sell limit order
price, whereas in case of a positive terminal terminal inventory position the liquidation
price tends to be smaller than the terminal best buy limit order price.
The third component of the Agent’s performance criterion is a penalty on inventory

held during the trading period: −φ
∫ T
t q2

udu.
Having determined the components of the Agent’s performance criterion the following

value function evolves:

Φ (t,Xt, St, Ht, qt,νt,υt,λt,κt) =

sup
δ+,δ−

E
[
XT + qT (ST − sgn (qT )HT − αqT )− φ

∫ T

t
q2
u du

∣∣∣∣∣Ft
]

(13)

νt is a vector comprising the intensities of buy limit orders entering the order book or
being canceled which have an impact on the mid price and the half spread, i.e.

(
ν+
t , ν

−
t

)′
,

υt, λt and κt analogous.

3.2. The Optimal Strategy
With the value function as presented in Equation (13) at hand, employing the dynamic
programming principle yields the Hamilton-Jacobi-Bellman (HJB) equation

0 = (∂t + L) Φ
+ ν+ [S+

hνΦ
(
t, x, s+ ε+ν

)
− Φ

]
+ ν−

[
S−hνΦ

(
t, x, s− ε−ν

)
− Φ

]
+ υ+ [S+

hυΦ
(
t, x, s+ ε+υ

)
− Φ

]
+ υ−

[
S−hυΦ

(
t, x, s− ε−υ

)
− Φ

]
+ λ+ sup

δ+

{
f
(
δ+;h, κ+) [S+

hqλΦ
(
t, x+ s+ δ+, s+ ε+

)
− Φ

]
+
(
1− f

(
δ+;h, κ+)) [S+

hλΦ
(
t, x, s+ ε+

)
− Φ

] }
+ λ− sup

δ−

{
f
(
δ−;h, κ−

) [
S−hqλΦ

(
t, x− s+ δ−, s− ε−

)
− Φ

]
+
(
1− f

(
δ−;h, κ−

)) [
S−hλΦ

(
t, x, s− ε−

)
− Φ

] }
− φq2 (14)
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with terminal condition Φ (T, ·) = x + q (s− sgn (q)h− αq) and x := Xt, s := St and
h := Ht. The remaining time indexes are also suppressed in the HJB equation. This way
of presentation will be kept up for the rest of this section. Considering the HJB equation
L requires clarification. Given that the HJB equation reflects the local behavior of the
value function and that the intensities ν, υ and λ as well as the decay rates κ vary
over time, the derivatives of the value function with respect to these parameters need
to be included in the HJB equation. Furthermore, the shift operators S+

hν etc. require
clarification. They reflect the expectation with regards to the value function in case of
a shift in the parameter/s specified in their index, i.e.:

S+
hνΦ = E

[
Φ
(
t, x, s, h− ε+ν , q,ν +

(
ζ+
ν , 0

)′
,υ,λ,κ

)]
(15)

S−hνΦ = E
[
Φ
(
t, x, s, h+ ε−ν , q,ν +

(
0, ζ−ν

)′
,υ,λ,κ

)]
(16)

S+
hυΦ = E

[
Φ
(
t, x, s, h+ ε+υ , q,ν,υ +

(
ζ+
υ , 0

)′
,λ,κ

)]
(17)

S−hυΦ = E
[
Φ
(
t, x, s, h− ε−υ , q,ν,υ +

(
0, ζ−υ

)′
,λ,κ

)]
(18)

S+
hqλΦ = E

[
Φ
(
t, x, s, h+ ε+, q − 1,ν,υ,λ+

(
ζ+, 0

)′
,κ
)]

(19)

S−hqλΦ = E
[
Φ
(
t, x, s, h+ ε−, q + 1,ν,υ,λ+

(
0, ζ−

)′
,κ
)]

(20)

S+
hλΦ = E

[
Φ
(
t, x, s, h+ ε+, q,ν,υ,λ+

(
ζ+, 0

)′
,κ
)]

(21)

S−hλΦ = E
[
Φ
(
t, x, s, h+ ε−, q,ν,υ,λ+

(
0, ζ−

)′
,κ
)]

(22)

Solving the HJB equation yields as by-product solutions for the optimal markups
(markdowns) to be added to (subtracted from) the mid price when pricing sell (buy)
limit orders. To do so, an ansatz for Φ is required. Referring to Cartea and Jaimungal
(2015) the terminal condition of the HJB equation is used to identify the ansatz

Φ = x+ q (s− sgn (q)h− αq) + g (t, h, q,ν,υ,λ,κ) (23)

with g (T, ·) = 0. Substituting the ansatz into the HJB equation and taking expectations
with regards to ε±ν , ε±υ and ε± yields

0 = Dg
+ ν+ [ε+

ν q (1 + sgn (q)) + S+
hνg − g

]
− ν−

[
ε−ν q (1 + sgn (q))− S−hνg + g

]
+ υ+ [ε+

υ q (1− sgn (q)) + S+
hυg − g

]
− υ−

[
ε−υ q (1− sgn (q))− S−hυg + g

]
+ λ+ [ε+q (1− sgn (q)) + S+

hλg − g
]

+ λ−
[
−ε−q (1 + sgn (q)) + S−hλg − g

]
+ λ+ sup

δ+

{
f
(
δ+;h, κ+) [δ+ − ε+ − ε+ ((q − 1) sgn (q − 1)− q sgn (q))

−h ((q − 1) sgn (q − 1)− q sgn (q))− α (1− 2q) + S+
hqλg − S+

hλg
]}

+ λ− sup
δ−

{
f
(
δ−;h, κ−

) [
δ− − ε− − ε− ((q + 1) sgn (q + 1)− q sgn (q))

−h ((q + 1) sgn (q + 1)− q sgn (q))− α (1 + 2q) + S−hqλg − S−hλg
]}

− φq2 (24)

where D = ∂t + L.
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Proposition 1. Optimal markups are given by

δ+∗ = 1
κ+ + ε+ ((q − 1) sgn (q − 1)− q sgn (q) + 1)

+ h ((q − 1) sgn (q − 1)− q sgn (q)) + α (1− 2q)− S+
hqλg + S+

hλg. (25)

Optimal mardowns are obtained analogously.

See Appendix A.1 for a proof. Cartea, Jaimungal, and Ricci (2014) refer to 1
κ+ as risk-

neutral component. As may be understood from Equation (25) optimal markups δ+∗

depend on g (·), more specifically the difference between g (·) with half spread, inventory
and buy market order intensity shifted and g (·) with only half spread and buy market
order intensity shifted. In the attempt to find an analytical solution for g (·) the solutions
for optimal markups and markdowns are plugged back into the HJB:

0 = Dg
+ ν+ [ε+

ν q (1 + sgn (q)) + S+
hνg − g

]
− ν−

[
ε−ν q (1 + sgn (q))− S−hνg + g

]
+ υ+ [ε+

υ q (1− sgn (q)) + S+
hυg − g

]
− υ−

[
ε−υ q (1− sgn (q))− S−hυg + g

]
+ λ+ [ε+q (1− sgn (q)) + S+

hλg − g
]

+ λ−
[
−ε−q (1 + sgn (q)) + S−hλg − g

]
+ λ+

{
f
(
δ+∗;h, κ+) 1

κ+

}
+ λ−

{
f
(
δ−∗;h, κ−

) 1
κ−

}
− φq2 (26)

Given that Equation (26) is non-linear due to f (·) being an exponential function and
functions g (·) contained in optimal markups and markdowns δ±∗ being shifted pose
difficulties, approximations are required in order to be able to find an analytical solution
for g (·).

Proposition 2. With first-order Taylor expansion for f (·) around 1
κ± + h and second-

order asymptotic expansion for g (·) in q, optimal markups δ+∗ only depend on g1 (·) and
g2 (·). Solutions are

g1 = ε+
ν (1 + sgn (q))E

[∫ T

t

ν+
u du

∣∣∣∣∣ ν+
t = ν+

]
− ε−ν (1 + sgn (q))E

[∫ T

t

ν−u du

∣∣∣∣∣ ν−t = ν−

]

+ ε+
υ (1− sgn (q))E

[∫ T

t

υ+
u du

∣∣∣∣∣ υ+
t = υ+

]
− ε−υ (1− sgn (q))E

[∫ T

t

υ−u du

∣∣∣∣∣ υ−t = υ−

]

+ ε+ (1− sgn (q))E
[∫ T

t

λ+
u du

∣∣∣∣∣λ+
t = λ+

]
− ε− (1 + sgn (q))E

[∫ T

t

λ−u du

∣∣∣∣∣λ−t = λ−

]

+2 exp (−1) (α− g2)E
[∫ T

t

λ+
u du

∣∣∣∣∣λ+
t = λ+

]
+2 exp (−1) (−α+ g2)E

[∫ T

t

λ−u du

∣∣∣∣∣λ−t = λ−

]
(27)

and
g2 = −φ (T − t) . (28)
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See Appendix A.2 for a proof. The expectations contained in Equation (27) may be
computed explicitly on the basis of Fubini’s Theorem and expected intensities of the
form presented in Equations (3) and (4).
We notify that the behavior of the solution for g (·) for q < −1 ∨ q > 1 in the region

[−1, 1] is comparable to the behavior of the second and the third term of Equation (29)
in that region (see Section 3.3 for details).

Conjecture 1. The solution for g (·) for q < −1∨ q > 1 is also the solution for g (·) for
q ∈ [−1, 1].

Corollary 3. The asymptotic expansion of optimal markups is

δ+∗ = 1
κ+ + ε+ ((q − 1) sgn (q − 1)− q sgn (q) + 1)

+ h ((q − 1) sgn (q − 1)− q sgn (q)) + α (1− 2q)− (q − 1)S+
qλg1 + qS+

λ g1 − (1− 2q) g2. (29)

The asymptotic expansion of optimal markdowns is obtained analogously.

Given that the Agent is assumed not to be able to increase the likeliness of her limit
orders being lifted by placing them inside the bid-ask spread, the optimal markup and
markdown have the current half spread as their minimum. However, the asymptotic
solutions for optimal markups and markdowns presented above may take values which
are smaller than the current half spread. For that reason the optimal markups and
markdowns are rewritten as max (δ±∗, h).

3.3. The Behavior of the Strategy
The effects of the components of optimal markups δ+∗

t as provided by Equation (29) are
analyzed in the following. All parameters are chosen such that they are similar to the
parameter estimations presented below.
We refer to Cartea, Jaimungal, and Ricci (2014) with regards to the interpretation of

the risk-neutral component. The second component involving ε+ may be interpreted as
follows: In case of a negative or no inventory position, the second term of Equation (29)
is twice the expected impact of a buy market order. Thus, the Agent prices into her
sell limit order price that she may have to close the position resulting from that order
being hit by buying at a higher mid price and a higher half spread. In case of a positive
inventory position, however, the second term of Equation (29) is zero. This is explained
by the fact that the Agent’s willingness to benefit from a mid price increase and her
willingness to protect herself from a half spread increase neutralize each other.
The component involving the half spread may be interpreted as follows: In case of a

negative or no inventory position the Agent’s sell limit order price comprises the current
half spread with positive sign. Facing the potential need to equalize her inventory
position by buying power from the market’s sell side, the Agent prices the current half
spread itself into her sell limit order price. In case of a positive inventory position,
however, the Agent’s sell limit order price comprises the current half spread with negative
sign. [No time dependency]
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Figure 4: Dependence of different components of optimal markups on inventory position

We continue by considering the terminal inventory penalty term of Equation (29). In
case of a negative inventory position, the Agent increases her sell limit order price in
order to decrease the likeliness of her sell limit order being lifted, whereas in case of a
positive inventory position she decreases her sell limit order price in order to increase the
likeliness of her sell limit order being lifted. The amount by which the Agent adjusts her
sell limit order price declines linearly in her inventory position. [No time dependency]
The last two terms of Equation (27) also depend on the terminal inventory penalty.
A possible interpretation is the adjustment of the terminal inventory penalty term of
Equation (29) in case of imbalances in the intensities of buy and sell market order arrivals
λ±t .
The running inventory penalty term of Equation (29) declines linearly in time. An

interpretation may be that the closer gate closure gets, the smaller is the risk that the mid
price and the half spread change unfavorably from the Agent’s perspective. Compared
to the optimal solution from Cartea and Jaimungal (2015), however, the linear time
dependence is not reasonable. The last two terms of Equation (27) also depend on the
running inventory penalty. The same interpretation as in case of the terminal inventory
penalty may be drawn upon.
We conclude by considering the impact of the first six terms of Equation (27) which

we refer to as market activity component. Figure 4 shows that impact for different levels
of q. In the case where market activities in combination with expected activity impacts
cause the half spread to tighten over time, the sign of the market activity component
is negative as long as the Agent has a negative or no inventory position, i.e. it causes
the sell limit order price to come closer to the half spread. The intuition behind this is
that the Agent takes into account that the negative inventory unit resulting from her
sell limit order being hit is expected to be liquidatable at the end of her trading window
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Figure 5: Impact of buy and sell market order arrival on Agent’s optimal markups and
markdowns

at a lower ask price and a lower half spread. In case of a positive inventory position,
however, the market activity component has a positive sign, i.e. it causes the sell limit
order price to move away from the best ask. This is due to the fact that the Agent
takes into account that the positive inventory position resulting from her sell limit order
being hit is expected to be liquidatable at the end of her trading window at a higher bid
price and a lower half spread. In the case where market activities in combination with
expected activity impacts cause the half spread to widen over time it is the other way
around.
Assuming that the Agent does not have an inventory position, Figure 5 shows how the

terms involving g (·) react to a buy and a sell market order arrival over time. The arrival
of a buy market order causes the optimal markup δ+∗

t to increase. Roughly speaking
this is due to the fact that the Agent expects an increase in the mid price and therefore
protects herself from selling units now which would have to be rebought later at a higher
price. The arrival of a sell market order, however, causes the optimal markup δ+∗

t to
decrease slightly. Roughly speaking this is due to the fact that the Agent expects a
decrease in the mid price and therefore wants to sell units now which could then be
rebought later at a lower price. [Slightly] Furthermore, it may be observed that the
impacts of increases in ν±t on the sum of the markup components for limit order-driven
mid price and half spread changes decay exponentially and return to the base intensities
within less than two minutes.
In case of a positive inventory position, the component referring to the arrival of buy

market orders comprises 2 as coefficient. This is due to the fact that the Agent wants to
protect herself from both the negative impact of a mid price increase and the negative
impact of a half spread increase by considering a factor of 2 in the increase of her sell
limit order price. By contrast, the component referring to the arrival of sell market
orders comprises 0 as coefficient. This is due to the fact that the Agent wants to benefit
from the positive impact of a mid price decrease by decreasing her sell limit order price
and at the same time wants to protect herself from the negative impact of a half spread
increase by increasing her sell limit order price. The interpretations are analogous for
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negative inventory positions.

4. Parameter Estimation
We estimate the parameters of optimal markups and markdowns with data acquired
from EPEX SPOT SE which has emanated from their trading system “M7”. The data
comprises all limit orders which have been inserted explicitly into the market for delivery
in GER/AUT between X and Y. Furthermore, it comprises all market orders which have
been placed explicitly into that market. Limit orders with delivery areas other than
GER/AUT which have been filled by market orders with delivery in GER/AUT are
comprised but with the insertion timestamp being the same as that of the market order
(i.e. not the actual insertion timestamp). All other insertions as well as cancellations of
limit orders with delivery areas other than GER/AUT which have also appeared in the
market for delivery in GER/AUT due to available interconnection capacity are missing.

Buy and sell market order arrivals are modeled as Hawkes point processes with con-
ditional intensities λ±t as defined by Equations (3) and (4). Da Fonseca and Zaatour
(2014) provide the log-likelihood function for estimating the parameters of this condi-
tional intensity. We estimate the parameters for each delivery hour and for each trading
window (Mid and Late) separately. Since we use multiple trading days for estimation,
we use the following log-likelihood function to do so:

LL± =
M∑
i=1

t±i,N − µ±t±i,N −
N∑
j=1

ζ±

ρ±

(
1− exp

(
−ρ±

(
t±i,N − t

±
i,j

)))

+
N∑
j=1

ln

µ± +
∑

t±
i,j
<t±

i,k

ζ± exp
(
−ρ±

(
t±i,j − t

±
i,j

))
 (30)

where t±i,j reflect timestamps of buy and sell market orders with delivery on day i.
To begin with, the suitability of the estimated Hawkes point processes with regards

to capturing the intensities of market order arrivals is considered. In this context a test
is used which is described in Ogata (1988) and which is based on analyzing residuals.
With Hawkes point processes with intensities λ±t as defined by Equations (3) and (4)
at hand, the residuals τ±i,j may be obtained from the timestamps of buy and sell market
orders t±i,j one-to-one according to the transformation

τ±i,j =
∫ t±i,j

0
λ±u du. (31)

The residuals τ±i,j may also be considered as timestamps. The idea of the test is
that if the estimated intensities do well in resembling the true intensities, the durations
τ±i,j − τ±i,j−1 are iid exponentially distributed with unit rate. Probability-probability
(PP) and quantile-quantile (QQ) plots are used to assess that. Figure ?? shows unit-
rate exponential PP and QQ plots for differences in residuals which are generated on
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Unit H11 H15 H18
Mid Late Mid Late Mid Late

µ+ trades per min
ζ+ trades per min
ρ+ n/a
µ− trades per min
ζ− trades per min
ρ− n/a
µ+
ν trades per min
ζ+
ν trades per min
ρ+
ν n/a
µ−ν trades per min
ζ−ν trades per min
ρ−ν n/a
µ+
υ trades per min
ζ+
υ trades per min
ρ+
υ n/a
µ−υ trades per min
ζ−υ trades per min
ρ−υ n/a
ε+ EUR per MWh
ε− EUR per MWh
ε+
ν EUR per MWh
ε−ν EUR per MWh
ε+
υ EUR per MWh
ε−υ EUR per MWh

Table 1: Parameters of the estimated Hawkes point processes and expected absolute mid
price and half spread impacts of market and limit order-driven mid price and
half spread changes.

the basis of the parameters of the estimated Hawkes point processes for H11, H15 and
H18 buy market orders in the trading window “Late”. Additionally, Figure ?? shows
unit-rate exponential PP and QQ plots for differences in residuals which are generated
on the basis of the parameters of estimated homogeneous Poisson point processes for
H11, H15 and H18 buy market orders in the trading window “Late” for comparison.
[Figure: PP and QQ plots for buy market order arrivals in the trading window “Late”]
[Quality of estimated parameters]
Table 1 presents the estimated parameters of the Hawkes point processes for buy

and sell market orders for products [HX], [HY] and [HZ]. [Interpretation of estimated
parameters]
Concerning the intensities of buy and sell limit order-driven mid price and half spread

changes the same log-likelihood function as for buy and sell market orders is used.
[Quality and interpretation]
As pointed out above, the mid price and half spread impacts of buy and sell market
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orders depend on the shape of the limit order book which appears to change over time,
and the market order volumes which appear to exhibit positive autocorrelation. In this
work, however, neither of these two factors is attempted to be captured for simplicity
reasons. Instead, the expected absolute mid price and half spread impacts of buy and
sell market orders ε± are approximated by the means of historic absolute mid price and
half spread impacts of buy and sell market orders. The estimates for products [HX],
[HY] and [HZ] are presented in Table 1. [Interpretation]
The fill probabilities of buy and sell limit orders are assumed to decay exponentially

in the distance of their price to the price of the current best buy and sell limit order
at rate κ±t (see Section 2.4). Given that for all products and trading windows under
consideration the share of buy and sell market orders which do not pass the first level
of the limit order book lies around 80%, the decay rates are assumed to be large enough
for the risk-neutral component 1

κ±
t

to be 0.

5. Backtest
Guéant et al. (2013) describe a backtest to test a model for market maker pricing which is
comparable to the one presented above. They point out that their model is intrinsically
discrete in space due to the tick size and time due to the priority of older limit orders
over younger limit orders with the same price. Against this background they assume the
Agent to operate in time windows of length dt. Here dt is chosen to be X seconds.
The backtest itself builds upon trading in a particular stock over a particular time

window in the past. Initially, the prices at which the Agent would have placed her sell
and buy limit order at the beginning of the first time window of length dt are computed.
If a buy (sell) market order with transaction price at or above (below) the price of the
Agent’s sell (buy) limit order arrived in that time window, it is assumed that her sell
(buy) limit order would have been lifted entirely and that she would have immediately
placed new sell and buy limit orders. If the Agent’s sell or buy limit order would have
not been lifted by the end of the first time window of length dt, the prices at which the
Agent would have placed her sell and buy limit order at the beginning of the second
time window of length dt are computed. If a buy (sell) market order arrived in that time
window, transaction and sell (buy) limit order price are compared again to determine
whether the Agent’s limit order would have been lifted. This procedure is repeated until
the end of the time window under consideration. Lastly, the prices of the sell and buy
limit orders which would have been lifted and the terminal inventory position and mid
price are used to determine the PnL.

Compared to reality the backtest suggested by Guéant et al. (2013) goes along with a
number of simplifications. One is that it is not modeled that other market participants
may react to the sell and buy limit orders placed by the Agent, in particular if the price
of her sell (buy) limit order is lower (higher) than the price of the best sell (buy) limit
order. Another is that sell or buy limit orders which have been lifted in reality but would
have not been lifted if the Agent had actually placed her sell and buy limit orders are
nevertheless removed from the order book. These simplifications are accepted.
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Indicator Measure Unit α = 0 α = 0.01 α = 0.05 α = 0.1
PnL mean EUR

std EUR
Q5 EUR
Q95 EUR
skewness n/a
kurtosis n/a

Inventory mean MW
std MW
Q5 MW
Q95 MW
skewness n/a
kurtosis n/a

Volume mean MW
std MW
Q5 MW
Q95 MW
skewness n/a
kurtosis n/a

Table 2: Backtest results for X to Y and “Late”

In addition to these simplifications Guéant et al. (2013) assume that the terminal
inventory position may be liquidated at the terminal mid price. That means that they
ignore both the half spread and the shape of the limit order book. In this work, however,
the terminal inventory position is assumed to be liquidated at the best sell or buy limit
order price. Hence, only the shape of the limit order order book is ignored.
[Figure: Optimal sell and buy limit order prices and buy and sell market orders which

would have lifted the Agent’s sell and buy limit orders as well as best sell and buy limit
order prices for product H14 with delivery on April 15, 2015 in the trading window
“Late”]
[Figure: Inventory position for product H14 with delivery on April 15, 2015 in the

trading window “Late”]
[Figure: Distribution of PnLs, terminal inventory positions and trading volumes for

the trading windows “Late” and “Mid”]

6. Conclusion and Outlook

A. Proofs
A.1. Proposition 1
Proof. Differentiating the functions contained in the arguments of the supremum func-
tions and solving for δ± yields as optimal markups and markdowns δ±∗.
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A.2. Proposition 2
Proof. g2 trivial.
g1 not impacted by sign function. g0 cancels out. Feynman-Kac.
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